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Abstract 

Soil pollution caused by hydrocarbons, such as diesel, poses significant risks to both human health and the ecosystem. The 

evaluation of soil pollution and various soil engineering applications often relies on the analysis of complex permittivity, 

encompassing parameters such as dielectric constant and dielectric loss. Various computational models, including 

theoretical physics-based models, mixture theory models, statistical empirical models, and artificial neural network (ANN) 

models, have been explored for computing soil complex permittivity and predicting water and pollutant content. 

Theoretical models require detailed data that is often unavailable, and thus have limited applicability. Mixture models tend 

to underestimate soil characteristics due to inaccuracies in permittivity estimation of soil phases. While empirical models 

are widely used, their applicability is restricted to specific soil types, datasets, and locations. ANN models offer promising 

predictions, accommodating nonlinear phenomena and allowing for missing information and variables. In this study, 

capacitive electromagnetic electrode sensors were utilized to determine the complex permittivity of soil contaminated with 

varying levels of diesel at different moisture levels. Theoretical mixture, empirical, and Feed Forward Neural Network 

(FFNN) models were employed to compute the permittivity of polluted soil based on its phases and to predict the level of 

diesel pollution. A comparison of these modeling approaches revealed that the FFNN model exhibited the best 

performance. The ANN model demonstrated superior performance metrics, including a high correlation coefficient and 

lower mean square error. Specifically, the correlation coefficients for the FFNN model were 0.9942 for training samples, 

0.9967 for validation samples, and 0.9977 for test samples. Additionally, the ANN model yielded the lowest mean square 

error compared to the other three models. 

Keywords: Complex Permittivity; Dielectric Properties; Soil; Diesel Contamination; Water Content; Artificial Neural Network; Artificial 

Intelligence. 

 

1. Introduction 

Soil pollution poses a worldwide concern and serious threat. Since soil plays a pivotal role in furnishing a multitude 

of ecosystem services vital for the preservation of life on our planet, its contamination presents significant risks to both 

human and ecosystem well-being [1, 2]. Petroleum products like diesel, kerosene, and crude oil from the oil industry, 

along with leakage from oil reservoirs, can all contaminate soil. The widespread recognition of soil contaminated with 

these wastes as a severe issue has prompted global concern. The type and concentration of soil pollution brought on by 

human activity have steadily increased in recent years with the expansion of the global economy. This has led to the 
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degradation of some ecosystems. Worldwide, there are many incidents of spills of diesel fuel and other hydrocarbon-

type oils from storage facilities, underground tanks, pipeline ruptures, and leakage from heavy equipment [3]. These 

spills onto the ground surface are sources of widespread soil and water pollution. The extent of contamination depends 

on the characteristics of the hydrocarbon spilled, the water content of the soil, and the soil type and characteristics. 

Cleaning up after an event can prove very expensive. Therefore, it is critical to develop quick computing, modeling, and 

non-destructive techniques for determining the level of hydrocarbon contamination and forecasting the effectiveness of 

clean-up efforts [4]. 

Over the past 20 years, the concept of complex permittivity of materials has been widely applied. A variety of 

geophysical electromagnetic techniques can be employed to ascertain the dielectric characteristics of materials, 

including soil [5]. These techniques include noncontact free-space microwave techniques [6, 7], near-field waveguide 

microwave methods [8-10], time domain reflectometers [11], ground penetration radar [12], capacitive electrode 

methods, and parallel disk electrodes [13-15]. To extract the complex permittivity of soil, all of these methods use 

electromagnetic signals to excite the soil material and then measure the parameters of the signal change by the soil 

material. The physical characteristics and composition of soil material can be linked to its complex permittivity 

characteristics, which are known as the dielectric constant and dielectric loss. This relationship can be used to estimate 

soil properties, like moisture content, density, and types of contamination, in a non-destructive way [16, 17]. 

Electromagnetic methods have been used for the advanced characterization of several materials, including cement 

concrete, asphalt concrete, composites, and both clean and wastewater. Electromagnetic methods are used extensively 

in soil and geotechnical applications based on their measured dielectric constant and dielectric loss [18-20]. The 

electromagnetic sensing of soil material, particularly for pollution and moisture content, still requires the development 

of electromagnetic sensors that can be used both in the lab and in the field under similar conditions. This approach can 

help avoid discrepancies between lab and field sensor designs and setups. Moreover, developing such sensors can 

eliminate the differences in soil conditions between lab and field, known as disturbed and undisturbed samples [21, 22]. 

The relationship between dielectric properties and soil composition is determined using theoretical dielectric models, 

including mixture theory and phonological models, and empirical models using central composite and response surface 

methodologies. There are several problems associated with these models and methods, such as complications of soil 

material, unavailability of needed soil information, complicated nonlinear relationships, and the limited application of 

the statistical methods to the condition of soil used to develop these models. 

ANN shows promising capabilities of overcoming such problems in many fields [23]. ANN models have been used 

for several applications for the prediction of the composition of various materials, including soil. ANN has been found 

to offer good modeling techniques in many areas of soil material, including the prediction of soil consolidation [24], 

prediction of soil organic matter [25], estimation of the shear strength of soil [26], prediction of soil compaction [27, 

28], prediction of soil permeability [29], estimation of soil moisture [30], and soil pollution from materials such as heavy 

metals and hydrocarbons [31, 32]. ANN has the potential to model the dielectric properties of soil material and predict 

moisture and diesel pollution content. However, limited research has been conducted using ANN for soil material, and 

no studies are currently available that focus on soil diesel contamination and soil moisture content [31, 32]. 

This study was conducted with the aim of addressing the gaps in soil sensing and enhancing the dielectric modeling 

of soil material, particularly for quantifying pollution content and moisture. The approach includes theoretical, empirical, 

and ANN methods. This paper presents the experimental preparation of soil material contaminated with diesel at various 

moisture contents. A capacitive electromagnetic electrode sensor was used to compute soil complex permittivity at 

various diesel contamination levels and at different soil water contents. This study also computes the complex 

permittivity of the contaminated soil using theoretical dielectric models. Moreover, it determines the relationship 

between the soil phases, such as water content and diesel contamination level, and the measured dielectric properties of 

the soil. Finally, the study investigates the use of different ANN models to compute the soil dielectric properties at 

various contamination levels and predict its water and diesel content. A comparison of all these theoretical, empirical, 

and ANN models for soil pollution application was also conducted. 

2. Dielectric Modeling and Computing of Soil Material 

The complex permittivity (*) of materials such as soil is a measure of the ability of a material to store energy from 

an electric field. It is related to the more familiar concepts of dielectric constant (DC or ’) and dielectric loss (DL or 

”). The relative permittivity is the ratio of the electric displacement in a soil material to the electric field. It is a 

fundamental parameter in electromagnetics as it measures how much the soil material opposes the formation of an 

electric field inside it, as well as how well the material transmits an electric field through itself. The relationship between 

the relative permittivity (*) and the real (DC or ’) and imaginary parts (DL or ”) of the dielectric or permittivity is 

given by the following Equation in which j is an imaginary number (√−1) [33]. 

𝜀𝑠𝑜𝑖𝑙
∗ =  𝜀𝑠𝑜𝑖𝑙

′ − 𝑗𝜀𝑠𝑜𝑖𝑙
′′   (1) 

Three approaches, namely the phenomenological approach, mixture volumetric approach, and empirical statistical 

approach, have been used to develop several theoretical and empirical physical dielectric models [34-36]. These three 

approaches are briefly explained as follows: 



Civil Engineering Journal         Vol. 10, No. 09, September, 2024 

3055 

 

2.1. Phenomenological Approach 

Reviewing phenomenological models like Cole-Cole [37] and Debye [38] makes it clear that each unique material 

needs to be recalibrated. It is evident that these models fail to explain the dielectric differences between various soil 

types and, consequently, they are not applied in practice for soil moisture prediction [36, 39]. 

2.2. Mixture Volumetric Approach 

Volumetric mixture models characterize the soil's dielectric properties based on the relative concentrations of its 

constituents, each of which has unique dielectric properties. The four main input parameters that these models use are 

pore space, volumetric water content, diesel contamination content, and solid matter [40]. Several volumetric models of 

four-phase mixtures were developed for soil moisture content. These phases comprise air, water, diesel, and solid 

particles. The volume fractions of these phases are volume of air (a), volume of water (w), volume of diesel (d), and 

volume of soil solid particles (s). The corresponding dielectric properties for these four soil phases are needed to 

compute soil dielectric properties. The most popular theoretical mixture models for calculating the moisture content and 

contamination content of soil are as follows: 

It was suggested to use Silberstein's linear model [41]. The dielectric constant (DC or 𝜀′) and loss factor (DL or 𝜀′′) 

formulas are given by Equations 2 and 3, respectively. 

𝐷𝐶 = 𝜀𝑠𝑜𝑖𝑙
′ = 𝜃𝑠𝜀𝑠

′ + 𝜃𝑤𝜀𝑤
′ + 𝜃𝑑𝜀𝑑

′ + 𝜃𝑎𝜀𝑎
′   (2) 

𝐷𝐿 = 𝜀𝑠𝑜𝑖𝑙
′′ = 𝜃𝑠𝜀𝑠

′′ + 𝜃𝑤𝜀𝑤
′′ + 𝜃𝑑𝜀𝑑

′′ + 𝜃𝑎𝜀𝑎
′′  (3) 

According to Birchak's square root model (power = 0.5) [42], the dielectric constant and dielectric loss formulas are 

given by Equations 4 and 5, respectively. 

√𝐷𝐶 = √𝜀𝑠𝑜𝑖𝑙
′ = 𝜃𝑠√𝜀𝑠

′ + 𝜃𝑤√𝜀𝑤
′ + 𝜃𝑑√𝜀𝑑

′ + 𝜃𝑎√𝜀𝑎
′   (4) 

√𝐷𝐿 = √𝜀𝑠𝑜𝑖𝑙
′′ = 𝜃𝑠√𝜀𝑠

′′ + 𝜃𝑤√𝜀𝑤
′′ + 𝜃𝑑√𝜀𝑑

′′ + 𝜃𝑎√𝜀𝑎
′′   (5) 

According to Looyenga's power model (power =1/3) [43], the dielectric constant and dielectric loss formulas are 

given by Equations 6 and 7, respectively. 

𝐷𝐶 = (𝜀𝑠𝑜𝑖𝑙
′ )

1
3⁄ = 𝜃𝑠(𝜀𝑠

′)
1

3⁄ + 𝜃𝑤(𝜀𝑤
′ )

1
3⁄ + 𝜃𝑑(𝜀𝑑

′ )
1

3⁄ + 𝜃𝑎(𝜀𝑎
′ )

1
3⁄   (6) 

𝐷𝐶 = (𝜀𝑠𝑜𝑖𝑙
′′ )

1
3⁄ = 𝜃𝑠(𝜀𝑠

′′)
1

3⁄ + 𝜃𝑤(𝜀𝑤
′′)

1
3⁄ + 𝜃𝑑(𝜀𝑑

′′)
1

3⁄ + 𝜃𝑎(𝜀𝑎
′′)

1
3⁄   (7) 

Lichtenecher has proposed a logarithmic model [44] in which the dielectric constant and dielectric loss formulas are 

given by Equations 8 and 9, respectively. 

𝐷𝐶 = 𝜀𝑠𝑜𝑖𝑙
′ = 𝜃𝑠 ln 𝜀𝑠

′ + 𝜃𝑤 ln 𝜀𝑤
′ + 𝜃𝑑 ln 𝜀𝑑

′ + 𝜃𝑎 ln 𝜀𝑎
′   (8) 

𝐷𝐿 = 𝜀𝑠𝑜𝑖𝑙
′′ = 𝜃𝑠 ln 𝜀𝑠

′′ + 𝜃𝑤 ln 𝜀𝑤
′′ + 𝜃𝑑 ln 𝜀𝑑

′′ + 𝜃𝑎 ln 𝜀𝑎
′′  (9) 

Among these mixture models, a general power model was used for several materials with different powers. The 

researcher sought to determine the power value that best fits the experimental data. The power mode for the dielectric 

constant and dielectric loss are given by Equations 9 and 10, respectively. 

(𝐷𝐶)𝛼 = (𝜀𝑠𝑜𝑖𝑙
′ )𝛼 = 𝜃𝑠(𝜀𝑠

′)𝛼 + 𝜃𝑤(𝜀𝑤
′ )𝛼 + 𝜃𝑑(𝜀𝑑

′ )𝛼 + 𝜃𝑎(𝜀𝑎
′ )𝛼  (10) 

(𝐷𝐿)𝛼 = (𝜀𝑠𝑜𝑖𝑙
′′ )𝛼 = 𝜃𝑠(𝜀𝑠

′′)𝛼 + 𝜃𝑤(𝜀𝑤
′′)𝛼 + 𝜃𝑑(𝜀𝑑

′′)𝛼 + 𝜃𝑎(𝜀𝑎
′;)𝛼  (11) 

For all these mixture models, the volume fraction of the soil phases and the dielectric properties of each phase are 

required. Moreover, these models are unreliable for estimating the soil moisture content because they do not account for 

the interactions between the soil phases. There could be a chemical or physical interaction between the water phase and 

the soil solid particles phase. However, none of the previous models has considered the existence of such interactions. 

2.3. The Statistical and Empirical Approach 

An empirical model is a statistical and mathematical representation of the relationships between the dielectric 

properties of a medium and its other characteristics, such as its texture and volumetric water content. In such models, 

the physical basis for the mathematical description is usually ignored. Therefore, an empirical model might only be valid 

for the data that is used to establish the relationship. Several empirical models have been developed from the study of 

soil moisture content. Numerous models put forth by researchers are dependent on their data fitting, model parameter 
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calculation, and experimental work. Empirical models lack a standard formula; instead, it is necessary to conduct 

numerous trials in order to determine which statistical regression model best fits the data. One must conduct an ANOVA 

analysis and determine the correlation coefficient, error, F-test, and level of significance in order to choose the best 

model from among the trials. Topp [45] presented the most widely used empirical dielectric model for soil moisture 

content. Topp’s model cannot accurately measure the dielectric properties of soil when it contains organic matter, has a 

varied texture, or possesses other characteristics. Topp’s formula is given in Equation 12 and could be rewritten in the 

form of Equation 13 [46]. 

𝜃𝑤 = −0.053 + 0.0292(𝜀′
𝑠𝑜𝑖𝑙) − 5.5 × 10−4(𝜀′

𝑠𝑜𝑖𝑙)2 + 4.3 × 10−6(𝜀′
𝑠𝑜𝑖𝑙)

3  (12) 

𝐷𝐶 = 𝜀′
𝑠𝑜𝑖𝑙 = 3.03 + 9.30(𝜃𝑤) + 146.0(𝜃𝑤)2 − 76.70(𝜃𝑤)3  (13) 

Using response surface methodology with factorial analysis or central composite design of experiments, quadratic 

empirical models can be a useful tool to fit many engineering problems [47, 48]. The quadratic model can be presented 

by Equation 14. 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖

𝑘
𝑗=𝑖+1

𝑘
𝑖=1 𝑥𝑗 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖 + 𝑒  (14) 

If this Equation is applied to soil with two factors (k=2), such as water content (Xi=𝜃𝑤) and diesel content (Xj=𝜃𝑑), 

this quadratic formula can be used to generate 4 models, namely the linear, pure quadratic, interaction, and full quadratic 

models. These four models are given by Equations 15 to 18, respectively. 

𝜀′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑  (15) 

𝜀′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽11𝜃𝑤

2 + 𝛽22𝜃𝑑
2  (16) 

𝜀′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽12𝜃𝑤𝜃𝑑  (17) 

𝜀′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽11𝜃𝑤

2 + 𝛽22𝜃𝑑
2 + 𝛽12𝜃𝑤𝜃𝑑  (18) 

The four models can be written for dielectric loss by Equations 19 to 22. 

𝜖′′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑  (19) 

𝜖′′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽11𝜃𝑤

2 + 𝛽22𝜃𝑑
2  (20) 

𝜖′′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽12𝜃𝑤𝜃𝑑  (21) 

𝜖′′
𝑠𝑜𝑖𝑙 = 𝛽0 + 𝛽1𝜃𝑤 + 𝛽2𝜃𝑑 + 𝛽11𝜃𝑤

2 + 𝛽22𝜃𝑑
2 + 𝛽12𝜃𝑤𝜃𝑑  (22) 

3. Artificial Intelligence Using ANN for Soil Application 

Modeling and computing are the process of transforming one type of information into another desired format using 

instructions and procedures. The advent of technology has positioned computer-aided design methods as promising tools 

for simulating a wide range of engineering challenges. In this technological age, researchers worldwide are actively 

exploring the integration of machine learning, deep learning, and artificial intelligence into these processes. Numerous 

methods have been developed during the last three decades under the umbrella of artificial intelligence. Some methods 

mimic physiological functions, such as neural connections. In contrast, the others utilize strategies that rely less on 

natural processes and more on mathematical, logical, and statistical processes. All facets of computational intelligence 

are included in the broad field of artificial intelligence. 

ANNs are information-processing systems whose architectures closely resemble the biological structure of the brain 

[49]. In situations where it is difficult to establish numerical equations due to diversity, ANNs have been successfully 

used to link independent variables to a series of dependent ones. In the past few years, ANNs have been employed more 

frequently in a variety of geotechnical engineering fields, including soil liquefaction [50], foundation settlements [49], 

and soil compaction characteristics [51]. ANNs are among the information-driven modeling tools that may capture 

complicated and nonlinear interactions between input and output datasets without requiring a prior understanding of the 

underlying phenomena. ANNs have a flexible statistical structure. Three or more layers are usually present in these 

networks: an input layer, hidden layers, and an output layer. The neurons of the primary hidden layer receive all its input 

data from the input layer [52]. When producing outputs that match predetermined inputs, the output layer is essential. 

In the meantime, sets of feature detectors are performed by the hidden layers, which might consist of one or more layers. 

In system modeling, choosing the right network framework is an important but difficult challenge. A schematic 

illustration of a general 3-layer ANN model is shown in Figure 1. 
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Figure 1. A schematic representation of a general 3-layer ANN model 

Applying ANNs can be done in a variety of ways, and deducing which one works best is challenging because it 

involves systematically testing a lot of different scenarios. There are several different types and frameworks of ANNs, 

such as Regression Neural Networks, Multilayer Perceptron Networks, Probabilistic Neural Networks, Radial Functions 

Networks (RFN), Back Propagation Networks (BPN), and Feedforward Neural Networks (FFNNs). The most widely 

used of these are FFNNs, BPNs, and RFNs [53]. 

The creation of an ANN model to investigate the connections between soil complex permittivity and the four soil 

phases (solid, water, air, and diesel contamination) is one of the study's two primary goals. To control soil pollution and 

assess the total pollution level, it is essential to comprehend the relationship between soil dielectric constant, dielectric 

loss, and volume fraction of soil phases. The second goal is to employ the ANN to forecast the degree of soil 

contamination by using the soil's measured dielectric constant and dielectric loss. 

4. Experimental Program 

The methodology used in this study is summarized in Figure 2. 

 

Figure 2. Flowchart showing the research methodology conducted in this study 
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4.1. Material Properties 

A sample of sandy soil was used in this study. The grain size distribution of the soil and the factorial analysis of the 

soil moisture and diesel are given in Figure 3. Table 1 shows the properties of 500 g of sandy soil used in this study. 

The diesel used in this study was supplied by Jo-Petrol Co. with a density equal to 0.845 g/m3. The properties of the 

used diesel and sand are given in Table 1. 

 

Figure 3. Properties of the soil samples (a) Five-level factorial design for moisture and diesel content; (a) factorial design 

and (b) grain distribution of the soil samples 

Table 1. The properties of the soil and diesel used in this study 

Properties Sandy Soil Properties Diesel Pollutant 

Total volume (V) of the dry sample (cm3) 315.66 Polycyclic aromatic hydrocarbons (Mass %) 8% 

Volume of solid (cm3) 189.39 Flash Point (C)  55C 

Volume of voids (Vv) (cm3) 126.26 Sulfur Content (Mass %) 0.7% 

Porosity 0.4 Cetane Index 46 

Specific gravity (Gs) 2.64 Cetane Number 51 

Bulk density (g/cm3) 1.584 Density at 15°C (kg/m3) 845 

4.2. Capacitive Electrode Dielectric Sensor 

The complex permittivity of the polluted soil, including the real term called dielectric constant (DC or ’) and the 

imaginary term known as dielectric loss (DL or ”), were measured using the capacitive parallel electrode sensor for lab 

(CPES-L) developed in previous studies [21]. Figure 4 shows the schematic diagram of CPES-L and the actual sensor. 

Figure 5 shows the soil container and the cell filled with polluted soil during testing. This CPES-L can be used to 

measure the dielectric properties of soil in the lab. Another set of capacitive electromagnetic electrode sensors (CPES-

F) were developed to measure the permittivity of soil in the field. Samples of these sensors are shown in Figure 6 [23]. 

The volume fraction and dielectric properties of the soil samples at various moisture content and different diesel content 

are given in Table 2. All the results of DC and DL were measured at a frequency range from 1 kHz to 1000 kHz. The 

results in Table 2 were measured at a frequency level of 500 kHz. 

 

Figure 4. CPES-L operating in a low frequency from 1 kHz to 30 MHz (a) A schematic diagram of the (a) schematic 

diagram of the CPES-L; (b) The actual CPES-L 
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Figure 5. Soil sample during lab testing to measure soil dielectric properties 

 

   (a) Pin CPES-F sensor             (b) Plate CPES-F sensor              (c) Coaxial CPES-F sensor    

Figure 6. Capacitive parallel electrode sensors for field (CPES-F) 

Table 2. The properties of the soil and diesel used in this study 

Code of soil samples Solid s Water w Air a Diesel d DC (’) DL (”) 

D0W0 0.600 0.000 0.400 0.000 2.327 0.362 

D1W0 0.600 0.000 0.375 0.025 2.811 0.034 

D2W0 0.600 0.000 0.350 0.050 2.951 0.025 

D3W0 0.600 0.000 0.325 0.075 3.041 0.016 

D4W0 0.600 0.000 0.300 0.100 3.075 0.065 

D0W1 0.600 0.075 0.325 0.000 6.875 20.204 

D1W1 0.600 0.075 0.300 0.025 7.183 23.946 

D2W1 0.600 0.075 0.275 0.050 8.900 31.649 

D3W1 0.600 0.075 0.250 0.075 8.748 31.972 

D4W1 0.600 0.075 0.225 0.100 8.680 30.329 

D0W2 0.600 0.150 0.250 0.000 10.344 38.164 

D1W2 0.600 0.150 0.225 0.025 10.956 42.071 

D2W2 0.600 0.150 0.200 0.050 12.590 45.210 

D3W2 0.600 0.150 0.175 0.075 15.040 55.720 

D4W2 0.600 0.150 0.150 0.100 15.600 60.400 

D0W3 0.600 0.225 0.175 0.000 14.900 64.000 

D1W3 0.600 0.225 0.150 0.025 17.000 70.000 

D2W3 0.600 0.225 0.125 0.050 22.000 79.200 

D3W3 0.600 0.225 0.100 0.075 24.400 81.800 

D4W3 0.600 0.225 0.075 0.100 26.000 92.200 

D0W4 0.600 0.300 0.100 0.000 23.700 122.000 

D1W4 0.600 0.300 0.075 0.025 23.100 140.000 

D2W4 0.600 0.300 0.050 0.050 27.000 131.000 

D3W4 0.600 0.300 0.025 0.075 30.000 119.000 

D4W4 0.600 0.300 0.000 0.100 29.100 118.289 
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4.3. Performance Criteria Used To Evaluate The Computing Models 

To validate the performance of the computed models developed in this study, several quantitative parameters were 

used, including mean square error (MSE) and correlation coefficient of fitting (R). These parameters were calculated 

using the formulas given in Equations 23 and 24. 

𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑖 − 𝑂𝑖̅)

2𝑛
𝑖=1   (23) 

𝑅 = √1 −
∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

  (24) 

where 𝑂𝑖  is the actual and measured output, 𝑂𝑖̅ is the computed and predicted output using the proposed model, 𝑂̅ is the 

mean value of the output 𝑂𝑖 , and n is the number of soil samples used in modeling. 

5. Results and Discussion 

5.1. Measured Dielectric Properties 

Table 3 shows the measured impedance and computed dielectric constant and dielectric loss of soil contaminated by 

diesel and water content versus frequency. The dielectric properties of the contaminated soil were evaluated in the 

frequency range from 1 kHz to 1000 kHz. The experimental results indicated that the dielectric properties of soil decrease 

with increasing the frequency level. The effect of soil water content and diesel contamination level on the measured 

dielectric constant and dielectric loss at a frequency level of 500 kHz are shown in Figure 7. The experimental results 

indicated that the dielectric properties of soil increase with as the water and diesel content increase. The response surface 

of the measured dielectric properties is presented in Figure 8. 

Table 3. The measured impedance and computed DC and DL of moist soil contaminated with diesel versus frequency 

Frequency (kHz) 
Soil impedance (Z) Dielectric properties 

Rsoil Xsoil DC = ’soil DL = ” soil 

1 732.73 -35.16 19762.35 117459.45 

100 663.31 -13.09 61.82 1403.12 

200 659.30 -20.47 45.63 706.46 

300 650.03 -25.49 39.25 480.79 

400 643.79 -30.86 35.32 363.04 

500 639.26 -37.57 34.34 294.36 

600 631.38 -41.64 32.38 245.30 

700 624.44 -47.25 31.40 215.86 

800 616.24 -53.06 31.40 186.43 

900 599.40 -62.10 34.34 166.80 

1000 596.33 -44.75 23.55 156.99 

 

Figure 7. The measured DC and DL of soil contaminated with diesel and various water content at a frequency of 500 kHz 
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(a) Dielectric constant                                                                                (b) Dielectric Loss 

Figure 8. The response surface of DC and DL of soil contaminated with diesel and various water content at a frequency of 

500 kHz, (a) Dielectric constant, (b) dielectric loss 

5.2. Theoretical Models of Dielectric Properties 

Five commonly used theoretical mixture models (Silberrstein, Birchak, Looyenga, Lichtenecker, and general power) 

were investigated to compute the dielectric constant and loss of diesel-contaminated soil based on the dielectric 

properties of individual components and their volume fractions. The results of the experimental and computing dielectric 

properties of contaminated soil are shown in Figure 9. The performance fit of the models, including R and MSE, is given 

in Table 4. The best mixture models were the general power model with power 0.9 for dielectric constant and 1.41 for 

dielectric loss, followed by the Silbersttein Model. All other theoretical mixture models underestimated the dielectric 

properties of the soil. 

 

(a) Dielectric constant                                                                             (b) Dielectric Loss 

Figure 9. Fitting of the computing dielectric constant and loss factor using theoretical mixture models, (a) Dielectric 

constant, (b) dielectric loss 

Table 4. The performance parameters (MSE and R) for the theoretical mixture models 

Theoretical Model 

(Mixture theory) 

Dielectric Constant (DC or ’) Dielectric Loss (DL or ’) 

MSE R MSE R 

Silbersttein Model 6.95154 0.9163 121.3031 0.947 

Birchak Model 52.1394 0.9249 2426.376 0.8861 

Looyenga Model 79.49871 0.9261 3747.878 0.9329 

Lichtenecher Model 128.3554 0.9328 4885.997 0.8486 

General Power Model  = 0.9 and 1.4 8.149957 0.9198 139.9646 0.9553 
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5.3. Empirical Models of Dielectric Properties 

Four empirical quadratic models were investigated using response surface methodology. The degree of fitting of the 

four empirical models, namely linear, pure quadratic, interaction, and full quadratic model, for both dielectric constant 

and dielectric loss are shown in Figure 10-a and 10-b, respectively. The performance criteria such as MSE and R are 

shown in Table 5. The quadratic empirical models show higher accuracy and capability of predicting dielectric properties 

of the contaminated soil and determining diesel contamination content when compared to the theoretical models. The 

best empirical model was the full quadratic model with a correlation coefficient of 0.977 and 0.9663 for dielectric 

constant and dielectric loss, respectively. The response surface of the best full quadratic models is shown in Figure 11. 

 

(a) Dielectric constant                                                                          (b) Dielectric Loss 

Figure 10. Fitting of the computing dielectric constant and loss factor using empirical models; (a) Dielectric constant, (b) 

dielectric loss 

Table 5. The performance parameters (MSE and R) for the empirical models 

Statistical Models 

(Empirical Models) 

Dielectric Constant (DC or ’) Dielectric Loss (DL or ’) 

MSE R MSE R 

Linear Model 2.9728 0.9591 89.32 0.9493 

Pure Quadratic Model 2.6972 0.9592 51.44 0.9679 

Interaction Model 1.7016 0.9755 89.20 0.9470 

Full Quadratic Model 1.4264 0.9773 51.36 0.9663 

 

(a) Dielectric constant                                                                                 (b) Dielectric Loss 

Figure 11. Response surface of the best full quadratic models; (a) Dielectric constant, (b) dielectric loss 
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5.4. ANN Models 

Two ANN modeling methods were investigated using feedforward neural networks (FFNN). The first method was 
performed to develop an FFNN model to compute the dielectric constant and dielectric loss of diesel-contaminated soil. 
The model inputs were the volume fraction of the four soil phases, namely solid, air, water, and diesel. Several FFNN 

models were tried to fit the experimental data. The best FFNN model was the one that contained one hidden layer with 
5 neurons, as shown in Figure 12. The performance of the FFNN models was evaluated based on the Mean Square Error 
(MSE) and coefficient of determination (R) obtained from the training, validation, and testing of overall samples. The 
MSE is a measure of the average difference between predicted and measured values. It gives an overall idea of the data's 
spread. The higher the value, the larger the difference between predicted and measured values. R is a measure of how 
well the predicted values fit the actual data values. The value of R ranges between 0 and 1. If R is closer to 1, then it 

indicates that there is a strong correlation between the data values and the predicted values. The results of both MSE 
and R are shown in Figures 13 to 16. The best performance of the network was achieved using FFNN with five neurons 
and sigmoid and linear correction functions. The correlation of training the ANN was 0.9942. The correlation of the soil 
sample used for model validation was 0.9967 and 0.9977 for model testing. The overall correlation of FFNN was 0.9933. 

 

Figure 12. A schematic representation of the used FFNN model for prediction of dielectric properties 

 

Figure 13. The performance of the used FFNN model for computing DC and DL for soil polluted by diesel and moisture 

 

Figure 14. The regression analysis and degree of fit of the used FFNN model for computing DC and DL for soil polluted by 

diesel and moisture 
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                                 (a) Quality fit of dielectric constant                                                          (b) Residual Error of FFNN model 

Figure 15. The quality of fitting and residual error of the predicted DC using the FFNN model; (a) Quality fit and (b) 

Residual Error 

 

                                 (a) Quality fit of dielectric constant                                                          (b) Residual Error of FFNN model 

Figure 16. The quality of fit and residual error of the predicted DL using the FFNN model; (a) Quality fit and (b) 

Residual Error 

The second ANN method was used to develop the FFNN models to compute water content and diesel content in the 

output layer from the measured dielectric constant and dielectric loss as input variables. Figure 17 depicts the FFNN 

model with 6 neurons in its hidden layer. This model exhibits good predictability of water content and diesel 

contamination level. The results obtained from this model, as shown in Figures 18 to 21, indicate that the targeted level 

of performance was achieved at epoch 3, and the error was only 0.003. The best performance of the network was 

achieved using FFNN with five neurons and sigmoid and linear correction functions. The correlation of training ANN 

was 0.9657. The correlation of the soil sample used for model validation was 0.9643 and 0.9711 for model testing. The 

overall correlation of FFNN was 0.9608. 

 

Figure 17. The schematic representation of the used FFNN model for prediction of diesel and water contents 
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Figure 18. The performance of the used FFNN model for predicting diesel and moisture contents of soil 

 

Figure 19. The regression analysis and degree of fit performance of the used FFNN model for predicting diesel and moisture 

contents of soil 

 

                                       (a) Quality fit of water content                                                              (b) Residual Error of FFNN model 

Figure 20. The quality of fit and residual error of the predicted soil water content using the FFNN model; (a) Quality fit and 

(b) Residual Error 
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                                    (a) Quality fit of diesel content                                                                 (b) Residual Error of FFNN model 

Figure 21. The quality of fit and residual error of the predicted soil diesel content using the FFNN model; (a) Quality fit and 

(b) Residual Error 

6. Conclusion 

This study was conducted to compute the dielectric constant and dielectric loss of soil at various water contents and 

5 levels of diesel contamination. The dielectric properties of the contaminated soil were evaluated in the frequency range 

from 1 kHz to 1000 kHz. The experimental results indicate that the dielectric properties of soil decrease with increasing 

frequency while they increase with increasing water and diesel contents. Three models were used to compute and predict 

the dielectric properties of the contaminated soil and diesel content. The results of the predicted output using theoretical 

mixture models, statistical empirical models, and ANN models, lead to the following conclusions: 

The best mixture models were the general power model with a power value of 0.9 for the dielectric constant and 1.4 

for the dielectric loss, followed by the Silbersttein Model. All other theoretical mixture models tended to underestimate 

the dielectric properties of the soil. The quadratic empirical models, when compared to the theoretical models, show a 

higher level of accuracy and capability of predicting and computing dielectric properties of contaminated soil and 

determining diesel contamination content. The best empirical model was the full quadratic model with correlation 

coefficients of 0.977 and 0.9663 for the dielectric constant and loss, respectively. 

The ANN models using feedforward neural networks with 5 and 6 neurons indicate the best computing modeling in 

determining the dielectric properties of contaminated soil and water content and diesel content, respectively. The 

correlation of ANN training was 0.9942. The correlation of the soil sample used for model validation was 0.9967 and 

0.9977 for model testing. The overall correlation of FFNN was 0.9933. 
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