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Abstract 

Dynamic non-destructive methods (NDT) are particularly attractive owing to their time and cost efficiency when compared 

to conventional uniaxial compressive strength tests. However, the results of these methods are highly scattered; therefore, 

they are primarily used for qualitative material characterization. One of the most important NDT results is the calculation 

of the dynamic Young’s modulus, which is associated to the uniaxial compressive strength (UCS) of concrete. The 

ultrasonic pulse velocity (UPV) is the most commonly used NDT. The limitation of this method is that it directly depends 

on knowledge of the Poisson’s ratio, and an assumption of its value must be made. This assumption results in highly 

scattered results. In contrast, the impact echo method (IE) can result in a dynamic Young’s modulus calculation without 

knowing the Poisson’s ratio. The limitation of this method is that it is dependent on the specimen’s slenderness, which in 

turn depends on the Poisson’s ratio. This study investigates the IE method’s applicability to short cylinders. A comparison 

of the UPV and IE methods is made, and the error in the dynamic Young’s modulus value derived by assuming Poisson’s 

ratio value in the UPV method is calculated. The authors conducted a numerical analysis and recently proposed the use of 

a shape correction factor (SCF) to apply the IE results for short cylinders, considering the influence of the slenderness 

(L/D) of the samples. For the first time worldwide, an extensive experimental study on 232 concrete samples with L/D ≈ 

1.0 confirmed the wide spread of UPV test results and showed that it can lead to an error on Young’s Modulus 

determination by up to 50% owing to the adoption of an arbitrary Poisson’s ratio value. In contrast, using the SCF yields 

IE results with a ±2% error. A new methodology, ultrasonic pulse impact echo synergy (UPIES), is proposed by performing 

both UPV and IE tests on the specimens and using the SCF. The Poisson’s ratio and, consequently, the Young’s modulus 

can be accurately determined. 

Keywords: Impact-Echo; Ultrasonic Pulse Velocity; Finite Element Method; Dynamic Poisson’s Ratio; Dynamic Young’s Modulus; Non-

Destructive Testing; Acoustic Resonance. 

1. Introduction 

Engineers frequently have to perform tests on both old and new structures. The primary uses for new structures are 

most likely for material or construction quality control. The examination of existing structures is typically used to assess 

their structural integrity or adequacy. The tests available for this purpose range from completely non-destructive tests, 

such as ultrasonic pulse velocity (UPV) and rebound hammer tests, which do not cause any damage to the concrete, to 

partially destructive tests, such as the uniaxial compressive strength test (UCS), which requires the structure’s surface 
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to be repaired following the test. Non-destructive (NDT) and partially destructive tests can assess a wide range of 

properties, including fundamental parameters such as density, Young’s modulus, and compressive strength, as well as 

surface hardness, absorption, steel reinforcement position, size, and distance from the surface. In some cases, gaps and 

detachments can be used to assess a construction’s quality and structural integrity. Ideally, these tests should be 

performed without causing damage to the concrete; however, the only reliable method is UCS on concrete cores drilled 

from structures. The drawback of using only destructive tests, that is, core sampling for compression tests, is that the 

restoration cost is high; therefore, on a big structure, only a limited number of tests may be conducted; consequently, 

this can be misleading on a large scale. Therefore, NDT methods such as UPV and impact echo (IE) are increasingly 

being used worldwide. 

The primary advantage of NDT is that it is both cost- and time-efficient. The integrity of a structure is evaluated by 

calculating the compressive strength of concrete using a well-known theoretical basis and user-friendly equipment. To 

calculate the compressive strength, the Young’s modulus must be calculated first, and the Poisson’s ratio must be known. 

However, the results of NDT methods must be evaluated using destructive tests, which both engineers and structural 

owners prefer to limit to a minimum. To reduce the number of destructive tests, the reliability of NDT results must be 

increased. 

1.1. Ultrasonic Pulse Velocity (UPV) – ASTM C597-22 

The most popular NDT method is the UPV method. An electroacoustical transducer in contact with one surface of 

the tested concrete produces pulses of longitudinal stress waves. After traversing the concrete, the pulses are received 

and converted into electrical energy by a second transducer located at a distance L from the transmitting transducer. The 

transit time T is measured electronically. The pulse velocity 𝑉 is calculated by dividing 𝐿 by 𝑇 [1]. The primary result 

of this method is the dynamic Young’s modulus. The correlation between the dynamic Young’s modulus and UPV is 

shown in Equation 1 [2]. This correlation is not unambiguous but depends on the type of concrete, and the Poisson’s 

ratio must be assumed [3]. 

𝐸𝑑 =  
𝜌×𝑉𝑝

2×(1+𝜈)×(1−2𝜈)

1−𝜈
  

(1) 

where 𝜌 denotes mass density of the material, Vp denotes ultrasonic pulse velocity, and 𝑣 denotes Poisson’s ratio. 

In addition, using empirical equations, the UPV can be correlated with the concrete’s compressive strength. Several 

studies have proposed different curves for obtaining this correlation [2–11]. However, the obtained correlation results 

are scattered, as shown in Figure 1, because of the influence of different factors such as the type of aggregate used and/or 

proportions, original water/cement ratio, curing conditions, level of compaction, and moisture content, where each curve 

is used to predict the strength of a specific concrete mix [4, 12]. However, the main issue is the arbitrary assumption of 

Poisson’s ratio for the calculation of the dynamic Young’s modulus, which results in scattered results and uncertainties. 

 

Figure 1. Empirical correlations of concrete compressive strength, fc, versus Vp 
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ASTM Standard C-597 recommends the longitudinal resonance method in Test Method C 215, also known as the 

Impact Echo method, for determining the dynamic modulus of elasticity of test specimens obtained from field concrete, 

because the Poisson’s ratio does not have to be known [1]. 

1.2. Impact-Echo Method (IE) 

IE is another NDT method that is primarily used on concrete. The fundamental concept was developed by Sansalone 

and Carino in 1983 at the National Institute of Standards and Technology (NIST), where they conducted a long-term 

research program to provide a technical foundation for test methods for evaluating the concrete’s in-place characteristics. 

The method was optimized by Professor Sansalone at Cornell University. This is a dynamic method based on an 

element’s response to resonance. There are various applications, such as measuring the thickness of plates [13–17] and 

cylinders [9–10]and detecting defects, cracks, and cavities [16, 17]. When a material’s dimensions are known, this 

method can be used to determine its dynamic properties using an inverse procedure [18]. 

The IE method involves impacting a supported specimen with a small object (usually a metallic sphere), measuring 

the specimen’s response with a lightweight accelerometer with a sufficiently high frequency range, and recording the 

surface motion as a digital waveform in the time domain. These waveforms are converted to the frequency domain using 

the well-known fast Fourier transform (FFT) algorithm. The peaks obtained from the spectrum can be used to evaluate 

the structural integrity and the dynamic properties of materials, as well as to estimate the wave velocity [19]. One of the 

challenges with this method is correctly identifying the peaks that represent the resonant frequency. Malone et al. (2023) 

used a multi-impact nonlinear analysis to identify fundamental IE frequencies, while Pandum et al. (2024) used AI and 

deep learning algorithms to address this issue [20, 21]. 

When a solid’s surface is subjected to mechanical impact, three transient voltage waves are produced: longitudinal 

waves (P-waves), shear waves (S-waves), and Rayleigh waves. The computation of these waves' propagation velocity 

in thin, finite-length bars forms the fundamental basis of the IE approach. After excitation, the specimen's free 

oscillation's resonance frequency is used to compute the propagation velocity as shown in Equation 2: 

𝐕𝐜 = 𝐟 ⋅ 𝟐𝐋 (2) 

where Vc denotes wave propagation velocity in a rod with ratio L/D> 5; f denotes fundamental frequency of the first 

harmonic; L denotes specimen’s length; and D denotes diameter of the specimen [22]. The Young’s modulus is directly 

related to the rod velocity Vc through the following relation: 

𝐄𝐝 = 𝛒 ⋅ 𝐕𝐜
𝟐 (3) 

where ρ denotes mass density of the material [23]. 

From the above equation, it appears that it is possible to calculate the dynamic Young’s modulus without knowing 

the value of Poisson’s ratio, in contrast to Equation 1. The main drawback of the IE method for calculating rod velocity 

Vc is that the measured resonant frequency dependent on the slenderness ratio L/D. The frequency must be corrected 

using SCF which in turn depends on Poisson’s ratio [12]. 

According to ASTM Standard C215, 2003, several studies use the fundamental resonant frequency of both prismatic 

and cylindrical concrete specimens. The dynamic modulus of the cylindrical specimens derives from the following 

equation: 

𝐄𝐝 = 𝟓, 𝟎𝟗𝟑
𝐋

𝐃𝟐
 ⋅ 𝚳 ⋅ 𝐟𝟐 (4) 

where 𝛭  denotes mass; 𝑓 denotes fundamental longitudinal frequency; 𝐿 denotes specimen’s length, and 𝐷  denotes 

specimen’s diameter. 

However, the ASTM Standard does not propose a correction for the longitudinal frequencies, while there are also 

limitations on specimens’ dimensional ratio. Best results are obtained when this ratio is between three and five, with a 

minimum ratio of two. This is because when the lateral dimensions are not five or six times larger than the dimensions 

parallel to the impact, other vibration modes can interfere with the resonant frequency [24, 25] 

Love (1944) in his treatise on the mathematical theory of elasticity used the following correction method: 

finfinite

fm
 =

1

1−(
L

D
)−2π2

16
v2

  (5) 

where finfinite denotes the theoretical resonant frequency, fm denotes the measured frequency, 𝐿 denotes specimen’s 

length, 𝐷 denotes specimen’s diameter, and 𝜈 denotes Poisson’s ratio [26]. 



Civil Engineering Journal         Vol. 10, No. 09, September, 2024 

2807 

 

Subramaniam et al. (2000) showed that Young’s modulus can be determined using Poisson’s ratio and the first 

resonant frequency as follows: 

Εd =  2 (1 + ν) ρ (
2π f1R0 

fn
1 )2  (6) 

fn
1 = A2 (v)2 + B2(v) + C2  (7) 

where ƒ1 denotes measured frequency, R0 denotes cylinder’s radius, ρ denotes material’s density Α2, B2 and C2 

coefficients depend on the L/D ratio [27]. 

Most studies have investigated the influence of slenderness L/D> 2.0. However, it is more useful to obtain results 

for specimens with L/D=1 and approximately, because this is the typical size of concrete cores drilled from existing 

structures. The results of the IE implementation on small, short cylinders differ fundamentally from those on large, long 

cylinders and cannot be described using the existing calculation formulas. To consider the influence of L/D, the 

measured frequencies must be corrected. The need for correction of the IE implementation was also identified by Yao 

et al. (2022) who proposed Equation 8 for frequency correction [28]. 

where fie denotes frequency correction, L denotes specimen’s length, D denotes specimen’s diameter, and Cp denotes 

wave propagation velocity. 

Equation 9 was proposed in the present study for calculating SCF, y, based on an extensive numerical simulation of 

the IE method over a wide range of L/D from 0.7 to 5.0 [12, 29]. 

where y denotes shape’s correction factor, 𝑥 denotes L/D ratio, and yo, Α1, A2, t1, t2 are coefficients that depend on 

Poisson’s ratio. The SCF is not only influenced by L/D, but also depends directly on the Poisson’s ratio, as verified by 

Wang et al., 2012 and Authors, 2022 [30, 31]. 

It is clear that knowledge of Poisson’s ratio is crucial. To overcome this limitation, we propose using two NDT 

methods simultaneously rather than just the UPV or IE. Therefore, this study presents a novel methodology for 

accurately calculating the Poisson’s ratio, called ultrasonic pulse impact echo synergy (UPIES). First, the 

experimental setup is explained. Three tests–UPV, IE, and UCS–were conducted on concrete cores from existing 

structures and then integrated into the Poisson’s ratio calculation. Subsequently, a numerical simulation setup leading 

to the proposed SCF is presented. On this basis, this study presents an experimental confirmation of UVP scattering 

and calculates the error of using this method as a standalone method. Following the simultaneous use of UPV and 

IE, the Poisson’s ratio is now known, and the error is calculated using the proposed SCF from the numerical analysis. 

Finally, a comparison of the two methods is performed, and a new methodology and implementation are proposed 

before drawing conclusions. 

2. Experimental Study of UPV and IE Methods 

To confirm the uncertainty associated with the Poisson’s ratio, an extensive experimental investigation was 

conducted for the first time worldwide, with 232 concrete cores drilled from pre-existing structures (buildings and 

bridges) and tested using UPV and IE before being subjected to uniaxial compression testing. The buildings were 

constructed between 1960 and 1990 with a compressive strength between C12/15 and C20/25, according to European 

Standard EN 206, and an aggregate grain size of 25–30 mm. Four bridges were sampled for this study. Three were 

constructed using conventional concrete with a maximum grain size of 30–35 mm between 1960 and 1970, and one with 

prestressed concrete and natural aggregates with a maximum grain size of 25 mm in 1970. The concrete for all four 

bridges was categorized as C20/25. 

The samples’ height and diameter were measured after coring but before using any method, and the L/D ratio was 

calculated. Figure 2 shows the dimensions of the number of samples in the histogram view. The diameter of 95% of the 

cores varied between 9.5 and 10.5 cm, resulting in L/D= 1. 

 

𝑓𝑖𝑒 = [(0.58𝐿−1,01) ⋅ 𝐷 − 0.060] 
0.92⋅𝐶𝑃

2𝐷
  (8) 

y = yo + A1e
−x

t1
⁄ + A2e

−x
t2

⁄  (9) 
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Figure 2. Results of samples’ height 

2.1. UPV Test 

A Proceq Tico apparatus was used for the UPV test, as shown in Figure 3. The transducers were typical 54 kHz P-

wave transducers used in UPV tests on concrete, and the ultrasonic pulse velocity Vp was measured. 

 

Figure 3. UPV apparatus testing concrete specimen 

2.2. IE Test 

The IE method was implemented using a Kistler’s accelerometer with a measuring range of ±50 g, sensitivity of 

100.3 mV/g, and weight of 10.6 grams. The signals were analyzed and recorded using an Agilent 35670Α Digital Signal 

Analyzer (DSA) as observed in Figure 4. Using the resulting spectra and FFT, the resonant frequencies were identified, 

and the rod velocity, Vc, was measured. 

 

Figure 4. (a) ΙΕ apparatus testing concrete sample and (b) Frequency Spectrum 
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2.3. Uniaxial Compression Test 

Finally, the samples were tested under uniaxial compression with an Impact CS7156 Compression machine with a 

load cell capacity of 2000 kN, and the Greek Bulletin E7 correction was used to compute the concrete's compressive 

strength. This correction is appropriate for determining the strength class of existing structures [32]. 

 

Figure 5. (a) Uniaxial compression machine (b) Concrete specimen after testing 

2.4. Poisson’s Ratio Calculation 

From the results of the simultaneous UPV and IE tests, Poisson’s ratio can be directly determined through Equation 

10 using Equations 3, 11, and 12. 

where M denotes P-wave Modulus, Vp denotes the velocity of a P-wave, and ρ denotes the density of the material 

through which the wave is propagating. 

3. Numerical Simulation of IE Method – Shape Correction Factor 

A total of 72 simulations were conducted to evaluate how the specimen shape affected the determination of Poisson’s 

ratio. For the numerical simulation of the IE test, the Plaxis 2D finite element software was used, which allows for the 

creation of an axisymmetric model around a central axis, as shown in Figure 6(a). This study used 15-node finite 

elements to create models with the following parameters: (a) L/D= 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, and 

5.0; and (b) Poisson’s ratio, v= 0.20, 0.25, 0.30, 0.36, 0.40, and 0.45. In all simulations, the diameter was constant and 

equal to 0.1 m. The rationale for selecting the data set was based on a very wide range of Poisson’s ratio values, that can 

represent not only concrete but all the materials, and a wide range of slenderness’s values, but not smaller than 0.7, as 

the record of the wave propagation becomes very complex owing to reflections, and not greater than 5.0, as the cylinder 

can be considered as an infinite thin rod. As previously stated, most of the studies investigate the influence of slenderness 

L/D> 2.0. The goal of the simulation was to investigate the results close to smaller slenderness, so the parameter of L/D 

was changed by 0.2 increments between 0.8–2.0, while for larger slenderness, where the theory already backs up the 

results, the choice of increments was less sensitive. The entire range of Poisson’s ratios was investigated in increments 

of 0.05. The sensitivity analysis method is one-at-a-time (OAT), where only one input at a time varies while others 

remain constant to observe the difference in frequency output. 

ν =
E𝑑−𝑀+𝑆

4·𝑀
  (10) 

M = ρ ⋅ Vp
2  (11) 

S =  ±√Ed
2 + 9M2 − 10EdM (12) 



Civil Engineering Journal         Vol. 10, No. 09, September, 2024 

2810 

 

 

Figure 6. (a) Axisymmetric model using 15-node FE and (b) Excitation’s harmonic pulse 

To reduce the computational time, only half of the specimens’ circular cross-section were modeled; therefore, the 

horizontal displacement at the nodes along the vertical plane of symmetry had to be constrained. 

Plaxis provides an automated mesh construction algorithm that allows the user to change the mesh fineness and 

coarseness. The total number of elements and their sizes are determined using the maximum desired frequency. 

Specifically, the maximum frequency, fmax, was determined to be five times the expected frequency of the first resonant 

frequency, which is sufficiently broad to capture the desired resonance while maintaining computational efficiency. The 

dynamic analysis time interval, Δt, was derived directly from fmax as shown below: 

𝛥𝑡 =
1

2 ∙ 𝑓𝑚𝑎𝑥

 (13) 

and were selected such that the wave would not travel a distance larger than the smallest size of the finite element 

during a step. 

The excitation was modeled using a half-sine pulse, as shown in Figure 6(b). The duration of excitation was 

determined as half the value of the sine period divided by the selected number of time steps of the excitation phase. The 

pulse frequency was selected each time such that its value was close to that of the first resonant frequency. The first 

dominant resonant frequency was identified using the FFT spectra of the time history. A free oscillation spectrum 

calculation example is presented in Figure 7, where the first and second prominent resonant normalized frequencies for 

L/D = 1.0 and 5.0 are indicated in black and red namely. 

 

Figure 7. Normalized frequency spectrum with the values of the first dominant resonant frequency marked for two values 

of slenderness 

For a known Vp, the theoretical wave propagation velocity Vc was derived using Equations 1 and 3, and the 

theoretical first resonant frequency of the wave propagation is calculated using Equation 2. Equation 14 considers SCF 

equal to the ratio of the theoretical to finite element method (FEM), which is the first dominant frequency. 
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𝑆𝐶𝐹 =
𝑓𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑓𝐹𝐸𝑀

 (14) 

When the above SCF is applied to all the Poisson’s ratio values, it yields Equation 9, which is then incorporated into 

Equation 2, to correct the calculation of the rod velocity as follows: 

𝑉𝑐 = (𝑓𝑚  ⋅ 𝑆𝐶𝐹)  ⋅ 2𝐿 (15) 

where fm denotes the measured resonant frequency Equation 9. 

4. Results and Discussion 

4.1. FEM results – Shape Correction Factor 

Table 1 shows the FEM analysis results for a given velocity Vp and Poisson’s ratio value for 12 different slenderness 

values, with the calculated theoretical first resonant frequency in the second column. The third column contains the first 

resonant frequency derived from the FEM analysis, and the fourth column contains the SCF calculated from Equation 

14. Figure 8 shows the SCF versus slenderness L/D for six Poisson’s ratio values. 

Table 1. Results of FEM Analysis 

L\D f1, Theroretical (Hz) f1,FEM (Hz) SCF 

5.0 189.7 189.7 1.0002 

4.0 237.2 237.1 1.0003 

3.0 316.2 315.8 1.0014 

2.5 379.5 378.5 1.0026 

2.0 474.3 471.7 1.0056 

1.8 527.0 523.0 1.0077 

1.6 592.9 586.0 1.0118 

1.4 677.6 665.0 1.0190 

1.2 790.6 768.0 1.0294 

1.0 948.7 899.0 1.0553 

0.8 1185.9 1050.0 1.1294 

0.7 1355.3 1122.0 1.2079 

 

 

Figure 8. Shape Correction Factor versus slenderness L/D for six Poisson’s ratio values diagrams 

Evidently, a larger adjustment is required when the slenderness decreases. This demonstrates why SCF is crucial for 

short cylinders. The adjustment is substantial, and assuming a value for the Poisson's ratio can result in significant 

inaccuracy, particularly near L/D=1, which is the normal size of concrete cores. 
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Figure 9 shows a comparison between the SCF of the present study and the proposed CF of Love, as expressed by 

Equation 5. The two CFs are similar, although the proposed SCF provides a larger correction. For L/D=1, the variation 

in the two CF’s was only 2.8%, with an average Poisson’s ratio of v= 0.32. 

 

Figure 9. SCF comparison to Love’s CF for an average values of Poisson’s ratio v=0.32 

4.2. Experimental Confirmation of UPV Scatter – Error Calculation 

After testing the 232 cores and calculating Poisson’s ratio using Equation 10, statistical analysis of the results reveals 

that Poisson’s ratio varies from 0.25 to 0.44, with an average value of 𝑣 =  0.32. The histogram in Figure 10 shows the 

samples’ probability mass function versus the dynamic Poisson’s ratio. For the lower 10% of the samples, the Poisson’s 

ratio is 𝑣 <  0.288, while for the higher 10% of the samples, 𝑣 >  0.356, as shown in the cumulative distribution 

function in Figure 11. 

 

Figure 10. Distribution of dynamic Poisson’s ratio of the tested concrete samples 
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Figure 11. Cumulative distribution function of 232 tested concrete cores 

The measured longitudinal wave velocities are compared to the compressive strength of each core, as shown in 

Figure 12, and the scatter of the UPV method is confirmed. The blue dots represent the scattered values of Vp caused by 

the Poisson’s ratio variation, while the red dots represent the values of Vc obtained from IE, which are significantly less 

scattered. Figure 13 shows that the two methods, UPV and IE, are equivalent, particularly for a narrower range of 

Poisson’s ratio, ν= 0.25–0.30. 

 

Figure 12. Compressive strength vs velocity Vc and Vp 

If we normalize the quantity (1 + 𝜈) ∗ (1 − 2𝜈)/ (1 − 𝜈) of Equation 1, which serves as a correction factor for Ed 

calculation, for Poisson’s ratio values from v= 0.24–0.44, the curves of Figure 14 derive. According to Equation 16, the 

error of the dynamic Poisson’s ratio vd and, by extension, the Ed estimation when an arbitrary value of Poisson’s ratio is 

adopted can be calculated, as depicted in Figure 14. 

where vd,Real denotes the real Poisson’s ratio and vd,assumed denotes the assumed Poisson’s ratio. 

𝐸% =
𝑣𝑑,𝑅𝑒𝑎𝑙 − 𝑣𝑑,𝑎𝑠𝑠𝑢𝑚𝑒𝑑

𝑣𝑑,𝑅𝑒𝑎𝑙

 (16) 
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Figure 13. Compressive strength vs velocities Vc and Vp for a narrow range of Poisson’s ratio 

In particular, when the average value of Poisson’s ratio, v= 0.32, is assumed, the associated error in estimating Ed 

can be significant, varying from 8.5% (overestimation) if the true Poisson’s ratio is 0.288 to 15.5% (underestimation) if 

the true Poisson’s ratio is 0.356, whereas for v= 0.40, this error can reach up to 50% underestimation. 

 

Figure 14. Error on Ed estimation associated with the selection of an arbitrary Poisson’s ratio value 

Consequently, the UPV is frequently regarded as unreliable for determining the dynamic Young’s modulus and 

compressive strength of concrete and cannot be considered a safe standalone method. 

4.3. Estimation of Young’s modulus using the new methodology UPIES 

However, testing with the IE and proposed SCF appears to be more accurate. Equation 9, with an average Poisson’s 

ratio of v=0.32, can accurately estimate the dynamic Young’s modulus. In Figure 15, the black solid curve represents 

the SCF for v= 0.32. The error is less than 2% for L/D= 2.0, but approximately 9.8% for L/D= 1.0 (v= 0.32 ± 0.0313). 
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Figure 15. Shape Correction Factor versus slenderness L/D for six Poisson’s ratio values diagrams, with the calculation 
error of the average Poisson’s ratio for L/D= 1.0 and L/D= 2.0 marked 

Figure 16 shows that for L/D= 1.0, which is the typical size of the concrete core taken from structures, the SCF 

varies between 1.05 and 1.15, resulting in a total error variation of 8.1% across the entire range of Poisson’s ratios. This 

error decreases significantly when the range is narrowed down to the typical Poisson’s ratio values of concrete. For 

Poisson’s ratio values v= 0.20–0.25 the variation of the correction factor is only 1.5%, while for v= 0.25–0.30 and v= 

0.30–0.35 the variation is 1.9%, as shown in Figure 17. 

From Figure 14, we can draw the conclusion that it is not safe to use UPV as a standalone method; while, this is also 

supported if we compare the two methods, where it is evident that the proposed IE SCF surpasses the UPV CF owing 

to the significantly smaller potential error. The limitation of Poisson’s ratio value knowledge can be eliminated by the 

simultaneous use of the IE and UPV tests and Equations 3 and 10, which result in the new proposed methodology. 

 

Figure 16. Shape Correction Factor versus slenderness L/D for six Poisson’s ratio values diagram with the error variation 

marked 
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Figure 17. Shape Correction Factor versus slenderness L/D for six Poisson’s ratio values diagram with the error variation 
for the typical dynamic Poisson’s ratio on concrete marked 

The new methodology is called UPIES and can be applied by following the steps shown in Figure 18 and 

visualized in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Flowchart illustrating the proposed procedure for determining Poisson’s ratio value 

Step 1: Ultrasonic Pulse Velocity, Vp calculation: through UPV 

method application 

 

 

 

Step 2: First resonant frequency, fc calculation: through IE 

method application 

 

 

 
Step 3: Correction of the measured fc through the proposed SCF 

and fc,cor calculation 

 

 

 
Step 4: Thin rod velocity Vc calculation through the Equation 15 

 

 

 

Step 5: Constrained and Young Moudulus calculation through the 

Equations 3, 11 

 

 

 

Step 6: Poisson’s ratio calculation through Equation 10 
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Figure 19. Flowchart of implementation of the UPIES - new methodology 

5. Conclusion 

NDT is crucial for civil engineers to assess the mechanical properties of concrete, such as the Poisson’s ratio, 

Young’s modulus, and compressive strength. However, NDT methods frequently have uncertainties that necessitate 

validation through destructive testing, which is expensive, time-consuming, and requires surface restoration. The 

primary objective of this field is to develop more reliable NDT methods that can eliminate the need for destructive 

testing. The UPV test is one of the most commonly used NDT methods for determining dynamic Young’s modulus. 

However, this requires an assumed Poisson’s ratio, which can result in significant errors. As an alternative, the IE method 

recommended by ASTM Standard C-597 does not require this assumption and potentially offers more accurate results. 

This study includes the first experimental comparison of the UPV and IE methods on 232 concrete specimens 

worldwide, as well as a detailed numerical analysis of 72 specimens using the FEM. The results showed that using an 

arbitrary Poisson’s ratio in UPV can result in an error margin ranging from -15.5 to +8.5%, and even up to 50% for 

higher Poisson’s ratios. In contrast, the IE method exhibited lower variability. Using a SCF derived from FEM 

simulations, the error was found to be up to 9.8% for an average value of Poisson’s ratio v= 0.32 over the entire range 

of Poisson’s ratio, which is considerably smaller than the error derived from the UPV method. In a smaller, more 

reasonable range of Poisson’s values is less than 2%. This procedure significantly reduced errors in the IE method, 

particularly for a typical concrete core size. Finally, a new methodology, UPIES, was proposed that combines the UPV 

and IE methods to provide more reliable determinations of the dynamic Poisson’s ratio and Young’s modulus, improving 

the accuracy of NDT in concrete evaluation. 
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