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Abstract 

Corrugated web steel systems, such as corrugated web girders (CWG) and beams (CWSB), have the potential to influence 

the modern construction industry due to their unique properties, including enhanced shear strength and reduced necessity 

for transverse stiffeners. Nevertheless, the lack of a rapid and accurate design approach still limits its wide applications. 

Recently, gene expression programming (GEP) has been employed to predict the shear capacity of cold-formed steel 

channels, demonstrating superior predictive accuracy and compliance with established standards. This study applies GEP 

to predict the shear capacity of sinusoidal CWSBs and optimizes its predictive performance by employing a systematic 

grid search to explore combinations of chromosomes, head sizes, gene counts, and linking functions. The process involved 

testing 19 different parameter combinations and more than 60 developed models. The findings include the sensitivity of 

the model's performance to gene count and the critical role of the linking function. The optimal model in the study, GEP13, 

achieved R² of 0.95, an RMSE of 100.5, and an MAE of 86.6 in the testing dataset with 150 chromosomes, a head size of 

12, and four genes using a multiplication linking function. 

Keywords: Sinusoidal Steel Beam; SCWBS; ANN; Shear Strength Analysis; Network Topology; Predictive Modelling; Hyperparameter 

Optimization; Geometric Properties. 

 

1. Introduction 

Corrugated web steel systems, including corrugated web girders (CWG) and corrugated web steel beams (CWSB), 

have gained significant interest in the industrial and construction sectors. CWGs have been widely used in highway 

bridge projects, offering advantages such as reduced risk of damage during construction and operation [1, 2]. CWSBs, 

on the other hand, utilize thin corrugated webs and eliminate the need for transverse stiffeners while achieving 

remarkable shear strength capacities [3]. These innovations have led to the widespread recognition and integration of 

CWSBs in various construction projects, surpassing traditional welded sheet metal beams in terms of their potential 

benefits [4, 5]. This resurgence of interest in corrugated web steel systems has coincided with a growing trend in the 

structural engineering community towards embracing machine learning techniques for modeling and analysis. 

Researchers have proposed the use of machine learning algorithms, such as K-Nearest Neighbors, XGBoost, CatBoost, 

Random Forest, and support vector machines, to develop more accurate formulae for structural design and to enhance 

SHM for bridges [6–8]. 

Machine learning algorithms have been used to predict shear capacity, fundamental period, and deflection of 

structures, as well as to discriminate between healthy and non-healthy states of bridges [9, 10]. Additionally, machine 
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learning has been applied to estimate the plastic hinge length of reinforced concrete structural walls, providing better 

predictions than existing empirical equations [7, 10]. Artificial neural networks (ANNs) have also been used to predict 

the punching shear capacity of fiber-reinforced concrete (FRC) and fiber-reinforced polymer (FRP) concrete slabs [11, 

12]. These studies demonstrate the increasing interest in and application of machine learning techniques in structural 

engineering.  

Elamary & Taha [13] recently used Gaussian process regression to estimate steel beams' shear capacity with 

sinusoidal corrugated webs (SBCWs) and demonstrated its accurate performance. Ipek et al. [14] utilized gene 

expression programming (GEP) to develop models for predicting the shear capacity of cold-formed steel (CFS) channels 

with staggered slotted web perforations [14]. Hossain et al. [15] employed GEP to predict the compressive strength of 

fiber-reinforced geopolymer concrete (FRGC). Alabduljabbar et al. [16] focused on estimating the strength of ultra-

high-performance concrete (UHPC) using GEP. These successful application of GEP, along with the possibility to 

estimate the shear behavior of corrugated web beams, represents a potential for solving more complex problems, 

particularly assessing the shear capacity of sinusoidal corrugated web beams (SCWBs), a notable research gap in the 

literature. Accordingly, this study aims to address this gap by developing and optimizing a GEP-based model to predict 

the shear capacity of SCWBs, establishing a novel approach in the field, and contributing to more accurate and efficient 

design procedures. The objectives extend to refining the GEP algorithm through training a variety of model cases and 

then selecting the best one. A variable importance and sensitivity analysis of structural parameters will be conducted to 

assess the impact of the parameters on the shear strength of SCWBs. The insights gained from this analysis are expected 

to align with mechanical behaviors observed in experimental studies and theoretical expectations. By contributing to 

more accurate, efficient, and reliable design procedures, this research not only fills a critical gap in the literature but also 

paves the way for more innovative applications of machine learning in civil engineering. The ultimate goal is to facilitate 

the adoption of SCWBs in broader construction practices, enabling engineers and designers to leverage their benefits in 

various projects, thereby promoting sustainability, cost-effectiveness, and architectural versatility in the construction 

industry. 

2. Literature Review of Sinusoidal Corrugated Web Beams 

Sinusoidal corrugated steel web (SCSW) stability design primarily relies on calculating the elastic shear buckling 

stress, and the design equation can be derived using the direct strength method. Elastic shear buckling in SCSW 

encompasses three main modes: local shear buckling (local buckling), global shear buckling (global buckling), and 

interactive shear buckling (interactive buckling). Interactive buckling represents a more intricate mode between local 

and global buckling [17]. The EN 1993-1-5 [18] calculated the local buckling stress as 

𝝉𝒍 =
𝒌𝑳𝝅

𝟐𝑬

𝟏𝟐(𝟏−𝒗𝟐)
(
𝒕𝒘

𝒔
)
𝟐

  (1) 

KL is the buckling coefficient, which depends on the boundary conditions and is a function of the panel aspect ratio (b/t), 

boundary support conditions, and plate height.  

Figure 1displays a sketch for the sinusoidal beam. The calculation of global buckling stress is simplified using the 

orthotropic plate buckling theory [19, 21]. Easley & McFarland [20] derived a simplified equation for the elastic global 

buckling shear stress of corrugated webs. 

 

Figure 1. Geometric parameters of the sinusoidal corrugated web 
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where  

𝐷𝑦 =
𝐸𝐼𝑦

𝐿𝑐
  (3) 

𝐷𝑥 =
𝐸𝑡𝑤

3

12(1−𝑣2)

𝐿𝑐

𝑆
  (4) 

where Iy is the moment of inertia of one section of a corrugation wave about its neutral axis, S is the length of one sine 

wave. The studies performed by Pasternak & Branka [22] and have been proposed by Elkawas et al. [23] for the critical 

shear stress for local and global buckling for sinusoidally corrugated webs are as follows: 

𝜏𝑙 = (5.34 +
𝐴𝑐𝑆

𝐻𝑤𝑡𝑤
)

𝜋2𝐸

12(1−𝑣2)
(
𝑡𝑤

𝑆
)
2

  (5) 
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𝑡𝑤𝐻𝑤
2   (6) 

Although no specific independent calculation formula is provided, researchers widely believe that interactive 

buckling stress is related to local and global buckling stresses. Researchers conducted a study on the behavior of 

sinusoidal corrugated web girders under various loading conditions [21]. The study found that shear load capacity is 

significantly influenced by web geometry, specifically amplitude, wavelength, and thickness. Increasing amplitude and 

thickness leads to higher shear load capacity, while increasing wavelength reduces it. Various failure modes, such as 

web buckling, web crippling, and flange bending, were observed depending on the geometry and material properties of 

the corrugated web. Research on the impact of corrugated web geometry on I-beam behavior revealed similar outcomes 

to the previous study [24]. Also, Increased amplitude and thickness improve performance, while increased wavelength 

reduces load-carrying capacity. The experiments also identified failure modes influenced by web geometry, such as web 

buckling and flange bending. 

3. Material and Methods 

3.1. Gene Expression Programming 

Gene expression programming is a scientific computer program that uses evolutionary algorithms to generate 

computer programs or models. The principles of nature inspire it and aim to create autonomous, problem-solving 

artificial systems. Its inception can be traced back to the pioneering work of Friedberg [25], which set the stage for the 

development of increasingly complex systems rooted in the concepts of natural evolution adapted to the computational 

world. Among these advancements, GEP emerges as the latest innovation in evolutionary computing [26]. GEP's 

evolution can be comprehended by comparing it with its predecessors, genetic algorithms (GAs) and genetic 

programming (GP). The introduction of GAs, based on a simplified interpretation of biological evolution, marked a 

significant milestone in the computational world [27]. 

Subsequently, GP, initially proposed by Cramer [28] and further refined by Koza [29], offered a distinctive approach 

by generating and genetically manipulating nonlinear structures of varying sizes and shapes to find solutions. In contrast 

to GAs that employ character strings (typically binary) to encode potential solutions, GP explore solution spaces by 

generating and manipulating tree structures [29]. The distinction lies in the nature of "individuals" representing solutions. 

In GAs, individuals correspond to chromosomes subject to mutation, crossover, and inversion, while in GP, individuals 

are tree-like structures upon which genetic operators, such as recombination, mutation, and permutation, directly act 

[29]. These operators play a fundamental role in shaping the genetic diversity critical for successful problem-solving. 

GEP bridges the gap between GAs and GP [26]. It shares with GP the capacity to evolve computer programs represented 

by diagram configurations. However, it introduces a significant addition compared to GP by encoding linear 

chromosomes of fixed length, often called the genotype, to represent expression trees, known as the phenotype [26, 30]. 

This innovation simplifies the complexity associated with GP and provides GEP with a notable advantage. One 

distinctive feature of GEP is the utilization of multiple genes within its chromosomes, each encoding a sub-program. 

This structural flexibility allows GEP to explore and operate complex solution spaces efficiently, enhancing its problem-

solving capabilities. To facilitate the interpretation of genetic information within GEP, Ferreira [26] introduced the 

Karva language. This novel bilingual system bridges genotypes and phenotypes, enabling the seamless translation of 

complex expression trees into linear genetic representations. The Karva language permits the horizontal reading of 

expression trees in a vertical sequence, akin to reading text on a page. The fundamental genetic unit in GEP is the gene, 

which consists of a head and a tail of fixed length. The head contains symbols representing terminals and functions, 

while the tail only contains terminals. It is important to note that the variation in chromosome length in GEP arises from 

the open reading frames rather than the genes themselves. The genes collectively form the chromosomes, blueprints for 

evolving solution candidates [31]. Recently, GEP was applied to various civil engineering fields, given its comparable 

results against other common prediction techniques like ANN and polynomial regression [32, 33]. 
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3.2. Data Collection and Methodology 

This study develops a dataset of over 65 SCWBs collected from various experimental studies in the literature. The 

developed dataset contains a total of 6 geometrical and material input variables. These variables are the web depth (ℎ𝑤), 

web thickness (𝑡𝑤), the width of the longitudinal fold panel or the wavelength of the sinusoidal panel (𝑎1), corrugation 

depth or the wave amplitude (𝑎3), steel yield strength (𝜏𝑦), and the normalized elastic shear buckling strength (𝜌). The 

experimental shear strength (𝑉𝑡𝑒𝑠𝑡) of the SCWB was considered the only output variable in this study.  

Table 1 lists the references used during data collection. Detailed information associated with each beam can be found 

in the appendix. Table 2 provides descriptive statistics of the prepared database, including the mean, standard deviation, 

minimum, first percentile (25%), median (50%), third percentile (75%), and maximum value. Once the database was 

developed, it was cleaned to eliminate outliers 

Table 1. Shear strength of SCWB experimental testing data as obtained from the literature 

Reference Number of Specimens 

SIN Technical Guideline (2018) [34] 6 

Pasternak & Brańka (1999) [22] 3 

Śledziewski & Górecki (2020) [36] 2 

Pasternak & Kubieniec (2011) [35] 10 

Górecki & Śledziewski (2022) [37] 6 

Hannebauer (2007) [38] 13 

Basiński (2018) [39] 10 

Yan-lin et al. (2008) [40] 6 

Nikoomanesh & Goudarzi (2021) [41] 9 

Total 65 

Table 2. Descriptive statistical analysis of the dataset 

Parameter Mean Standard Deviation Minimum First Quartile Median Third Quartile Maximum 

Web depth hw (mm) 341.2 250 1505 500 875 341.2 500 

Web Thickness tw (mm) 1.1 2 7 2.5 3 1.1 2.1 

Wavelength a1 (mm) 67.8 150 381 156 213 67.8 155 

Corrugation depth a3 (mm) 16.5 20 140 40 43 16.5 39.7 

Steel yield strength 𝜏𝑦 (MPa) 61.3 225 434 302 355 61.3 247.5 

Shear strength Vu (kN) 93.5 164.2 517.5 311.9 363.8 93.5 220.2 

3.3. Model Development Strategy 

To refine the gene expression programming (GEP) models for enhanced predictive accuracy, a systematic grid search 

was employed to navigate the hyperparameter space and mutable training for the same chosen parameters. Figure 2 

shows the various stages of the GEP algorithm flowchart. This approach involved an extensive exploration of various 

combinations of chromosomes, head size, number of genes, and linking functions. The objective was to identify the 

configuration that maximizes the coefficient of determination (𝑅2) when tested against the data. Notably, 19 unique 

combinations of the most fitting parameters were simulated and tested. The database was randomly divided into 70% 

training, 15% validation, and 15% testing subsets during the model development stage. After that, the highest response 

in validation and testing was reported.  

Table 3 displays models built on various parameters and functions. The models, GEP1 through GEP19, were tested 

with new data to assess their performance. The initial models, such as GEP1 with 50 chromosomes, a head size of 8, 

and 4 genes using an addition linking function, achieved an 𝑅2 of 0.88. This strong performance set a high standard for 

subsequent models. However, variations in the model structure, as seen in GEP2 and GEP3, which had fewer genes, 

resulted in a decrease in 𝑅2, indicating a sensitivity of model performance to the gene count. As the models evolved, 

there was a notable trend of increasing the number of chromosomes and adjusting the head size, significantly affecting 

model performance. Interestingly, changing the linking function from addition to multiplication in the same model 

configuration (GEP6) resulted in a lower 𝑅2 of 0.86, suggesting that the choice of linking function is crucial and context-

dependent. The grid search concluded in the development of GEP13, which exhibited an exceptional 𝑅2 of 0.95, the 

highest among all models tested. This model stood out with its 150 chromosomes, head size of 12, and 4 genes utilizing 

a multiplication linking function. The optimized structure of GEP13 indicates that a higher number of chromosomes and 

a larger head size, when coupled with a multiplication linking function, can significantly enhance the model's predictive 

capability. 
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Figure 2. GEP algorithm flowchart of SCWBs 

Table 3. Results of various gene models investigated during the optimization stage 

Models Set Chromosomes Head Size Number of Genes Linking Function Testing 𝑹𝟐 

GEP1 50 8 4 Addition 0.88 

GEP2 50 8 3 Addition 0.82 

GEP3 50 10 3 Addition 0.78 

GEP4 50 12 3 Addition 0.75 

GEP5 100 9 3 Addition 0.73 

GEP6 100 14 4 Addition 0.91 

GEP6 100 14 4 Multiplication 0.86 

GEP7 100 8 3 Addition 0.85 

GEP8 100 12 4 Addition 0.91 

GEP9 100 12 3 Addition 0.83 

GEP10 150 8 3 Addition 0.78 

GEP11 150 12 4 Addition 0.77 

GEP12 150 10 4 Addition 0.85 

GEP13 150 12 4 Multiplication 95 

GEP14 150 8 3 Multiplication 0.82 

GEP15 150 9 3 Addition 0.81 

GEP16 100 10 3 Addition 0.8 

GEP17 150 12 4 Addition 0.84 

GEP18 150 9 3 Multiplication 0.85 

GEP19 100 10 3 Addition 0.79 

3.4. Performance Assessment Metrics 

This study used several performance metrics to assess the accuracy of the developed machine-learning models. These 
models are coefficient of determination (R2) (Equation 1), root-mean-square error (RMSE) (Equation 2), and mean 
absolute error (MAE) (Equation 3). 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)

2

∑(𝑦𝑖−�̅�)
2   (7) 

RMSE = √
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝑛
  (8) 

MAE =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1   (9) 
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where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted one, �̅� is the average of the measured values, and 𝑛 is the number of 

observations. 

4. Results and Discussions 

4.1. Shear Capacity Estimation Using Gene Expression Programming 

The GEP model 13, shown in Figure 3 and explained using Table 4, is used as an advanced machine learning 

technique and shows remarkable performance in predicting the shear strength of Sinusoidal steel corrugated web beams 

(SCWB). The evaluation of its effectiveness shown in Table 5, as indicated by the performance metrics, reveals its 

substantial predictive accuracy and reliability. In the validation phase, the model achieved a root mean square error 

(RMSE) of 76.5 and a mean absolute error (MAE) of 64.3. These metrics suggest that the GEP model can predict with 

a high degree of precision, with minimal deviation from the actual values. More impressively, the model attained an R2 

score of 0.97. Transitioning to the testing phase, the GEP model maintained a commendable level of performance, with 

an RMSE of 100.5 and an MAE of 86.6. While these values are slightly higher than those in the validation phase, they 

still underscore the model's ability to handle new, unseen data effectively. The R2 value of 0.95 in the testing phase 

further confirms the model's robustness, demonstrating its capacity to capture a significant proportion of the variability 

in the test data. Figure 4 shows the mode performance compared with the actual data. When compared with other 

machine learning models tested for the same purpose, the GEP model stands out for its high R2 values in both validation 

and testing phases. While there is an increase in error metrics (RMSE and MAE) in the test phase, it still maintains an 

accurate predictive performance. The model's slight decrease in precision with new data suggests an area for further 

optimization, possibly through fine-tuning of its parameters or more comprehensive training with diverse datasets. 

Table 4. GEP regression function definitions 

Function Representation Definition 

Addition + (x+y) 

Subtraction - (x-y) 

Multiplication * (x×y) 

Division / (x/y) 

Exponential Exp exp(x) 

Natural logarithm Ln In(x) 

Inverse Inv 1/x 

x to the power of 2 x2 x2 

Cube root 3Rt x1/3 

Minimum of 2 inputs Min2 min(x,y) 

Maximum of 2 inputs Max2 max(x,y) 

Average of 2 inputs Avg2 avg(x,y) 

Arctangent Atan arctan(x) 

Hyperbolic tangent Tanh tanh(x) 

Complement NOT (1-x) 

constant C c1,c2,c3,…. 

Table 5. Performance assessment of the GEP model 

Model Type Gene Expression Programming 

RMSE (Validation) 76.5 

R2 (Validation) 0.97 

MAE (Validation) 64.3 

RMSE (Test) 100.5 

R2 (Test) 0.95 

MAE (Test) 86.6 
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Figure 3. Developed GEP model for SCWB's shear prediction 
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Figure 4. Shear capacity estimation using the GEP approach 

4.2. Comparison Against Commonly Used Models 

Three commonly used machine learning techniques were examined to predict the shear strength of SCWB to 

compare the performance of the optimized GEP model. These models are linear regression with robust linear preset, 

quadratic support vector machine (SVM), and optimizable neural network. The performance of the models against that 

of the GEP is given in Figure 5 to Figure 7. It can be seen that the linear regression model featuring a robust linear preset 

has reached an RMSE of 55.46, an R2 of 0.72, and an MAE of 37.516 for the validation dataset. The Quadratic SVM 

utilized a quadratic kernel function with standardized data, achieving an RMSE of 56.15, an R2 of 0.71, and an MAE of 

38.9 for validation. The optimizable neural network, standardized with a preset single fully connected layer of size 99 

and ReLU activation, achieved an RMSE of 54.45, an R2 of 0.73, and an MAE of 39.37 for the validation dataset. While 

the optimizable neural network slightly outperformed the other models based on RMSE, R2, and MAE for the validation 

dataset, it demanded a notably longer training duration. On the other hand, it can be seen that the proposed GEP model 

provides the best results against other techniques. 

 

Figure 5. Benchmarking the R2 value of GPE model against commonly used techniques for predicting shear strength of 

SCWB 
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Figure 6. Benchmarking the RMSE value of GPE model against commonly used techniques for predicting shear strength of 

SCWB 

 

Figure 7. Benchmarking the MAE value of the GPE model against commonly used techniques for predicting the shear 

strength of SCWB 

4.3. Variable Importance and Sensitivity Analysis 

This section evaluates the influence of various parameters on the shear strength of SCWB. This investigation aims 

to understand the relative influence exerted by various structural parameters on the shear strength of SCWB. The 

methodology employed an extensive sensitivity analysis and F-test variable importance analysis, as shown in Figures 8 

and 9. The web depth (hw) of sinusoidal corrugated steel webs is the most influential parameter in determining shear 

strength, as evidenced by its highest variable importance score of 1.2 in the GEP 13 model analysis. This significance 

is reflected in the sensitivity analysis, where variations in hw lead to noticeable changes in shear strength. This highlights 

the critical role of web depth in the structural stability and load-bearing capacity of corrugated steel webs, making it a 

critical factor in design considerations and structural assessments. Web thickness (tw) demonstrates a substantial impact 

on the shear strength of sinusoidal corrugated steel webs, albeit less than web depth, with a variable importance score 

of 0.5. The sensitivity analysis likely indicates noticeable changes in shear strength with variations in tw, though these 

changes are not as steep as those observed for hw. The moderate yet significant influence of web thickness highlights its 

role in the overall structural behavior of corrugated steel webs, compelling careful consideration in design to optimize 

performance. 
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 The corrugation depth (a3) holds a notable position in influencing the shear strength of sinusoidal corrugated steel 

webs, as indicated by its variable importance score of 0.4. This score suggests that a3 is a key structural element, with 

its depth playing an integral role in imposing the web's behavior under load. The sensitivity analysis for a3 likely reveals 

significant shifts in shear strength in response to changes in corrugation depth, suggesting that deeper corrugations might 

incrementally enhance the structural performance of SCWB designs up to a certain limit where the effect of the a3 

become stable and no longer affect the shear strength. The wavelength of the sinusoidal panel (a1) presents a lower 

importance means of 0.25. The sensitivity analysis for a1 exhibits an inverse relationship with shear strength. This 

finding aligns with previous studies indicating that larger longitudinal fold panels reduce shear strength, potentially due 

to increased flexibility or stress concentrations [42, 43]. The steel yield strength (𝜏𝑦) shows the least impact on the shear 

strength of sinusoidal corrugated steel webs within the parameter range studied, as evidenced by its low variable 

importance score of 0.02. The sensitivity analysis for 𝜏𝑦  likely displays minimal fluctuations in shear strength, 

suggesting that, within the studied context, variations in the steel's yield strength are less influential compared to other 

geometric factors. This observation points to the dominant role of structural geometry over material properties in 

determining the performance of corrugated steel webs in this specific analysis. 

 

Figure 8. F-test Importance of features for shear strength determination in SCWB 
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Figure 9. GEP model analysis of shear strength changes across sinusoidal configuration parameters 

5. Conclusions 

In this research, the application of GEP for predicting the shear capacity of SCWBs was thoroughly investigated. 

The developed GEP model demonstrated high predictive accuracy, with an RMSE of 100.5, an MAE of 86.6, and an 

impressive R2 value of 0.95, indicating robustness and reliability in predictions. Through parametric analysis, the 

statistical properties of the data were assessed, and the influence of various parameters on the shear strength of SCWBs 

was evaluated. The optimized model achieved commendable results in handling new data and highlighted the influence 

of structural parameters such as web height and thickness on SCWB strength. The parametric analysis assessed these 

parameters' statistical properties and sensitivities, reinforcing GEP's ability to capture complex relationships within 

structural elements. 

Key highlights from the study include: 

• Optimized GEP Model: GEP13 was the most effective model, combining 150 chromosomes, a head size 12, and 

a multiplication linking function, achieving an 𝑅2 of 0.95. 

• Predictive Accuracy: The model demonstrated high predictive accuracy in both the validation and testing phases, 

with robustness in handling new, unseen data. 

• Parameter Influence: Detailed parametric analysis revealed significant influences of web height (ℎ𝑤 ) and 

thickness (𝑡𝑤) on shear strength, which is critical for design considerations. These findings align closely with 

recent experimental studies and observed mechanical behavior. 

• Comparative Analysis: Compared to other machine learning techniques like linear regression and support vector 

machines, GEP provided superior results, highlighting its suitability for complex structural predictions. 

The high predictive accuracy, combined with a detailed evaluation of parameter influence, underscores the 

significant potential of GEP as a tool in structural engineering. This study affirms the high capability of gene expression 

programming in structural predictions and lays a substantial groundwork for future advancements in predictive modeling 

techniques for evaluating structural elements, further enriching the field of structural engineering with robust, reliable 

modeling tools. 

6. Nomenclatures 

m Number of corrugations hr, a3 Corrugation depth 

hw Web depth L Web length 

t Web thickness w2 Smaller values of b and c 

w Larger values of b and c w2/w Fold ratio 

E Young's modulus of elasticity τy Yield shear stress 

fy Yield tensile stress τu Ultimate shear stress, τu = Qu/(ht) 

τLel Local elastic shear buckling stress τIel Interactive elastic shear buckling stress 
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τGel Global elastic shear buckling stress τcr,L Critical local shear buckling stress 

τcr,G Critical global shear buckling stress kLel Local shear buckling stress buckling coefficient 

τcr,I Critical interactive shear buckling stress kG Global shear buckling stress buckling coefficient 

ρL Normalized local elastic shear buckling strength ρI,n,el Normalized interaction elastic shear buckling strength 

ρG Normalized global elastic shear buckling strength   
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Appendix I 

Table A1. Collected database in this study 

hw tw τy a1 a3 Vu  hw tw τy a1 a3 Vu 

500 2.5 224.9357 155 40 288.69  500 2 175.7454 156 40 165 

500 2.5 224.9357 155 40 316.27  500 2.6 159.2909 156 40 218 

500 2.5 224.9357 155 40 311.82  1000 2.5 150.342 156 40 362.5 

1000 2 241.6211 155 40 345.63  1000 2.6 183.4819 156 40 372.5 

1000 2 241.6211 155 40 366.53  1250 2 142.721 156 40 425 

1000 2 241.6211 155 40 354.97  1500 2 153.6906 156 40 414 

1502 2.1 129.9038 155 40 370  1000 2 193.0082 156 40 310.5 

1501 2.1 129.9038 155 40 365  1000 2.5 196.761 156 40 447 

1505 2.1 129.9038 155 40 353  1000 3 187.9275 156 40 517.5 

500 2.1 177.2465 155 40 177  1500 2 167.0274 156 40 428.5 

500 2.1 181.288 155 40 182  500 2 173.2051 306.8 20 190.5 

500 2 174.3598 155 40 171  500 2.5 173.2051 306.8 20 238.5 

500 2.1 171.473 155 40 172  750 2.5 173.2051 306.8 20 324 

350 7 250.57 150 25 1360.49  750 3 173.2051 306.8 20 388.5 

350 7 250.57 150 25 1611.28  1000 2.5 173.2051 306.8 20 428.5 

500 3 204.9593 155 43 322  1000 3 173.2051 306.8 20 494 

500 3 204.9593 155 43 255  501 2.6 132.7906 345.8 39.3 220.5 

500 3 204.9593 155 43 189  501 2.6 132.7906 345.8 39.2 220.25 

500 3 204.9593 155 43 125  500 2.6 132.7906 345.8 39.3 222 

500 2 204.9593 155 43 214  502 2.6 132.7906 345.8 39.1 228.5 

500 2 204.9593 155 43 214  500 2 174.3598 159.2 38 322.5 

500 2.5 204.9593 155 43 268  500 2 174.3598 159.2 38 318.75 

500 2.5 204.9593 155 43 268  500 2 174.3598 159.2 38 318.25 

500 3 204.9593 155 43 321  750 2.5 132 213 60 270.66 

500 3 204.9593 155 43 321  500 3 137 213 60 234.67 

250 3 204.9593 155 43 183.86  750 3 137 213 60 300.08 

250 3 204.9593 155 43 181.8  500 4 140 213 60 334.41 

250 3 204.9593 200 55 196.51  625 4 140 213 60 410.11 

250 5 204.9593 200 55 289.43  750 4 140 213 60 466.31 

250 3 204.9593 381 140 164.17  330 5 143 213 60 325.09 

250 5 204.9593 381 140 236.61  500 5 143 213 60 451.4 

500 2.5 132.7906 155 40 220  625 5 143 213 60 590.07 

500 2.5 132.7906 155 40 222        

 


