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Abstract 

Connected and Autonomous Vehicles (CAVs) might significantly enhance the transportation system by improving safety, 

accessibility, efficiency, and sustainability. However, a major challenge lies in ensuring CAVs can operate properly under 

diverse weather conditions, which have already proven to impair human driving capabilities. This pioneering study aims 

to bridge a crucial research gap by comprehensively assessing the performance of CAVs on traffic operations and safety 

across varying weather scenarios. Using microscopic traffic simulation in VISSIM and the Surrogate Safety Assessment 

Model (SSAM), this study evaluates key metrics, including average speed, delay, number of stops, travel time, and number 

of conflicts for different CAV market penetration rates. The analysis spans 21 scenarios under clear, light rain, heavy rain, 

and foggy conditions within a selected urban corridor in the United Arab Emirates. The results showed that the average 

speed rose by 55% in clear weather, while the average delay, the number of stops, travel time, and the number of accidents 

decreased by 50%, 50%, 95%, and 68%, respectively. In light rain, the average speed improved by 43%, while the average 

delay, number of stops, travel time, and the number of accidents reduced by 43%, 56%, 96%, and 74%, respectively. The 

average speed increased by 82% under heavy rain, while the average delay, the number of stops, the travel time, and the 

number of accidents all fell by 62%, 68%, 96%, and 74%, respectively. In fog, the average speed rose by 32%, while the 

average delay, average stop number, travel time, and the number of accidents decreased by 33%, 47%, 90%, and 83%, 

respectively. Overall, this paper highlights the need for resilient CAV systems adaptable to diverse environmental 

conditions. It helps advance the understanding of how CAVs can be optimized for safety and efficiency in urban settings, 

contributing to sustainable transportation solutions. It provides insights into the challenges and innovative approaches for 

CAV deployment in adverse weather, laying a foundation for future research and the broader implementation of these 

technologies in urban mobility. 
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1. Introduction 

Over the past decade, the rapid evolution of connected and automated vehicle (CAV) technologies has marked a 

significant transformation in the transportation sector. These technologies, equipped with advanced sensors, wireless 

communication capabilities, and sophisticated control algorithms, offer considerable potential for enhancing the safety, 

efficiency, and sustainability of road networks [1]. Despite these advancements, the integration of CAV technologies 

poses significant challenges, including interoperability issues with existing infrastructure, the high costs associated with 

their deployment, and the risks of cybersecurity breaches. As CAV technologies continue to develop and their 
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application broadens, it becomes crucial to assess their performance in varied driving conditions, especially under 

adverse weather. Conditions such as heavy rain, snow, fog, and ice significantly challenge both human drivers and 

conventional vehicle systems by reducing visibility, impairing traction, and increasing stopping distances. These factors 

often lead to decreased road capacity, heightened accident risks, and traffic disruptions [2, 3]. The deployment of CAVs 

presents an opportunity to alleviate the negative impacts of such adverse weather on transportation systems. Nonetheless, 

these technologies still face substantial obstacles in adverse conditions due to the limitations of sensor capabilities and 

the requirement for highly adaptable decision-making algorithms that can respond to dynamic environmental changes. 

Moreover, while CAVs are anticipated to demonstrate enhanced cooperative behavior, yielding greater systemic 

benefits compared to human-operated vehicles [4, 5], the empirical evidence regarding their impact on traffic flow 

remains limited. This is largely due to the ongoing development of their operational technologies and regulatory 

frameworks. A critical concern remains the assurance of safety and reliability. Although CAVs aim to reduce the 

incidence of human driving errors, which contribute to approximately 94% of traffic accidents [6, 7], their performance 

under adverse weather conditions remains largely unexplored. The challenge lies in ensuring these vehicles can safely 

operate without human oversight over functions such as steering, braking, acceleration, and road monitoring. The 

National Highway Traffic Safety Administration (NHTSA) has classified vehicle automation into six levels, each 

delineating a different degree of automation and presenting distinct challenges in technology and integration into 

existing traffic systems, as illustrated in Figure 1 [8]. 

 

Figure 1. Automation levels (NHTSA) 

This research is centered on fully automated vehicles, also known as Level 5 automation. Within this study, the term 

"autonomous vehicles" specifically refers to those with complete automation capabilities. Since the early 1950s, it has 

been recognized that weather patterns significantly influence driver behavior and traffic flow [9]. Adverse weather 

conditions notably affect traffic-related variables such as free-flow speed and capacity [10-12]. Furthermore, such 

conditions influence travelers' decisions regarding the mode of transport, route selection, timing, destination, and even 

the decision to travel at all. Consequently, weather conditions impact both the supply and demand aspects of the 

transportation sector. Studies show that adverse weather reduces service capacity and travel predictability while 

increasing the likelihood of accidents. It is estimated that adverse road conditions due to weather contribute to 28% of 

all highway collisions and 19% of all fatalities [13]. Therefore, the ability of CAVs to function effectively in adverse 

weather conditions, including rain, snow, and fog, is a critical concern.  

To date, comprehensive research on the performance of CAVs under diverse weather conditions remains limited. 

The objective of this study is to investigate the potential impact of CAVs on traffic safety and operations across different 

weather scenarios, assuming optimal operational conditions free from system errors or cyberattacks. Such assumptions, 

common in preliminary studies, help in assessing the theoretical maximum benefits of CAV technology. The study sets 

out with the following specific aims: 

 Create a detailed simulation model for CAVs that integrates algorithms for car-following, lane-changing, and other 

driving behaviors under varying weather conditions. 

 Conduct simulations across various Market Penetration Rates (MPR) of CAVs to observe their performance under 

varying weather conditions. 

 Assess the safety of simulated CAVs by analyzing conflicts within the traffic flow under varying weather 

conditions. 
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 Evaluate the operational efficiency of CAVs in the simulation, considering factors such as delay and speed under 

varying weather conditions. 

 Compare the operational and safety outcomes between CAVs and conventional road vehicles (RVs) within the 

simulation framework under varying weather conditions. 

This paper emphasizes the importance of developing resilient CAV systems that can adapt to a wide range of 

environmental conditions. Through this comprehensive study, we enhance our understanding of how autonomous 

vehicles can be optimized for safe and efficient operation across diverse urban settings. This research not only 

contributes significantly to the ongoing discussion about sustainable transportation solutions but also provides clear 

insights into the challenges and innovative solutions associated with deploying connected and autonomous vehicles in 

adverse weather conditions. Ultimately, this work lays a solid foundation for future research and technological 

advancements in the field of urban mobility, paving the way for broader adoption and implementation of CAV 

technologies. 

The structure of this paper is organized as follows: In Section 2, the relevant literature is reviewed,  and research 

gaps in the performance of CAVs in adverse weather conditions are identified. The applied methodology is outlined 

in Section 3, utilizing VISSIM simulations and the Surrogate Safety Assessment Model (SSAM). Results are 

presented in Section 4, focusing on the impacts of various weather conditions on CAV performance metrics. These 

findings are discussed in Section 5 in the context of existing research and their implications for urban planning and 

policy. Finally, the paper is concluded in Section 6 with a summary of our findings and suggestions for future 

research directions. 

2. Literature Review 

While the literature extensively covers the influence of CAVs on transportation networks, as well as the impact of 

adverse weather conditions on normal road safety and traffic flow, there remains a gap in research regarding the behavior 

of CAVs during adverse weather conditions. Previous studies have predominantly concentrated on how weather 

conditions affect (regular human driving) traffic flow characteristics [14–18]. For instance, Brilon and Ponzlet found 

that snow and rain decreased speeds by approximately 7 and 4 mph, respectively, on six-lane roads under uncongested 

and partially dense circumstances [14]. Smith et al. investigated the impact of varying rainfall intensities on highway 

capacity and operational rates [15]. They discovered that light rain (0.01 - 0.25 inches/hour) reduced freeway capacity 

by 4-10%, while heavy rain (0.25 inches/hour or more) decreased it by 25-30%. Additionally, regardless of intensity, 

rain led to an average speed reduction of 5.0–6.5%. Agarwal et al. utilized a four-year dataset comprising detector 

occupancy data and weather information to assess the effects of rain, snow, and pavement conditions on freeway traffic 

flow [19]. They observed that heavy rains (exceeding 0.25 inches/hour) and heavy snowfall (more than 0.5 inches/hour) 

resulted in capacity reductions of 10%-17% and 19%-27%, respectively, with speed decreasing by 4%-7% and 11%-

15%. Similarly, Abdel-Aty et al. conducted a comprehensive investigation into traffic characteristics in foggy conditions 

[20].  

Their findings indicated that reduced visibility caused a significant decline in speed and headway, with the standard 

deviation of speed and headway increasing compared to clear conditions. In recent years, scholarly interest has surged 

regarding the benefits that CAVs offer, as highlighted in studies [21–24]. To evaluate the efficiency of CAV technology, 

the research community has leaned on analyzing real-world CAV data or leveraging simulation techniques. The analysis 

of real-world data often includes studies from initiatives like the Safety Pilot Model Deployment, whereas simulations 

involve using specialized CAV simulation tools or traffic micro-simulation software. Given the nascent stage of CAV 

deployment, simulations have emerged as the dominant method for studying CAVs. An example of such research is by 

Kim et al., who explored the effects of CAV integration on freeway corridors in Virginia through simulations that 

incorporated a mix of Legacy Vehicles (LV), AV, and CAV [25]. 

Utilizing VISSIM for crafting models of driving behaviors for AVs and CAVs, researchers identified that the 

inclusion of AVs and CAVs led to an increase in road capacity by 29% and 91%, respectively, within a basic freeway 

testing environment. In scenarios involving freeway merges, the presence of AV and CAV technology was found to 

boost road capacity by 48% and 60%, respectively. Moreover, several studies have applied traffic micro-simulation tools 

like the Surrogate Safety Assessment Model (SSAM) provided by the Federal Highway Administration (FHWA) to 

assess the safety impacts of Connected and Autonomous Vehicles (CAVs) [24–29]. These studies have utilized dual-

stage calibration processes, yielding encouraging results. Nevertheless, the exploration of micro-simulation's utility in 

evaluating CAV safety remains relatively underexplored. For instance, Papadoulis et al. designed a decision-support 
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algorithm for the control of CAVs through the External Driver Model API in VISSIM. This algorithm enabled the 

longitudinal control, the monitoring of nearby vehicles, the identification of surrounding CAVs, and the execution of 

lateral manoeuvres adhering to freeway traffic management principles [29].  

Assessment of this algorithm with SSAM highlighted a notable enhancement in road safety attributable to CAV 

implementation, observable even at minimal market penetration levels. Specifically, reductions in forecasted traffic 

conflicts were recorded at 12-47%, 50-80%, 82-92%, and 90-94% for CAV market penetrations of 25%, 50%, 75%, and 

100%, respectively. investigated the effects of varying AV sharing ratios at different speeds on signalized intersection 

management, using TRANSYT and Vissim simulations [30]. Findings indicate that higher AV shares enhance traffic 

flow by optimizing traffic light timing, with the most effective flow occurring at a 100% AV share. Conversely, lower 

AV percentages disrupt traffic patterns. Additionally, traffic simulations at 20 km/h and 60 km/h present challenges, 

while speeds between 30 and 50 km/h in urban settings yield the most stable and predictable results. A study utilized 

traffic simulation to assess the impact of AVs on delay times between origin and destination (OD) [31]. They found that 

the integration of AVs notably alters traffic flow, with improvements becoming significant as the market penetration 

rate (MPR) of these vehicles increases. Ahmed et al. evaluated the cumulative-anticipative car-following (CACF) model 

for CAVs using VISSIM simulations, comparing it with traditional and cooperative adaptive cruise control (CACC) 

models [32]. The CACF model shows improved traffic throughput, reduced delays, and better travel times, especially 

effective in preventing traffic shockwaves and bottlenecks. 

Limited studies have investigated the impacts of CAVs and AVs on traffic systems, with a specific focus on safety 

performance under different weather conditions. For example, Lu et al. used the SUMO simulation platform, which 

particularly addresses the complexities involved in the mixed traffic flows of human-driven vehicles (HDVs), AVs, and 

CAVs [33]. By calibrating vehicle behavior parameters such as minimum gap, acceleration/deceleration capabilities, 

and desired time headway through a Kolmogorov-Smirnov test to understand how these vehicles interact under both 

sunny and snowy conditions. The study employs three surrogate safety measures: time to collision (TTC), Time-Exposed 

TTC (TET), and brake rate (BR), to assess real-time crash risk variations. Findings indicate that safety performance 

significantly improves in both weather conditions when CAVs and AVs are integrated into the traffic flow. Notably, the 

improvement in avoiding serious conflicts is more pronounced in snowy conditions, suggesting that AVs and CAVs 

offer substantial safety benefits under adverse weather. Additionally, the study revealed that as MPRs increase, the 

performance of braking behaviors varies, highlighting the dynamic interaction between vehicle types and penetration 

rates in traffic systems. Another study evaluated the traffic efficiency and safety of CAVs for a one-lane model in mixed 

traffic under adverse weather conditions [34]. The research introduces a unified performance index that quantifies 

overall traffic performance, a novel approach that combines metrics from single and multi-vehicle dynamics. 

Simulations indicate that increasing the market penetration rate (MPR) of CAVs significantly boosts both traffic 

efficiency and safety metrics. Notably, CAVs perform better in adverse conditions, suggesting they can substantially 

enhance traffic flow and safety during inclement weather. 

Understanding the behavior of CAVs during adverse weather is crucial for creating a safe and efficient transportation 

network. While microscopic simulation has been widely utilized to explore the implications of CAVs in real-world 

scenarios, existing studies predominantly focus on simple traffic configurations, such as single or multi-lane straight 

roads, and do not adequately represent the complexity of urban or interconnected networks. Furthermore, these studies 

tend to isolate operational aspects from safety impacts, which limits their applicability in complex transportation 

planning. Current literature lacks comprehensive analysis combining both operational efficiency and safety of CAVs 

within complex traffic networks during various weather conditions. This study aims to fill this gap by integrating these 

elements into a unified framework that evaluates CAVs performance in a more realistic and complex traffic setting. 

Specifically, the goal of this research is to understand how different adverse weather conditions affect the performance 

and safety of CAVs, thereby guiding the development of more effective CAV integration strategies. Unlike previous 

studies, this research utilizes simulation models to assess the impact of CAVs across more complex and realistic network 

configurations and different weather scenarios. By doing so, it not only addresses the limited scope of network 

complexity in earlier works but also merges operational and safety evaluations into a single, comprehensive study. This 

approach allows for a more detailed understanding of the potential and limitations of CAV technologies, highlighting 

their practical implications for urban transportation planning under varied environmental conditions. 

3. Research Methodology 

This part delineates the approach utilized to fulfill the main goal of this investigation, which is to assess the 

impacts of CAVs on traffic flow and safety across different weather scenarios. This study utilizes a simulation model 
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that assumes CAVs operate under ideal conditions without susceptibility to system errors or cyberattacks. This 

assumption aligns with common practices in initial CAV research, aimed at understanding the upper bounds of 

technology performance. It is important to note that while this simplifies the analysis, it might not encapsulate all 

real-world operational challenges. Figure 2 illustrates an overview of the methodology, elaborated upon in the 

following sections: 

 

Figure 2. Methodology framework 

3.1. The Microsimulation Platform 

After an extensive examination of available traffic micro-simulation tools and a thorough assessment of their 

strengths and weaknesses, PTV - VISSIM emerged as the preferred software for this research. PTV - VISSIM is 

renowned in the field of traffic micro-simulation, offering the capability to simulate and model diverse traffic elements, 

such as cars, buses, trucks, trams, bicycles, motorcycles, and pedestrians. Additionally, it can analyze traffic operations 

under different conditions, encompassing lane setups, traffic compositions, signal systems, and transit stations. 

3.1.1. VISSIM’s car-following model 

A car-following model is used to simulate how one vehicle follows another vehicle by simulating the following 

vehicle driver’s behavior. A vehicle is considered the following vehicle if it is determined by the front or the leading 

vehicle to adjust and keep a certain speed to avoid a collision. VISSIM uses a psycho-physic model developed by 

Wiedemann (1974), which is suitable for urban traffic. Its last improvement in (1999) is the Wiedemann 99, which is 

mainly ideal for interurban (motorway) traffic. The model is called a psychophysical car-following model because it 

combines psychological aspects and driver perception restrictions. Figure 3 shows the driver perception thresholds and 

the regimes formed by these thresholds [35]. 
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Figure 3. A typical car-following behavior of a vehicle [35] 

Where AX is the desired distance between two stationary vehicles, BX is the minimum following distance, which is 

considered a safe distance by drivers. CLDV are the points at short distances where drivers perceive that their speeds 

are higher than their lead vehicle speeds; SDV are the points at long distances where drivers perceive speed differences 

when they are approaching slower vehicles; and OPDV are the points at short distances where drivers perceive that they 

are traveling at a slower speed than their leader. SDX is the maximum following distance, indicating the upper limit of 

the car-following process. The basic idea of this model is that the driver can be in one of four regimes. The first is the 

free driving regime, where no preceding vehicles are observed, allowing the driver to travel freely without their 

influence. In this regime, the driver aims to reach and maintain his or her desired speed; however, due to imperfect 

throttle control, the driver’s speed will oscillate around the desired speed.  

The second is the approaching regime, which occurs when the driver approaches a slower preceding vehicle. Here, 

the driver will decelerate until the difference in speed is zero to reach the desired safety distance. The third, the 

deceleration following regime, involves the driver following the preceding vehicle without conscious acceleration or 

deceleration to maintain the safety distance, but again due to imperfect throttle control, the difference in speed will 

oscillate around zero. Lastly, the braking regime occurs when the distance falls below the desired safety distance, if the 

preceding vehicle changes its speed suddenly or a third vehicle changes its lane in front of the vehicle, requiring the 

driver to apply medium to high deceleration rates to regain the safety distance. Drivers switch between these driving 

regimes based on certain thresholds that combine speed difference and distance. A vehicle’s acceleration is influenced 

by its speed, speed difference, distance to the preceding vehicle, and the characteristics of an individual driver because 

each driver has his or her own perception of safety distance, desired speed, and speed difference. 

3.2. Base Model Development 

The initial step in VISSIM simulation involves network coding. Specifically, the VISSIM base model was established 

to be utilized in subsequent analyses or scenarios. The construction of speed profiles, coding of vehicle routing, coding 

of conflict points and priority rules, entering of speed changes, and inputting of vehicle information are among the tasks 

undertaken. 

3.3. Study Area Selection 

In the quest for a suitable study site, an aerial image of Sharjah's road network in the UAE was scrutinized. After 

thorough assessment, a freeway stretches from the junction of E88 and E311 to Wasit Square emerged as the chosen 

area for this investigation, depicted in Figure 4. The designated segment spans approximately 3 kilometers and comprises 

eight entry and exit ramps, along with six points for vehicle entry. Utilizing an aerial image, we gauged lane dimensions 

and lengths for merging, diverging, and connecting areas, shaping the mainline corridor accordingly. This specific 

section offers an optimal setting for evaluating how connected and autonomous vehicles influence traffic flow and safety 

across diverse weather conditions. 
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Figure 4. Study area layout (Sharjah, UAE) 

3.4. Data Collection 

Traffic count data was collected during the morning and afternoon peak periods for a duration of two days within 

the study area to enhance the accuracy of the microsimulation model. Hourly volumes were obtained by aggregating the 

counts taken at 15-minute intervals. The highest vehicular volume was observed during the 60-minute intervals from 

7:00-8:00 AM and 5:00-6:00 PM, representing the morning and afternoon commuting peaks, respectively. The collected 

data was utilized to develop a calibration dataset and a validation dataset.  

3.5. Simulation Parameters Selection 

Since no observational data was available, VISSIM suggested that CAVs could be modeled internally to a certain 

extent. PTV VISSIM employs two car-following models, specifically Wiedemann 74 and Wiedemann 99, to simulate 

the driving behaviors of Heavy-Duty Vehicles (HDVs) and Connected Autonomous Vehicles (CAVs) [36]. The model 

Wiedemann 99 was selected for our study focusing on a freeway segment, following VISSIM's guidance for achieving 

enhanced accuracy. This model necessitated the calibration and adjustment of numerous parameters to accurately 

replicate typical CAV driving patterns. These parameters included standstill distance, following distance, longitudinal 

oscillation, perception thresholds for following, both negative and positive speed differences, the effect of speed on 

oscillation, oscillation during acceleration, acceleration from a standstill, general acceleration, and the deactivation of 

stochastic behaviors. The values of these parameters were adjusted on Table 1 based on the findings from previous 

studies and the CoExist project [10, 37–40]. Although each study seems to have made its own adjustments to the default 

values, they all have something in common. For example, they will allow the CAV to maintain a closer gap with the 

front car, respond quicker and more smoothly, observe more vehicles, and consider cooperative lane changing. The 

different versions of VISSIM can be the reason for some of the discrepancies. Different weather conditions were 

simulated in VISSIM by adjusting several key parameters that affect driving behavior and vehicle interactions. For each 

weather condition—Light Rain, Heavy Rain, and Fog—factors such as safe distance, following variability, and 

sensitivity to speed changes and vehicle headway were modified to reflect the impact of weather on driving conditions. 

The internal models in VISSIM 21 were altered based on the recommendations from PTV Group and the literature. The 

simulation lasts 4200 seconds, including a 900-second warm-up period. The analysis is based on data obtained from 900 

to 4200 seconds. Furthermore, the vehicle input is made up of 93% passenger cars and 7% heavy trucks based on the 

distribution obtained from the data. 
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Table 1. CAV modified driving parameters used in this study benchmarking the literature 

Parameter Default 
Hranac et 

al. [10] 

ATKINS 

[38] 

Asadi et al. 

[39] 

He et al. 

[40] 
This study 

CC0 (m) 1.5 0.5 0.75 1-1.5 1.25 1 

CC1 (sec) 0.9 0.5 0.45 0.5-1.5 0.5 0.5 

CC2 (m) 4 0 2 0 3 0 

CC3 (sec) -8 - - -8 -12 -8 

CC4 (m/s) -0.35 0 -0.1 0 -0.1 0 

CC5 (m/s) 0.35 0 0.1 0 0.1 0 

CC6 (rad/s) 11.44 0 0 0 0 0 

CC7 (m/s2) 0.25 0.45 0.25 0.15-0.45 0.25 0.25 

CC8 (m/s2) 3.5 3.9 3.5 3.3-3.9 3.5 3.5 

CC9 (m/s2) 1.5 - - 1.3-1.9 1.5 1.5 

Look-ahead distance 0 to 250 m - - 0–800 m 0-500 m 0-500 

Look-back distance 0 to 150 m - - 0-800 m 0-500 m 0-500 

Observed vehicles 2 10 2 10 10 10 

Smooth close-up behavior No - - Yes yes yes 

Accepted deceleration, trailing vehicle (m/s2) -1 - - - -1 -1 

Minimum headway, front/rear (m) 0.5 - - 0.2-0.7 0.37 0.4 

Safety distance reduction factor 0.6 - - 0.3-0.8 0.45 0.5 

Maximum deceleration for cooperative braking (m/s2) -3 - - - -4 -5 

Cooperative lane change No - - Yes yes yes 

Maximum speed difference (km/h) 3 - - 10.8 3 2 

Overtake same lane vehicle, minimum lateral distance standing (m) at 0 km/h 1 1 1 1 0.75 0.75 

Overtake same lane vehicle, minimum lateral distance driving (m) at 50 km/h 1 1 1 1 0.75 0.75 

3.6. Calibration and Validation 

The procedure for the model Calibration and Validation is shown in Figure 5. 

3.6.1. Model Calibration 

In transportation research, some driver behavior metrics significantly impact the performance of mixed traffic but 

are impossible to measure explicitly in the field. Therefore, adjustments must be made to simulate on-field conditions 

accurately. To achieve this goal, the microsimulation model must be calibrated to reflect existing or potential field 

conditions accurately. Before commencing the calibration process, it is essential to establish calibration objectives 

tailored to the research type and available data. The typical calibration procedure entails identifying the model 

parameters for calibration, choosing the measures of effectiveness (MOEs) and validation data, defining validation 

criteria and objectives, and iteratively adjusting the parameters until the model outputs closely align with real-world 

traffic conditions or fulfill the validation criteria. VISSIM offers a range of parameters that are adjustable during the 

calibration process. 

The impact of VISSIM parameters on model outcomes can be complex and varied. These parameters are organized 

by their nature, for instance, Driving Behavior Parameters, desired speed, and rates of acceleration and deceleration. For 

the purpose of calibrating the microsimulation model, traffic volume was selected as the key performance indicator, 

given its availability in the gathered data set. To adjust the traffic volume figures, the GEH (Geoffrey E. Havers) statistic 

was applied. 
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Figure 5. Model Calibration & Validation 

Although the GEH formula is not technically a statistical test, it serves as a widely recognized observational tool in 

the realm of traffic engineering, developed to handle diverse traffic volume datasets and provide a consistent tolerance 

for volume fluctuations. The calculation of the GEH statistic follows a specific formula: 

𝐺𝐸𝐻 = √
2(𝑀−𝐶)2

𝑀+𝐶
  (1) 

In this context, “M” represents the simulated traffic volume (vehicles per hour, vph) produced by the Simulation 

Model, while “C” denotes the actual observed traffic volume (vph) in the real world. It is essential to calculate the GEH 

statistic for every mainline link within the simulation. The assessment of how well the simulated traffic volumes match 

the actual volumes is a critical phase in the model's calibration, with the GEH statistic frequently being the tool of choice 

for this evaluation. The calibration scope of the microsimulation model encompasses all points of entry and exit, 

requiring the computation of GEH values for each observed traffic volume. These GEH values act as indicators of the 

congruence between the modeled and real-world traffic volumes. Specifically, the GEH statistic is categorized into three 

distinct ranges: GEH<5 indicating a good match, GEH between 5 and 10 signifying a potentially questionable match, 

and GEH>10 indicating a poor match. Following the Federal Highway Administration (FHWA) guidelines, this study's 

calibration process adhered to the standards outlined in Table 2 [41], effectively achieving a satisfactory alignment 

between the simulated and actual traffic volumes. 

Table 2. Calibration criteria [41] 

Criteria Target 

Within 15%, for 700 vph < flow < 2,700 vph > 85% of cases 

Within 100 vph, for flow < 700 vph > 85% of cases 

Within 400 vph, for flow > 2,700 vph > 85% of cases 

Sum of all link volumes Within 5% of the sum of all link counts 

GEH < 5 for individual link volumes > 85% of cases 

GEH for the sum of all flows GEH < 4 for the sum of all link counts 
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The calibration area of the microsimulation model should include all entry and exit points, and the GEH values for 

each traffic volume should be calculated. The GEH values serve as a measure of the fit between the simulated and 

observed traffic volumes. Specifically, GEH values are categorized into three ranges: GEH<5 for a good fit, GEH 

between 5 and 10 indicating a potentially problematic fit, and GEH>10 for a poor fit. Following guidelines from the 

Federal Highway Administration (FHWA), the calibration results in this study adhered to the criteria outlined in Table 

2. The calibration process successfully achieved a satisfactory fit between the simulated and observed traffic volumes. 

3.6.2. Model Validation 

In the process of model validation, the objective is to ensure that the calibrated model's performance corresponds to 

actual field measurements that were not employed during the calibration. In addition to the MOEs used during 

calibration, the validation dataset may comprise data from other model entities (such as travel time corridors) or 

observations of the same entities under varying traffic conditions or at different times, or even involve the use of different 

MOEs for the same entities (such as average queue length) [42]. The model is deemed "valid" if the selected MOE or 

other observations from the unused field dataset is sufficiently close to the simulation value. If this is not the case, driver 

behavior parameter tuning may be necessary. The study's results indicated that the volume calibration outcomes fulfilled 

the criterion using the same criteria as presented in Table 2. Additionally, over 90% of freeway or arterial links exhibited 

a GEH value of less than 5, exceeding the FHWA's acceptance threshold of 85%. 

3.7. Penetration Rate 

This analysis proposes a set of 21 scenarios, each corresponding to a different weather condition (Clear, Light Rain, 

Heavy Rain, and Fog), and encompassing various combinations of RV and CAV compositions. To accurately capture 

the effect of CAVs on traffic dynamics under conditions of low CAV prevalence, the first scenario following the base 

scenario (which assumes no CAVs) involves a 5% CAV composition, followed by a 5% increment in each successive 

scenario, until reaching 100% CAV prevalence. Mixed traffic is loaded onto both the mainline and on-ramp in each 

scenario. 

3.8. Number of Simulation Runs 

To ensure comprehensive analysis of all possible impacts, a selection of variables will be considered, including 21 

penetration rates, four distinct weather conditions, and the implementation of platooning in two different cases. This 

will result in a total of 168 simulation scenarios. Each scenario will be simulated ten times to account for stochastic 

variations and obtain stable, statistically significant results, resulting in a total of 1680 runs. 

3.9. Traffic Operation Analysis 

Given the broad influence of CAVs on traffic dynamics, understanding their effects on traffic operations is crucial. 

To thoroughly assess their potential impacts and gain a comprehensive understanding of highway networks' future, four 

key performance indicators were chosen. These encompass average delay, indicating network congestion levels; average 

speed, reflecting network mobility; travel time, representing total vehicle traversal time; and average number of stops, 

indicating frequency of vehicle halts. 

3.10. Traffic Safety Analysis 

In this study, the Surrogate Safety Assessment Model (SSAM) is used to analyze the safety impacts of CAVs. This 

model, created and validated by the Federal Highway Administration (FHWA) of the United States Department of 

Transportation, applies various algorithms to detect traffic conflicts from vehicle trajectory data [43]. After each 

simulation run, VISSIM produces a vehicle trajectory file, which can be obtained through a specific selection in its user 

interface. This file contains information on every vehicle participating in the simulation. Earlier research conducted by 

the FHWA has established a conflict-to-crash ratio of approximately 20,000 to 1, based on the relationship identified 

between crashes and conflicts [43]. Leveraging this research, the equation below is used to estimate the number of 

accidents [43]: 

𝐶𝑟𝑎𝑠ℎ𝑒𝑠

𝑌𝑒𝑎𝑟
= 0.119 × (

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠

𝐻𝑜𝑢𝑟
)
1.419

  (2) 

4. Results and Discussion 

4.1. Average Speed Results 

Figure 6 illustrates the network's average speed across various weather conditions and levels of CAV penetration. 

Regardless of weather conditions, the data reveals a consistent increase in average speed with higher CAV penetration 

rates. For instance, in clear weather, speeds range from an initial 24 km/h to a peak of 38 km/h at 100% CAV penetration 
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rate. Conversely, heavy rain shows the lowest initial speed at 17.6 km/h, rising to 32 km/h at full CAV penetration. 

Notably, heavy rain sees the most substantial speed improvement, with a 100% CAV penetration resulting in an 82% 

increase compared to clear conditions. Similar improvements are observed in fog (65%), light rain (43%), and clear 

weather (55%) at full CAV penetration. These findings underscore the significant impact of CAVs on network speed, 

particularly in adverse weather, attributed to their advanced technologies facilitating real-time information sharing and 

informed decision-making to mitigate congestion and reduce travel time. 

 

Figure 6. Average speed results of the network under different weather conditions 

Table 3 displays the outcomes of an ANOVA analysis conducted on the network's speed outcomes across various 

weather conditions. This statistical test evaluates whether notable variances exist among the speed outcomes for distinct 

weather conditions. The findings indicate a noteworthy contrast in the network's speed outcomes across diverse weather 

conditions. 

Table 3. ANOVA test for speed results in the network 

Source of Variation SS df MS F P-value F crit 

Between Groups 442.7369 3 147.579 15.3537 5.6E-08 2.718785 

Within Groups 768.9559 80 9.611949 - - - 

4.2. Average Delay Results 

Figure 7 illustrates the variations in average wait time and the alteration in this average wait time across various 

weather scenarios at different levels of connected and autonomous vehicle (CAV) integration. The average wait time, 

expressed in seconds, serves as a gauge for the congestion level vehicles encounter within the network. The alteration 

in average wait time reflects the decrease in wait time relative to a baseline scenario with no CAV integration. Analysis 

of Figure 7 reveals a trend where the average wait time diminishes with an increase in CAV integration, regardless of 

weather conditions. For example, in clear weather conditions, the average wait time is reduced from 226 seconds with 

0% CAV integration to 112 seconds at full (100%) CAV integration. In conditions of heavy rainfall, the average wait 

time is cut down from 336 seconds at 0% CAV integration to 128 seconds at 100% CAV integration. This decrease in 

average wait time is particularly notable at higher levels of CAV integration, showing reductions between 25% and 

50%. The findings also demonstrate the influence of weather on the network's average wait time, with heavy rain and 

fog causing the most significant delays at all levels of CAV integration. For example, during heavy rain, delays are 

approximately 50% longer compared to clear weather conditions at any level of CAV integration. This is due to 

diminished visibility and the weather's effects on road conditions, hindering vehicles' optimal speed. Furthermore, the 

data indicates that wait time reductions are more pronounced under poor weather conditions, with heavy rain and fog 

leading to the greatest decreases in wait time. Specifically, in heavy rain, the adjustment in average wait time ranges 

from a 27% reduction at 5% CAV integration to a 62% reduction at full integration. This suggests that CAV utilization 

could markedly mitigate the adverse effects of poor weather on traffic congestion. 
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Figure 7. Average Delay results of the network under different weather conditions 

Table 4 outlines the outcomes of the ANOVA analysis concerning delay metrics within the network. These findings 
indicate a statistically significant variation in delay metrics across varying weather conditions. 

Table 4. ANOVA test for delay results in the network 

Source of Variation SS df MS F P-value F crit 

Between Groups 42436.82 3 14145.61 11.312 2.91E-06 2.718785 

Within Groups 100032 80 1250.4 - - - 

4.3. Average Number of Stops Results 

Figure 8 illustrates the variation in the average number of stops across different weather scenarios at varying rates 
of CAVs penetration. The data reveal a decline in the average number of stops as the penetration rate of CAVs escalates. 
With no CAVs present, the average stops fluctuated between 226 seconds in clear conditions to 336 seconds during 

heavy rainfall. Conversely, with full CAV integration (100% penetration rate), the numbers dropped to 112 seconds in 
clear conditions and to 127 seconds amidst heavy rainfall. The decrease in stop frequency is credited to the enhanced 
communication and synchronization among CAVs, which diminishes conflicts and halts at intersections. Furthermore, 
Figure 8 underscores that harsh weather conditions elevate the average stop count.  

 

Figure 8. Average number of stops results of the network under different weather conditions 
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For example, in clear weather, stops varied from 112 seconds to 226 seconds, but under heavy rain, they ranged from 

127 seconds to 336 seconds. Adverse weather impacts driving conditions by reducing visibility and altering road 

surfaces, necessitating slower speeds, longer following gaps, and extended stopping distances. Table 5 presents the 

findings from the ANOVA analysis aimed at evaluating how varying weather scenarios and levels of CAVs penetration 

impact the frequency of stops within the network.  

Table 5. ANOVA test for the number of stops results in the network 

Source of Variation SS df MS F P-value F crit 

Between Groups 813.7723 3 271.2574 7.093893 0.000275 2.718785 

Within Groups 3059.053 80 38.23816 - - - 

The analysis reveals a notable influence of both elements on the stop frequency, as evidenced by an F statistic of F= 

7.094 and a P-value = 0.000275. This demonstrates that the weather and the rate of CAVs integration are crucial 

determinants affecting the network's efficiency regarding stop occurrences. 

4.4. Travel Time Results 

Figure 9 illustrates a decline in travel time with an increase in CAVs penetration levels. In conditions of clear weather, 

travel time stands at 1338 hours with no CAV penetration, plummeting to 65 hours (a reduction of 95% at full (100%) 

CAV penetration. In scenarios of heavy rain, initial travel times of 1436 hours at 0% CAV penetration decrease to 58 

hours at full penetration, marking a 96% decline. This data also highlights that adverse weather conditions such as heavy 

rain and fog significantly extend travel times over those experienced in clear or light rain conditions.  

 

Figure 9. Travel time results of the network under different weather conditions 

Table 6 details the outcomes of an ANOVA test conducted on the travel time data within the network, aiming to 

verify the presence of statistically significant variances in travel times under different weather conditions. With a P-

value of 0.823, surpassing the 0.05 threshold for significance, the analysis does not support rejecting the null hypothesis, 

indicating no notable differences in travel times across the assessed weather conditions. 

Table 6. ANOVA test for travel time results in the network 

Source of Variation SS df MS F P-value F crit 

Between Groups 118691 3 39563.67 0.302702 0.823352 2.718785 

Within Groups 10456144 80 130701.8 - - - 

4.5. Number of Accidents Results 

Figure 10 displays the frequency of accidents within a network across diverse weather scenarios and at different 

levels of connected and automated vehicles (CAVs) integration. The data demonstrates a clear trend: with a rise in the 

penetration rate of CAVs, there is a consistent reduction in accident occurrences under every type of weather condition. 
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Figure 10. Number of accidents results of the network under different weather conditions 

The highest number of accidents occurred in foggy weather conditions, followed by heavy rain, light rain, and clear 

weather conditions. This is expected as poor weather conditions can impair driver visibility, road surface friction, and 

vehicle maneuverability, making driving more challenging and increasing the likelihood of accidents. The decrease in 

the accidents’ number is more significant in foggy and heavy rainy weather conditions, indicating that CAVs may be 

more effective in improving safety under challenging weather conditions. Table 7 outlines the outcomes of the ANOVA 

analysis regarding accident frequencies within the network, highlighting discernible disparities in accident rates across 

various weather scenarios and levels of CAVs deployment. 

Table 7. ANOVA test for number of accidents results in the network 

Source of Variation SS df MS F P-value F crit 

Between Groups 4.46E+08 3 1.49E+08 15.02465 7.62E-08 2.718785 

Within Groups 7.92E+08 80 9904921 - - - 

An F-value of 15.02 alongside a p-value of 7.62E-08 underscores that the observed variations in average accident 

numbers among the groups are statistically significant, implying these discrepancies are unlikely to be the result of 

random variation. 

5. Comparison between RVs and CAVs 

The behavior of various vehicle types was observed to determine any variations in average speed and average delay 

performance between RVs and CAVs. These findings are addressed in the following sections for each weather condition: 

5.1. Average Speed Results 

Figure 11 presents the change in average speed under different weather conditions and with different percentages of 

CAVs penetration rate as compared to RVs. The results show that CAVs can improve traffic flow and reduce travel 

time, especially in adverse weather conditions. Under clear weather, there is a negligible difference in the average speed 

of CAVs and RVs, regardless of the CAVs penetration rate. However, in light rain, CAVs' average speed is slightly 

better than RVs, with an improvement ranging from 1.9% to 4.5% depending on the CAVs penetration rate. In heavy 

rain, the difference is more significant, with an improvement ranging from 19.4% to 53.5% depending on the CAVs 

penetration rate. The outcome of this study suggests that CAVs perform better than RVs in wet weather, which could 

be attributed to the enhanced perception and control capabilities of CAVs in such conditions. In foggy weather, CAVs' 

average speed is generally better than RVs, with an improvement ranging from 4.3% to 27.9% depending on the CAV 

penetration rate. Foggy weather poses significant challenges to human drivers due to reduced visibility and the increase 

in reaction time. CAVs, on the other hand, rely on sensors and cameras that can see through the fog, providing a safer 

and more efficient driving experience. Moreover, the results indicate that as the penetration rate of CAVs increases, the 
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improvement of the average speed of CAVs over RVs becomes more substantial. For instance, at a 5% CAVs penetration 

rate, the difference in average speed is minimal. However, at a 95% CAVs penetration rate, the average speed of CAVs 

is 17.8% to 26.5% better than RVs, depending on the weather condition. 

   

                    a) Clear                                                               b) Light Rain 

   

                                          c) Heavy Rain                                           d) Fog 

Figure 11. Average speed results for RVs and CAVs under different weather conditions 

5.2. Average Delay Results 

Figure 12 compares the average delay of RVs and CAVs under different weather scenarios. The average delay is 

expressed as a percentage of the delay experienced by RVs. The scenarios considered are Clear, Light Rain, Heavy Rain, 

and Fog, with varying levels of precipitation from 0% to 100%. 

The results indicate that CAVs generally experience less delay than RVs under all weather conditions. The difference 

in delay between CAVs and RVs increases with increasing precipitation levels. Under clear conditions, the average 

delay for both CAVs and RVs is not available. Under light rain conditions, CAVs experience less delay than RVs, with 

the average delay for CAVs being 1% to 5% less than RVs. The difference in delay between CAVs and RVs becomes 

more significant under heavy rain conditions, with CAVs experiencing 26% to 51% less delay than RVs. Similarly, 

under foggy conditions, CAVs experience 2% to 30% less delay than RVs. 

The findings indicate a notable superiority of CAVs (Connected and Automated Vehicles) over RVs (Regular 

Vehicles) in minimizing delays, particularly during challenging weather scenarios. The disparity in delay times between 

CAVs and RVs is most pronounced during conditions of heavy rainfall, with fog and light rain following in terms of 

impact. This evidence suggests that CAVs are significantly more adept at lessening the effects of unfavorable weather 

on traffic flow. 
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                    a) Clear                                                               b) Light Rain 

   

                                          c) Heavy Rain                                           d) Fog 

Figure 12. Average delay results for RVs and CAVs under different weather conditions 

6. Summary 

The study's findings reveal significant improvements in various performance metrics of traffic networks with 

increasing integration of CAVs, particularly under diverse weather conditions. The analysis demonstrates that with 

CAVs, average speeds across the network are notably higher. Specifically, in heavy rain where visibility and road 

friction are compromised, CAVs' advanced sensing and processing capabilities allow them to adapt and maintain safer 

and more consistent speeds than human-operated vehicles. This not only reduces travel time but could also lead to a 

decrease in vehicular emissions due to steadier speeds, illustrating a direct environmental benefit. Furthermore, the 

reduction in average delays across all weather conditions highlights CAVs' potential to enhance traffic flow efficiency. 

By leveraging real-time data and advanced algorithms, CAVs appear to optimize routing and reduce idle times. This 

efficiency in traffic management could result in significant economic savings, with less fuel wasted and more productive 

time for commuters. The analysis also indicates a decrease in the average number of stops, which is particularly crucial 

for urban traffic networks where frequent stopping contributes to congestion and increased emissions. CAVs' ability to 

communicate and synchronize movements may reduce the frequency of stops, likely leading to improved fuel economy 

and reduced wear on vehicles, which could translate to lower maintenance costs and a reduction in the overall carbon 

footprint of the transportation sector.  

Additionally, by reducing stop frequency, which is often a necessity on slick surfaces during rainy conditions, 

CAVs contribute to a more constant and safer traffic movement, an element that is crucial for maintaining traction and 

minimizing collision risks. Travel time reductions are substantially highlighted in the integration of CAVs, with an 

extended impact during periods of heavy rain and fog. CAVs' continuous adjustments to fluctuating road conditions 

suggest a heightened reliability in travel time estimations and the potential to shorten the total duration of travel, which 

is particularly beneficial when adverse weather would otherwise extend it. Lastly, the decrease in the number of 

accidents with higher CAV integration is perhaps the most compelling outcome, indicating a transformative impact on 
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road safety. The study suggests that the implementation of CAVs could play a crucial role in preventing accidents, 

particularly in challenging weather conditions such as fog, where human drivers face severe limitations. The integration 

of CAVs could lead to lower health care costs associated with traffic accidents, lower insurance premiums, and most 

importantly, save lives. The data presents a compelling case for the advantages of CAVs over RVs, especially under 

adverse weather conditions. The increased average speeds and reduced delays attributable to CAVs suggest that their 

sophisticated algorithms are effective in mitigating the impact of weather on driving conditions, thereby enhancing 

network operation and safety. Essentially, CAVs demonstrate a superior ability to maintain traffic flow and safety in 

weather conditions that typically impair human driving capabilities. Although direct comparisons to previous studies 

are limited due to the distinct methodology and outputs of this study as well as the limited literature, the findings verify 

the existing literature that points to the efficacy of CAVs in enhancing transportation network performance and safety. 

Consistent with studies like those by Hou et al., which conclude that CAV deployment improves network safety and 

efficiency [34], this study further supports the role of CAVs in improving traffic management, particularly in 

challenging weather conditions. This parallel in findings emphasizes the potential of CAVs to significantly mitigate 

the adverse effects of weather on traffic systems, reinforcing the imperative for continued exploration and integration 

of CAV technologies. 

7. Conclusions 

This study represents a pioneering effort to examine, for the first time, the impact of Connected and Autonomous 

Vehicles (CAVs) on traffic operations and safety under a variety of weather conditions. It utilizes VISSIM for 

microscopic traffic simulation and the Surrogate Safety Assessment Model (SSAM) for safety evaluations. The study 

focused on a specifically selected corridor in Sharjah, UAE, analyzing key performance indicators such as average 

speed, delay, the number of stops, and overall travel time. The outcomes demonstrated that the incorporation of CAVs 

significantly boosts average speeds and reduces travel times, delays, and stops, notably in challenging weather 

conditions.  

The findings also underscored the ability of CAVs to communicate and coordinate with each other, thus reducing 

conflicts and stops at intersections, leading to smoother traffic flows. Moreover, the investigation revealed that weather 

conditions play a significant role in network performance, with conditions like heavy rain and fog causing the greatest 

increases in delays and stops. Adverse weather was found to lower driving speeds and necessitate greater following and 

stopping distances, contributing to increased congestion and delays. Nevertheless, the research identified that CAVs 

have the potential to alleviate the impacts of varying weather on traffic congestion, and to decrease the frequency of 

stops, delays, and travel times. The insights from this study are invaluable for urban planners and policymakers, offering 

a glimpse into the advantages of deploying CAVs to enhance traffic efficiency, particularly during adverse weather 

conditions. The findings and discussions from this research pave the way for further investigations and future research 

recommendations as follow: 

 Explore the effects of various CAV technologies: The current study examined the influence of CAVs on traffic 

efficiency without delving into the distinct technologies behind CAVs. Future studies could delve into how specific 

CAV technologies, like platooning and cooperative adaptive cruise control, affect traffic efficiency across a range 

of weather scenarios and levels of technology adoption. 

 This study underscores the importance of future investigations into dynamic traffic demand and complex road 

geometries to deepen our understanding of CAVs' effects on real-world traffic operations, safety, and efficiency. 

 Evaluate the effects of CAVs on emissions and energy use: The present research concentrated on how CAVs 

influence traffic flow. Future research should explore the effects of CAVs on emissions and energy usage, 

including their potential environmental advantages, across various weather scenarios and adoption levels to help 

in developing sustainable urban planning. 

In conclusion, it is important to acknowledge key limitations in our study that stem from foundational assumptions 

made about the behavior of CAVs and the simulation models used to assess their impact. Firstly, assuming that CAVs 

operate ideally without facing real-world challenges like system errors or cyberattacks might not fully reflect their 

practical vulnerabilities. Secondly, using modified VISSIM models to simulate CAV behavior, although innovative, 

lacks empirical validation and could skew results toward favorable outcomes. Future research should focus on 

integrating real-world data and refining simulation approaches to provide a more accurate assessment of CAV 

capabilities and limitations. Additionally, the study did not extensively test alternative parameter sets for the VISSIM 

models used, which is a notable limitation. The parameters were selected based on literature recommendations, but their 

impact on results through sensitivity analysis was not explored. Future studies should include detailed sensitivity 

analyses to better determine the dependency of findings on model parameters. 
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