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Abstract 

Road performance can also decline due to natural disasters such as earthquakes, often in Indonesia. Given the high risk of 

natural disasters in Indonesia, it is important to consider their impact. Therefore, it is necessary to prepare for road 

rehabilitation and reconstruction quickly and accurately. This research aims to identify potential factors causing road 

damage by developing an approach to obtain predictions of road damage levels due to natural disasters by utilizing the 

availability of historical data, developing a decision support system to rehabilitate and reconstruct roads after disasters, 

and developing a road damage model due to earthquakes using data mining. The data was used to assess the condition of 

the national road pavement in Central Sulawesi and identified the disaster events as earthquakes that originated from the 

USGS. Data processing uses a data mining (DM) approach, which includes three models. The results found that the SVM 

modeling with the DM approach had a high accuracy rate of 0.91 ± 0.01, RMSE 0.70 ± 0.02, and MAD 0.42 ± 0.01. SVM 

achieves the highest accuracy after 20 runs. The best hyperparameters to accomplish a fit SVM model are ϵ = 0.07 ± 0.01 

and γ = 0.05 ± 0.00. Meanwhile, for ANN, the hyperparameters are H = 3 ± 1. The earthquake’s magnitude (27%) and 

depth (24%) contribute to road damage. 
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1. Introduction 

Road construction is conducted simultaneously in several places to achieve the set targets. In this sense, road 

construction organizers and all stakeholders must continue developing themselves to preserve, extend, and enhance 

development progress [1, 2]. However, the simultaneous implementation process frequently requires improvement. One 

of them is the occurrence of natural and non-natural disasters that need serious attention [3]. Failure at this stage will 

impact the field's overall development process [4]. Natural disasters frequently occur in Indonesia; as evidence, the 

Ministry of Public Works and Housing recorded 1,257 floods, 931 tornadoes, 566 landslides, 250 forest fires, 22 

earthquakes, 22 tidal waves, and four droughts in 2022 alone [5]. This natural disaster has resulted in various risks of 

human losses, such as displacing 3,781,976 people, injuring 831 people, killing 195 people, and missing 28 people. In 

addition, the most visible infrastructure damage was 7,765,967 submerged buildings, 270 damaged bridges, 519 
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educational facilities, 320 worship facilities, 76 health facilities, and various other infrastructure [6]. Therefore, they 

must quickly mitigate and deal with the multiple impacts of disasters to ensure the smooth operation of government 

services [7]. 

The state is responsible for handling disaster impacts and ensuring people can do their activities safely. Controlling 

the effects of disasters that require attention, among other things, means maintaining the connectivity of road networks 

and bridges [8]. One example is the occurrence of extraordinary disasters, namely the Palu, Sigi, and Donggala 

earthquakes on September 28, 2018. These natural disasters caused significant damage with extensive impacts [9]. When 

the tragedy occurred, infrastructure development was progressing relatively rapidly. However, this incident caused a 

cessation of construction and maintenance of infrastructure. This earthquake is a complete phenomenon due to fault 

movements, tsunamis, avalanches, and catastrophic liquefaction events, the most significant global phenomenon ever 

[10]. Liquefaction has attracted attention from the people of Indonesia and even the world since the mudflow event 

during the liquefaction devastated infrastructure and dwellings on a considerable scale and generated a direct incident 

[11]. 

A disaster can reduce road performance or cause it to cease functioning abruptly [12]. Generally, the lifespan of the 

road pavement experiences depreciation, ranging from the time of construction and use until it is considered damaged 

(ends of design life) [10]. The decline in road performance is proportional to the level of disaster disturbance. Indeed, 

to conduct rehabilitation and reconstruction planning, it is necessary first to decrease road performance [13]. Therefore, 

it should model various data and the scale of disaster-induced damage to road infrastructure to estimate the level of 

damage in subsequent incidents. 

The ability to predict road damage due to a disaster using previous damage data is essential to optimizing a road 

pavement management system. It should leverage the extensive data in the pavement management system to aid in 

developing the model [14]. DM's ability to interpret accurately is supported by a vast capacity to read available data that 

must be used well. Historical data from natural disaster events that resulted in suspected road damage can be used to 

accurately assess and forecast data for future activities. Historical data from natural disaster events that resulted in 

suspected road damage can be used to accurately assess and forecast data for future activities. They lose their 

significance if the research fails to accurately understand and predict large data sets [15, 16]. In this regard, it is required 

that the model can offer a reasonable approach to the interpretation process. Data mining (DM) is frequently applied for 

data interpretation in many fields. In using artificial intelligence (AI), DM has tremendous promise in assisting 

interpretation and prediction [17]. They are using AI in the transportation science scientific group to improve their 

approach to conducting sustainable analysis [18]. 

Developing an optimal model can provide alternative recommendations for maintenance, cost control, and work 

implementation. The optimal road maintenance pattern system is critical for planning maintenance, predicting future 

work, and determining its implementation costs. The research results can assist the Indonesian Ministry of Public Works 

and Public Housing, planning consultants, and implementing contractors in optimizing post-disaster road repairs. They 

can also support other studies related to this topic. Furthermore, policymakers require a specific method to develop a 

decision support system model and determine post-disaster pavement management steps [19]. Cross-disciplinary 

research development can be an option for solving these problems. Several approaches to algorithm development, like 

AI, DM, and MOO, can be used to create a support system for modern policymakers [20]. 

2. Material and Methods 

The research takes place on national roads in the province of South Sulawesi. Data collection uses secondary data 

such as road network data, natural disaster information, traffic information, pavement conditions, maintenance activities, 

and road maintenance history [21]. Standard specifications can be used to determine the activity specifications. Road 

pavement conditions are obtained from DGH road performance data and field survey results after natural disasters [22]. 

The working method framework, which includes the components described above, is shown in Figure 1: 

2.1. Data Source 

The primary source of data on pavement condition is the IIRMS. This data is a historical record of the state of the 

roads, their functionality, and other pertinent details, including AADT, ESAL, potholes, cracks, and roughness. Data on 

road conditions from the IIRMS cover the years 2000–2022. The DM technique is applied to estimate skewed or missing 

data in the database; however, some data must still be filled. The IIRMS and the findings of direct measurements made 

at the scene of the natural catastrophe provided the data used in this investigation [23-25]. 

2.2. Stages of Road Performance Prediction 

Researchers will use disaster data from the Indonesian island of Sulawesi to construct this model and a DM-based 

road performance prediction technique. Data is categorized based on disastrous occurrences for calibration, learning, 

testing, and validation [26]. Validation of road conditions and detailed coordinates was done by collecting data directly 

with Hawkeye in the last five years before the disaster. A road damage prediction model using the DM approach will be 

developed in this study, considering the input data shown in Table 1 without any assumptions of restrictions. 
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Figure 1. Methodology Framework of Optimization DSS 

Table 1. Type of Data and Source 

Data Type Details Source 

Pavement Condition 

 IRI 

DGH 

 Alligator Cracking (m2) 

 Longitudinal Cracking (mm) 

 Block Cracking (m2) 

 Irregular Cracking (m2) 

 Potholes number (no/km) 

 Rutting (m2) 

 Depression (mm) 

 Deformation (m2) 

 Structural Patching (m2) 

 Seal Patching (m2), 

Reconstruction & Rehabilitation History Resurfacing & Reconstruction schedule DGH 

Earthquakes 

 Magnitude 

USGS 

DGH 

BMKG 

 Epicenters 

 Depth of seismic 

 Time 

 Duration 

 Repetition 

Cost 

Maintenance cost per km 

DGH Reconstruction cost per km 

Rehabilitation cost per km 

Performance Performance index DGH & literature study 
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The fundamental equations, the variables included in the model, and how these variables are grouped all have an 

impact on the model's structure. The basic equation is an equation that uses optimized parameters. The software 

calculation process requires other factors that the researcher must determine beforehand. For example, ANN uses several 

hidden layers and equation-type algorithms [27]. In some forms of modeling, data must be appropriately formatted or 

grouped before it can be used in model development. In addition, some models can be developed with only a tiny part 

of the entire database. The remaining available data will be used to evaluate the model's performance, shown in Figure 

2: 

 

Figure 2. Snapshot of DGH Monitoring Console 

Meanwhile, the R-Tool with the R-Miner Package is used for the DM model, and the interface display of the 

application can be seen in Figure 3: 

 

Figure 3. Snapshot of R Console 
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Model testing includes re-evaluating whether the model suits the stated goals. Testing can be completed by 

comparing the model’s output with the other models’ outputs using the same data. This process ensures that the model 

works within the scope of the road pavement management system and the expected critical value range. If the model is 

not considered feasible based on the evaluation results, it is necessary to re-evaluate the model type. If the evaluation 

still deems the model type incorrect, it becomes necessary to redevelop and alter its shape. Re-evaluating the model type 

is required if the evaluation findings show that it does not correspond with the currently available data [28]. 

2.3. Evaluation Stage 

Other alternative evaluation steps can be taken by considering classification or regression approaches. The regression 

evaluation process depends on the discrepancy (error values) between the estimated and actual values. The road 

performance prediction model performs better with a lower error value, with an error value of 0 being the optimum 

result. This investigation used three metrics: R2 [Equation 3], RMSE [Equation 2], and MAD [Equation 1]. Their low 

MAD and RMSE values may identify high-prediction models and the unit value that is closest to R2 values. Since RMSE 

applies the squared value of the distinct between measurement results  and prediction model outputs, it is more easily 

affected by extreme values than MAD. RMSE has a higher possibility of yielding a larger substantial error number in a 

model than MAD. Observing the variations and calculating the error value between both models will offer an alternative 

viewpoint on the suggested model, enabling it to be utilized for comparison [29]. 

The three measurement methods can be calculated in the following way: if 𝑦𝑘 is the actual measurement result value, 

yk is the predicted value of the observation to kth, and N is the number of observations, then MAD, RMSE, and R2 can 

be defined as follows: 

𝑀𝐴𝐷 =
∑ |𝑦𝑘−𝑦𝑘̂|𝑁

𝑖=1

𝑁
  (1) 

𝑅𝑀𝑆𝐸 = √
∑ |𝑦𝑘−𝑦𝑘̂|𝑁

𝑖=1

𝑁
  (2) 

𝑅2 = (
∑ (𝑦𝑘−𝑦̅).(𝑦𝑘̂−𝑦)𝑁

𝑖=1

√∑ (𝑦𝑘−𝑦̅)2𝑁
𝑖=1 .∑ (𝑦𝑘̂−𝑦)

2𝑁
𝑖=1

)  (3) 

Furthermore, plotting a regression error characteristic (REC) graph, which shows the error value tolerance on the x-

axis compared to the estimated % tolerance on the y-axis, makes it simple to compare the regressions of various DM 

models. This study also takes advantage of the model's portrayal of the feasibility level. Every output is gathered for 

assessment. Compiling additional scripts can facilitate R application integration with other reporting applications [30]. 

2.4. Sensitivities Analysis 

A database-based model must meet two fundamental requirements. On the one hand, excellent predictive ability is 

required, while on the other hand, especially in engineering, predictive models must be comprehensible and simple, 

especially in engineering [31]. However, this is one of the drawbacks of database-based black-box models, such as ANN 

and SVM [32]. 

Two essential visualization techniques can be calculated using sensitivity responses to overcome this. An input 

importance level graph is drawn to show the influence of each input (from 0% to 100%). The sensitivity analysis explains 

that the higher the resulting change, the more significant the value of the information. To measure the impact of this 

effect, the following research from Cortez (2013) adopted the following equation [17]: 

𝑔𝑎 = ∑ |𝑦̂𝑎𝑗 − 𝑦̂𝑎𝑗−1|𝐼
𝑗=2 /(𝐼 − 1)  (4) 

𝑅𝑎 = 𝑔𝑎/ ∑ 𝑔𝑖 . 100(%)𝐼
𝑖=1   (5) 

To investigate the mean impact of the input xa in the model, we can use the Variable Effect Characteristic (VEC) 

graph, which depicts the value of the level 1 attribute (x-axis) with a response sensitivity analysis (y-axis). Between 

successive xa and j values, VEC will perform the linear interpolation. Plotting VEC curves on the same graph can 

enhance the visual analysis. In that case, the x-axis will be scaled (e.g., in [0,1]) for all values of xa. Likewise, when a 

pair of input data (xa1, xa2) simultaneously varies (F> 2), the VEC display can be described so that it shows the average 

response to changes that occur in pairs [33]. 
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3. Results and Discussion 

Deterioration of road performance due to natural disasters is a general term to describe how road pavement layers 

change their condition or service function. Pavement performance evaluation covers the study of the functional behavior 

with the choice of pavement length. Historical information on pavement and traffic conditions during the selected period 

is necessary for functional or performance [34, 35]. This can be determined using periodic observations, pavement 

quality measurements, and historical traffic records. Figure 4 provides the user with information on expected road 

performance degradation as a definition of pavement performance. 

The road performance forecast model aims to dynamically predict a declining road performance trend with different 

algorithm options. MR, ANN, and SVM algorithms are anticipated to provide a range of methods for forecasting road 

performance, considering time function and road load characteristics [36]. Throughout the investigation, the outcomes 

of creating a road performance prediction model will be assessed and modified until the model can accurately represent 

the dynamics of the available data. Models for predicting road performance must be dynamic and flexible enough to 

adapt to changing circumstances [32, 37]. 

 

Figure 4. Decreased Road Performance (roughness) 

3.1. Characteristic of Data 

Data from the past that spans a respectable amount of time is utilized for validation, testing, learning, and calibration. 

The gathered information is tallied and organized according to the steps in the DM process [38]. Table 1 lists this 

investigation's sources, data collection, and descriptions. The first step in data analysis is to use statistical methods to 

describe the data with simple parameters. Initial data analysis used the R application with the MCDR-package to describe 

the main statistical parameters: the data's maximum, minimum, average, and standard deviation [39]. An overview of 

the data is necessary to understand its sources and distribution [40]. Various statistical approaches can be used to assess 

the data condition. Figure 5 shows the histogram of all input data before the disaster [41]. 

Therefore, matrix elements are filled with blue values instead of just numerical values. Figure 6 shows the correlation 

matrix for this study's 13 attributes and target variables. In this figure, the absolute value is considered fixed. The average 

is depicted in white 𝑘𝑖𝑗 ≈ 0 (uncorrelated) and blue, showing 𝑘𝑖𝑗 ≈ 1 (𝑠trongly correlated). 

To measure the level of road performance, this study applies IRI to measure road performance. IRI will be transferred 

from historical data and combined with other assessment data [42]. To produce a road performance prediction model, 

this study uses historical data IRI0, IRI, age (years), alligator cracking (m2), longitudinal cracking (mm), block cracking 

(m2), irregular cracking (m2), pothole number (no/km), rutting (mm), depression (mm), structural patching (m2), seal 

patching (m2), and traffic data on the national road network in central Celebes. 



Civil Engineering Journal         Vol. 10, No. 12, December, 2024 

4049 

 

 

 

Figure 5. Histogram of all input data 
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Figure 6. Correlation matrix 

3.2. Model Architecture 

DM modeling consists of two steps: the first is the learning stage, and the second is testing and validation with 

data not used in the learning stage. During the learning stage, the network uses inductive-learning principles to 

learn from a set of data called a training set. The input variables of the ANN model for the pavement condition 

prediction model are Magnitude (M), Epicentres (Ep), Depth of seismic (DS), Times (T), Duration (Dur), and 

Repetition (Rep). This study's pavement condition prediction modeling data set includes 11,370 samples from 68 

earthquake events. Based on the earthquake shake-map results for the Palu area, it felt shocks of VII - IX MMI, 

and according to the BMKG report, 215 aftershocks measured 6.3 - 2.9 on the Richter scale. The damage included 

68,451 housing units, 327 houses of worship, 265 school units, 78 office units, 362 shop units, 168 road cracks, 

seven bridges, etc. 

The model is a de facto combination of sub-models, as shown in Figure 7. The ANN approach is usually used to 

analyze data by connecting the input set parameters with specific pattern characteristics that the network records during 

the learning phase. The IIRMS database contains profiling data for 15 years, covering 11,370 observations. The network 

can continue to train to predict IRI up to the model with the highest level of accuracy if the learning period continues 

[43]. The learning process can be interrupted if needed during the iteration stage. Interception records that are made will 

be recorded as an algorithm refinement process. 

A perceptron can be used to classify input vectors that a linear boundary can separate. However, the perceptron 

cannot solve simple problems with linear constraints, so separating them in vector form is necessary. The limitations of 

using hyperplanes can be solved by using the SVM approach. Perceptron on ANN is included in one of the simplest 

network forms. A perceptron is usually used to classify a specific type of pattern, often known as linear separation. A 

perceptron in ANN with one layer has an adjustable weight and a threshold value. The algorithm used by this perceptron 

rule will set its independent parameters through the learning process. The activation function is made so that there is a 

restriction between the positive and negative regions. 
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Figure 7. IRI Prediction Model Architecture 

3.3. Model Interpretation 

This model is built on the t-student distribution with a 95% confidence level. All DM models with ANN, SVM, and 
MR algorithms are trained on five input characteristics. Table 2 compares the ability of each training result model to 
predict IRI values using three different metrics: MAD, RMSE, and R2. This table demonstrates that the three DM 
models, particularly the ANN and SVM models, can accurately forecast IRI values. 

Table 2. Error Metrics Model DM 

Model MAD RMSE R2 

MR 0.78 ± 0.00 1.12 ± 0.00 0.42 ± 0.00 

ANN 0.71 ± 0.02 0.79 ± 0.03 0.81 ± 0.02 

SVM 0.42 ± 0.01 0.70 ± 0.02 0.91 ± 0.01 

Table 2 displays the R2 and standard error of each constructed model. The SVM-based DM model has the most 
excellent R2 value and the lowest MAD and RMSE values. With an R2 of higher than 0.70, the prediction model, 

including the ANN and SVM algorithms, is deemed appropriate for estimating road performance forecasts. Using the 
SVM algorithm, the DM model is the road performance prediction model used in this study. 

The REC curve illustrates five models: two existing and three proposed. The curve demonstrates that the SVM model 
has the highest accuracy, and lowest tolerance values and progresses continuously. The HDM-IV model had a high 
accuracy value but did not move consistently throughout each iterated tolerance setting. This REC curve, Figure 8, 
depicts the complete iteration process, including 20 runs on the SVM model with hyperparameters, as discussed in the 

preceding section. The REC curve's form can change when using different hyperparameters, and the number of iterations 
run varies. 

 

Figure 8. Iteration Process of REC Curve 
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The interpretation of the developed road performance prediction model yields the SVM model, which is the most 

accurate model. In the next part of this study, the DM model with the SVM algorithm is used as the primary model for 

predicting road performance, optimization, and DSS modules. 

3.4. Variable Contribution 

The developed DM model can evaluate the level of contribution and attributes of each variable, which serve as the 

input data for the model. This study's variables or characteristics included Rep, Dur, T, DS, Ep, and M. All features are 

grouped into three dimensions: initial performance, traffic, and distress. A parameter vector in the DM model is chosen 

to explain that it is a function of the variance, not the parameters, as in the parametric approach. The only requirement 

for a multiplier function is to generate a nonnegative definite variance matrix. Several methods can be used to estimate 

hyperparameter values. Mark θ can be predicted in this DM by using the cross-validation method. The hyperparameters 

used (H and γ) are H (2, 4, …, 10) and γ (2-15, 2-13, …, 23). 

The highest accuracy is achieved in SVM, with 20 runs performed. The best hyperparameters to accomplish a fit 

SVM model are ϵ = 0.07 ± 0.01 and γ = 0.05 ± 0.00. Meanwhile, the hyperparameters for ANN are H = 3 ± 1. This value 

produces the most precise model with optimal run time. The approach can be used for further model development by 

trying other hyperparameter values. The contribution of each attribute and dimension is of relative importance in 

constructing the model. The script to get the value of this contribution is structured as follows: 

mgraph (y=SVM, x = NULL, graph="IMP",  

leg = c("initial","traffic","distress","patching"), xval = -1, PDF = "", PTS = -1,  

size = c(5, 5), sort = TRUE, ranges = NULL, data = NULL, 

digits = NULL, TC = -1, intbar = TRUE, lty = 1, col = "black", 

main = "", metric = "MAE", baseline = FALSE, Grid = 0, axis = NULL) 

The search results for the contribution value in the DM can be simplified and shown in Figure 9, which displays the 

relative importance on the x-axis for each attribute and dimensions on the y-axis, forming a road performance prediction 

model with the DM model approach using the SVM, ANN, and MR algorithms. The individual contribution of each 

attribute and dimension creating the road performance prediction model due to the earthquake is shown in this figure, 

relative to the importance attribute of the road condition model. 

 

Figure 9. Relative Importance of Each Attribute 

The subsequent model analysis is to develop an algorithm to select the main dimensions that influence the road 

performance prediction model and analyze the supporting variables that affect the models that are not accommodated in 

this model. The algorithm is compiled using a script that is entered into the package R-Miner command in the form of 

the VEC menu, which is as follows: 

0 5 10 15 20 25 30

Magnitude (M)

Epicentres (Ep)

Depth of seismic (DS)

Times (T)

Duration (Dur)

Repetition (Rep)

IMPORTANCE (%)

V
A
R
I
A
B
L
E

SVM ANN MR
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mgraph(y=SVM, x = NULL, graph="VEC", leg = NULL, xval = -1, PDF = "", PTS = -1,  

            size = c(5, 5), sort = TRUE, ranges = NULL, data = NULL, 

            digits = NULL, TC = -1, intbar = TRUE, lty = 1,  

col = "black", "red", "green", "blue" 

            main = "", metric = "MAE", baseline = FALSE, Grid = 0,  

            axis = NULL) 

The VEC analysis’s results illustrate the influence of the main attributes that move dynamically in the earthquake-

induced road performance prediction model with this SVM model in the form of magnitude. The decrease in IRI follows 
the increase in magnitude and depth of seismic activity; conversely, IRI does not have much effect due to epicenter and 
duration. Figure 10 provides a complete description of the changes in IRI values in the prediction model for road 
performance due to earthquakes. 

 

Figure 10. VEC Curve for Prediction Changes IRI Values 

Through the resulting VEC curve, the magnitude, the most influential dimension group, has a naturally readable 
dynamic movement when IRI reaches a scale of 5.0 m/km, which then moves quickly even beyond the depth of the 
seismic attribute. In comparison, the depth of the seismic attribute begins to affect the decrease in IRI from the start 
(initial performance) and then decreases when the attribute scale reaches 0.6. The DM model with the SVM algorithm 

used in preparing the VEC curve shows that almost all attributes have a non-linear relationship with IRI. As empirical 
data in this model shows, all variables impact the level of road performance. 

3.5. Sensitivity Analysis 

This sensitivity analysis finds the effect of changes in input attributes on changes in IRI values. The possible 
consequences of these changes can be identified and anticipated by conducting a sensitivity analysis. The following is 
the script used to develop the sensitive analysis. 

#---- apply a sensitivity analysis ---- 

Mdls[[1]]$IMP <- Importance(Mdls[[1]]$FM, 

   data = Mdls[[1]]$bd, # your data just with the input variables 

   RealL = 12, 

   method = "sensg", 

   measure = "gradient", 

   sampling = "regular", 

   baseline = "mean", 

   responses = TRUE, 

   outindex = NULL, 

   task = "default", 

   PRED = NULL, 
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Figure 10 shows the magnitude, time (t), and IRI relationship. The high magnitude causes a decrease in IRI in only 

a short time. This formula provides various conclusions. One of them involves a large-scale road that necessitates special 

handling beyond the scope of a standard approach. The package used is Global Sensitivity Analysis (GSA). 

 

Figure 11. VEC Interaction (a) Magnitude with t (b) Longitudinal Crack with t 

While the behavior of the Depth of Seismic conditions that interact with t has its characteristics, it can also be handled 

using the damage growth character, which tends to be close to linear. Through the sensitivity analysis approach using 

the SA and GSA algorithms, changes in the effect of each attribute are obtained in each iteration. SA and GSA can be 

applied to determine the nature of the modeling in the form of a behavior model for the level of road performance in 

actual conditions. 

4. Conclusion 

The model development with the DM approach begins by using the initial data in the learning stage, then the test 

stage, and finally, the validation stage. DM techniques, especially the SVM and ANN algorithms, are powerful tools for 
predicting and interpreting post-disaster IRI values. This approach can conduct the learning stages accurately and 
describe the complex relationship among changes in IRI values, distress, and traffic conditions as contributing factors. 
At this stage, SVM achieves high performance, with R2 reaching 0.91 as a performance indicator and error values 
obtained of MAD 0.42 and RMSE 0.70. The SVM-based DM model has the most excellent R2 value and the lowest 
MAD and RMSE values. With an R2 of higher than 0.70, the prediction model, including the ANN and SVM algorithms, 

is deemed appropriate for estimating road performance forecasts. 

Based on the GSA algorithm, it is shown that the most significant contribution is a disaster. This proves that changes 
in IRI values are strongly influenced by a disaster, contributing to 27.00% [magnitude]. The IRI impairment process is 
consistent and closely related to the initial IRI. All distress is associated with each other, especially the crack, pothole, 
and patching methods. Based on VEC, the DM approach is in the form of MR, ANN, and SVM algorithms, each of 
which has a different level of accuracy. The highest accuracy is achieved in SVM, with 20 runs performed. The best 

hyperparameters to accomplish a fit SVM model are ϵ = 0.07 ± 0.01 and γ = 0.05 ± 0.00. Meanwhile, the hyperparameters 
for ANN are H = 3 ± 1. 

A critical methodology that complements DM is the application of GSA in the learning stage. This methodology can 
make a valuable contribution to model interpretation and provide improved comprehension of the results of data analysis. 
DM has high learning ability and flexibility, even when solving high-dimensional problems. Structured database support 
with essential data can strengthen DM performance. However, on the other hand, the main weakness associated with 

using DM techniques in solving complex problems is the interpretation model in the form of high-level mathematical 
language according to the implemented algorithm. This study applied the GSA approach during the learning, testing, 
and validation processes to overcome these weaknesses. 

This research is limited to flexible pavement structures. The same approach can be taken for rigid pavements with 
different characteristics and behaviors by changing the approach pattern to variables and algorithms. The DM 
capabilities of the R-Miner package are high and wide. Various prediction models and interpretation needs can be 

developed with the DM approach. A deep understanding of computer language and mathematical algorithms is needed 
to get more profound research results. As mentioned throughout the system development description, fully integrating 
all technologies and tools will enhance capabilities and user-friendliness. In this study, integrating new geographic 
information system technology at the concept and initial level simulation stages highlights the need for the following 
research version in the form of migration capabilities and system expansion to various models. 
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