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Abstract 

This comprehensive study analyzes the use of crushed glass as both fine and coarse aggregate in concrete, as well as the 

prediction accuracy of Artificial Neural Networks (ANN). The primary objectives are to understand the interactions 

between concrete’s constituents and to assess the accuracy of ANN models in predicting concrete’s mechanical and 

physical properties. This is achieved using a two-decade experimental results dataset of concrete’s compressive and tensile 

strengths, slump, density, and the corresponding mix design proportions, including waste glass aggregate. A series of 70 

concrete samples were carefully built and tested, with compressive strengths varying from 12 to 71 MPa and glass 

aggregate percentages ranging from 0-100%. These samples served as the basis for the creation of an input dataset and 

ANN targets. The ANN model underwent intensive training, validation, testing, and statistical regression analysis. The 

ANN models are exceptionally accurate, with a continuously low error margin of roughly 2%, highlighting their usefulness 

in matching experimental and predicted results. Validation techniques highlight the models' dependability, with 

consistently high coefficients of determination (R-values), including 0.99484, demonstrating their robustness in replicating 

complicated concrete properties. The data analysis shows a unique pattern, with optimum glass aggregate percentages in 

the range of 10–20%. Beyond this range, there is a noticeable decline in concrete properties. Finally, the study confirms 

the efficacy of ANN in predictive modeling while also validating the potential of crushed glass to replace natural aggregates 

in concrete. 
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1. Introduction 

The construction industry, a crucial driver of economic growth, is currently facing two interconnected challenges: 

resource scarcity and environmental degradation. Large quantities of solid and non-biodegradable waste, including tens 

of millions of tons of waste glass, are worsening these problems, hence the need for breakthrough ideas in waste disposal 

management. Waste material recycling practices are among the most important sustainable methods. Particularly 

noteworthy in this regard is the application of crushed glass as an alternative to conventional aggregates for concrete 

manufacture, a possible solution that addresses both waste disposal and scarcity challenges [1, 2]. The recent endeavors 

of the industry show an episodic approach to implementing modern solutions that are not only solving environmental 

problems but also developing sustainable building construction through innovative practices. There are properties 

inherent in broken glass resulting from bottles and other items that have made it a more desirable substitute for concrete. 
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Its native toughness, strength of density, and angular character make it perfectly suitable for operation, both as fine 

aggregate and as usable. Moreover, the different colors of broken glass offer an aesthetic value to concrete, rendering it 

applicable for wider use in construction projects [3–5]. The incorporation of crushed glass in concrete as a recycled 

material also eliminates the adverse impact on nature caused by disposing of glass wastes in landfills and avoids 

dependency on natural aggregates, reflecting some basic tenets inherent in sustainable construction practices. By 

utilizing reused materials in construction, a position of forward-looking behavior is reflected in addressing ecological 

challenges within the framework of sustainable and responsible building practices. The incorporation of recycled glass 

powder (RGP) and styrene-butadiene rubber as constituents in concrete symbolizes this pledge [6]. 

Over the last two decades, considerable research has been carried out to investigate the factors that influence the 

mechanical and physical performance of concrete made with waste glass aggregates, focusing on the compressive and 

tensile strength alongside other physical properties such as slump and density at various mixes containing different 

coarse and fine aggregate glass percentages from 0% to 100%. A detailed analysis was performed to investigate the 

mechanical properties of concrete pavements containing waste glass and found no significant reduction in the 28-day 

compressive and split-tensile strengths up to a 10% replacement dosage of fine aggregate with glass. Glass replacement 

beyond 10% led to reduced mechanical strengths [7]. Research was conducted to study the properties of concrete by 

replacing 0–60% coarse aggregate with crushed glass. This replacement did not have a significant effect on the properties 

of fresh concrete; however, the values of compressive strength declined with increasing crushed glass content, with 60% 

crushed glass replacement resulting in a 49% decrease in compressive strength [8]. Also, the effects of replacing sand 

with glass aggregate on the properties of alkali-activated mortar were studied. It was observed that the workability of 

the mortar increased with higher glass content due to its lower absorption compared to sand. The compressive strength 

decreased slightly by 7% at a 100% ratio [9]. The use of recycled waste glass as sand replacement in concrete at 0–

100% replacement ratios in three concrete grades: 30, 45, and 60 MPa, was studied. The fresh density decreased with 

increasing glass content and increasing w/c ratio. On the other hand, higher-grade concrete mixtures with increased 

cement content have a higher density. No clear trend was observed in slump values, which is attributed to two opposing 

actions: the sharp edges and angular shape of crushed glass would reduce the slump and, at the same time, the 

impermeable smooth surfaces of glass [10]. Another study was carried out to study the effects of using crushed waste 

glass as replacements for fine and coarse aggregate in concrete at replacement ratios of 0–100% in steps of 25%. 

Concrete with a 25% aggregate replacement ratio showed almost no change in compressive strength, while concrete 

with glass ratios of 25–100% showed a significant reduction in compressive and tensile strengths. The workability of 

concrete containing waste glass showed a minimal decrease, which was attributed to the angular geometry of the waste 

glass aggregate [11]. 

An experimental study was conducted to determine the properties of concrete in which sand was replaced with 20–

60% crushed waste glass. Workability decreased significantly with an increase in the quantity of recycled glass. In 

addition, at a 60% replacement ratio, the results observed a marginal reduction in strength [12]. A further experimental 

study was carried out on replacing fine aggregates with waste glass powder at 0–30% ratios by weight at 10% increments 

for 20 MPa-grade concrete. At a 10% replacement ratio, a marginal increment in the 28-day compressive strength was 

observed [13]. 

A research study used waste glass cullet as a partial replacement for coarse aggregate in concrete at ratios of 10–

30% by weight. The substitution caused declines in the compressive strength that became significant with a high 

replacement ratio, with optimum compressive strength achieved at a 10% replacement ratio. The slump values showed 

a tendency to increase with an increase in glass aggregate [14]. Another study used recycled waste glass in proportions 

of 0–100% by weight to substitute sand in a 20 MPa-grade concrete mixture. The slump values showed a reduction 

tendency with increasing waste glass content. The compressive strength of concrete declined for glass contents of 75% 

and 100%, while concretes containing 25% and 50% glass content achieved higher compressive strength compared to 

the control mix [15]. Likewise, the use of glass cullets as a 100% sand replacement in concrete was investigated. The 

resulting mixtures had lower compressive strength compared to conventional mixtures [16]. In an additional study, fine 

aggregates were replaced by waste glass powder in 10%, 20%, and 30% ratios by weight for 20 MPa-grade concrete. 

The powder waste glass showed some pozzolanic properties, and therefore it worked as cement replacement and 

contributed towards strength development in concrete. The study indicated that waste glass can effectively be used as 

fine aggregate replacement up to 20% without substantial change in strength [17]. 

Along with the analysis of the mechanical and physical characteristics of glass-particle-containing concrete, past 

studies have given attention to high temperatures' effect on the interaction of these compositions. Studies carried out in 

this field mainly emphasized the behavior of concrete with the inclusion of glass aggregates at extreme temperatures, 

revealing information about its strength as a material. The performance of concrete with crushed glass and glass powder 

under high temperatures up to 600 °C was investigated, with replacement rates ranging from 10% to 30% by volume. 

Concrete with 10% glass powder substitution and 10%–20% crushed glass substitution exhibited better performance at 

room temperature and high temperature in terms of mechanical, physical, and durability properties compared to others 

[18]. Similar research investigated the mechanical properties of recycled glass concrete made with up to 30% crushed 
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glass after exposure to elevated temperatures and found that adding recycled glass to concrete improved its residual 

mechanical properties compared to control concrete when exposed to temperatures up to 600 °C [19]. Finally, replacing 

fine and coarse aggregates with crushed glass was investigated to evaluate its effect on the properties of concrete at 

elevated temperatures. The results of this investigation showed that at temperatures up to 700 °C, the compressive 

strength of concrete with recycled glass decreased by 20% [20]. 

The study utilizes an Artificial Neural Network (ANN) model as a predictive tool to estimate various mechanical 

and physical properties of concrete based on experimental data. This involves training the ANN using a dataset 

comprising observations from laboratory tests on concrete mixes with varying glass aggregate percentages and other 

key variables. During training, the ANN learns complex relationships between input variables like aggregate content, 

ratios, and superplasticizer dosage and output properties such as compressive strength, tensile strength, density, and 

slump. Through iterative adjustments via backpropagation and optimization algorithms, the ANN fine-tunes its structure 

to capture underlying data patterns accurately. Once trained and validated, the ANN predicts concrete properties for 

future scenarios by inputting relevant mix parameters, validated against independent datasets. This process ensures 

reliability and accuracy in replicating concrete properties across different conditions. Overall, the ANN model enables 

efficient analysis and prediction of concrete properties, offering insights for sustainable construction practices and 

material optimization [21–23]. 

Artificial Neural Network (ANN) applications in the context of concrete technology are rather complicated but at 

the same time revolutionary [24]. ANNs allow for predicting chloride penetration resistance and concrete compressive 

strength and can provide a complete approach to achieving the balance between durability representation and structural 

performance [25].  

In addition, ANN was applied to several practical technological uses as well. ANN has proved to be a good predictive 

tool for the optimal tuff stone content in lightweight concrete, required to produce strong concrete yet with low weight 

[26]. ANN significantly enhances the estimation of mass characteristics in concrete floor slabs and dynamic response, 

providing an effective approach to assess complex structural dynamics and predict mass parameters [27]. Besides, owing 

to the intricate interplay of several components, ANN works as an accurate prediction tool for determining concrete 

compressive strength [28]. In addition, while looking into how supplementary cementitious materials (SCM) affect 

concrete compressive strength under hot conditions, ANN is extremely useful for unraveling fine-grained connections 

and finding the optimum usage levels of such additives to yield high-performance concretes at elevated temperatures 

[29]. Additionally, ANN was used to predict the bond strength in basalt FRP-reinforced self-compacting geopolymer 

concrete and the dynamic properties of concrete [30, 31]. The ability of the ANN to solve complex issues within concrete 

technology as well as its broad applicability over these diverse applications is demonstrated [32]. This study implements 

more complex techniques, such as ANN, to forecast the performance of concrete containing crushed glass as both fine 

and coarse aggregates. 

The primary objectives are to understand the interactions between concrete’s constituents and to assess the accuracy 

of ANN models in predicting concrete’s mechanical and physical properties. This is achieved using a two-decade 

experimental results dataset of concrete’s compressive and tensile strengths, slump, density, and the corresponding mix 

design proportions, including waste glass aggregate. Through the declared objectives, this research aims to provide 

major insights that can enlighten future building practices as well as contribute to a green and cost-effective construction 

industry. 

The first part of this study, including the introduction, is an in-depth evaluation of the previous literature related to 

the topic under investigation. The following part presents the materials and methodology of this study in addition to the 

data sources used, which ends with concluding remarks based on the results and discussion. The proposed model was 

finally verified using a new dataset. The conclusion part brought together the findings from the study and recommended 

future research-related aspects. 

2. Materials  

A comprehensive review of the literature and experimental programs for the past twenty years has been conducted 

to study the mechanical and physical properties of concrete mixtures containing glass particles. In this regard, the 

performed experiments provided valuable indications regarding the optimization of concrete constituents and presented 

a wide range of mixed compositions with different strengths from 12 to 71 MPa. These studies explored the influence 

of glass aggregate replacement at ranges from 0% to 100%. The weight proportions of the principal constituents have 

been specified, including fine and coarse aggregates, water, cement, superplasticizers, and glass aggregate (fine and 

coarse) types. This diverse data set sets the base for interpreting intricate relationships between constituent elements and 

their impact on concrete behavior. Thorough studies greatly contribute to the development of concrete technology, 

producing and developing sustainable and innovative building materials. The following approach describes the process 

of data collection, preparation, and artificial neural network (ANN) model development for predicting compressive and 

tensile strengths, density, and slump values. Tables 1 and 2 show tabular data from previous experiments. 
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Table 1. Mix design proportions and data from prior experimental research 

Reference 
Glass 

% 

Fine Glass 

(kg/m3) 

Coarse Glass 

(kg/m3) 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

Fine Aggregate 

(kg/m3) 

Coarse Aggregate 

(kg/m3) 

Topçu & Canbaz 

(2004) [8] 

0 0 0 350 190 0 647 1120 

15 0 82 350 190 0 647 1037 

30 0 164 350 190 0 647 953 

45 0 246 350 190 0 647 869 

60 0 328 350 190 0 647 784 

Khan & Sarker 

(2020) [9] 

0 0 0 416.6 200.1 2.7 673.4 1107.1 

10 67.3 0 416.6 200.1 2.7 606 1107.1 

25 168.35 0 416.6 200.1 2.7 505 1107.1 

50 336.7 0 416.6 200.1 2.7 336.7 1107.1 

100 673.4 0 416.6 200.1 2.7 0 1107.1 

0 0 0 416.6 200.1 2.7 673.4 1107.1 

10 0 110.7 416.6 200.1 2.7 673.4 996.4 

25 0 276.8 416.6 200.1 2.7 673.4 830.3 

50 0 553.55 416.6 200.1 2.7 673.4 553.55 

100 0 1107.1 416.6 200.1 2.7 673.4 0 

0 0 0 416.6 200.1 2.7 673.4 1107.1 

10 67.3 110.7 416.6 200.1 2.7 606 996.4 

25 168.3 276.8 416.6 200.1 2.7 505 830.3 

50 336.7 553.6 416.6 200.1 2.7 336.7 553.55 

100 673.4 1107.1 416.6 200.1 2.7 0 0 

Du & Tan (2014) 
[10] 

0 0 0 378 185 0 741 1048 

25 185.25 0 378 185 0 575.75 1048 

50 370.5 0 378 185 0 370.5 1048 

75 555.75 0 378 185 0 185.25 1048 

100 741 0 378 185 0 0 1048 

0 0 0 487 185 0 649 1048 

25 162.25 0 487 185 0 486.75 1048 

50 324.5 0 487 185 0 324.5 1048 

75 486.75 0 487 185 0 162.25 1048 

100 649 0 487 185 0 0 1048 

0 0 0 578 185 0 572 1048 

25 143 0 578 185 0 429 1048 

50 286 0 578 185 0 286 1048 

75 429 0 578 185 0 143 1048 

100 572 0 578 185 0 0 1048 

Table 2. Mix design proportions and data from prior experimental research 

Reference 
Glass 

% 

Fine Glass 

(kg/m3) 

Coarse Glass 

(kg/m3) 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

Fine Aggregate 

(kg/m3) 

Coarse Aggregate 

(kg/m3) 

Olofinnade et al. 
(2016) [11] 

0 0 0 275 138 0 550 1100 

25 138 275 275 138 0 413 825 

50 275 550 275 138 0 275 550 

75 413 825 275 138 0 138 275 

100 550 1100 275 138 0 0 0 

Tamanna (2020) [12] 

0 0 0 360 180 1.34 902 981 

20 126.4 0 360 180 1.34 775.6 981 

40 252.8 0 360 180 1.34 649.2 981 

60 379.2 0 360 180 1.34 522.8 981 

Elavarasan & 

Dhanalakshmi (2016) 
[13] 

0 0 0 383.2 191.6 0 654 1162 

10 65.4 0 383.2 191.6 0 588.6 1162 

20 130.8 0 383.2 191.6 0 523.2 1162 

30 196.2 0 383.2 191.6 0 457.8 1162 



Civil Engineering Journal         Vol. 10, No. 05, May, 2024 

1631 

 

Hasan et al. (2023) 

[14] 

0 0 0 395 177.75 0 805 989 

10 0 98.9 395 177.75 0 805 890.1 

15 0 148.35 395 177.75 0 805 840.65 

20 0 197.8 395 177.75 0 805 791.2 

25 0 247.25 395 177.75 0 805 741.75 

30 0 296.7 395 177.75 0 805 692.3 

Olofinnade et al. 
(2018) [15] 

0 0 0 275 138 0 550 1100 

25 137.5 0 275 138 0 412.5 1100 

50 275 0 275 138 0 275 1100 

75 412.5 0 275 138 0 137.5 1100 

100 550 0 275 138 0 0 1100 

Wright et al. (2014) 

[16] 

100 796.7 0 400 184 0 0 994.5 

100 737.4 0 437.9 184 0 0 994.5 

100 885.4 0 312.3 178 0 0 994.5 

100 848.1 0 333.7 160 0 0 994.5 

100 879.2 0 314.8 179.5 0 0 994.5 

100 799.7 0 373.9 179.5 0 0 994.5 

100 830.1 0 373.9 179.5 0 0 994.5 

Vijaya et al. (2015) 

[17] 

0 0 0 383 191.6 0 727 1103 

10 72.7 0 383 191.6 0 654 1103 

20 145.4 0 383 191.6 0 581.6 1103 

30 218.1 0 383 191.6 0 508.9 1103 

3. Research Methodology 

Figure 1 represents the methodological approaches implemented in this study and depicts a summary of the main 
parameters used in building the ANN model as a predictive technique. Also, Figure 1 provides an overview of the 
organized and logical approaches used to accomplish the main aims of this study. Every step was carefully designed and 
implemented. Considering the complexity of the experimental results, data collection techniques, and diagnostic 

perspectives. It illustrates the research process, including ANN predictor construction, training, and validation of the 
dataset, to prove the robustness, validity, and reliability of the proposed ANN model. 

 

Figure 1. Methodology ANN predictor construction, training, and validation flowchart 
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3.1. Artificial Neural Network 

Predicting the mechanical and physical properties of concrete with crushed glass as an aggregate replacement was 

conducted using a typical feedforward structure in an Artificial Neural Network (ANN) architecture. The input layer 

neurons are associated with prediction variables such as glass particle percentage and weight, coarse and fine aggregates, 

water, cement, and superplasticizer weights. In this layer, no activation function is employed. The techniques may have 

variable numbers of neurons on the hidden layers, as shown in Figure 2, using ReLU or tanh activation functions besides 

linear sigmoid. The output layer, responsible for predicting the mechanical and physical properties of concrete with 

glass aggregates, commonly has four neurons with linear activation. During the training, Adam or RMSprop with a fixed 

learning rate is used to minimize the mean squared error (MSE) loss function. For a different dataset, these model 

performance indicators are assessed by the Mean Absolute Error (MAE) or Roots Squared. This architecture offers an 

adaptable structure for extracting sensitive relationships between concrete constituents and properties. The model 

creation needed further refinement using hyperactive parameter adjustment and cross-validation. 

 

Figure 2. ANN Activation Functions 

3.2. ANN Model Building and Implementation 

Initially, it is necessary to gather the appropriate experimental data. This data is converted into a two-dimensional 

matrix; with each sample represented by a column and the total sample number indicating the number of rows. A new 

matrix with m columns is also needed, where m means the variables to investigate. After the data is collected, the second 

step of this process requires building ANN’s structural design. Some significant architectural decisions are made at this 

stage, namely setting the number of layers, allocating neurons to every layer, and choosing a suitable activation function 

for each level. Starting from the architectural configuration, a set of major ANN parameters, including Mean Squared 

Error (MSE), and the number of training iterations are defined. The ANN model is then trained, and the MSE achieved 

is assessed. 

The use of Artificial Neural Networks (ANN), especially within the MATLAB software suite framework, is a reliable 

and efficient method. There are various tools and approaches that MATLAB offers to form, train, as well as evaluate 

models of neural networks. Using the Neural Network Toolbox in MATLAB, complex ANN architectures can be 

designed by defining the network structure, which is composed of layers including several neurons and activation 

functions needed for glass particle-based concrete mechanical and physical prediction characteristics. The intuitive 

design of MATLAB makes it possible to prepare the data and train and validate ANN models based on different datasets 

acquired by experimental testing or non-destructive evaluations or simulations. The results obtained from 70 concrete 

specimens are summarized below. The creation and assessment of the ANN model benefited from the use of MATLAB 

code specialized in network design, training, and testing. 

data1 = data'; 

in = data1(1:8,:)/1318.5; 

tar = data1 (9:12,:);  

net = newcf(in,tar,[8 16 32],{'logsig','logsig','logsig'}); 

net = init(net); 

net.trainParam.goal=0; 

net.trainParam.epochs=1000; 

net = train(net,in,tar); 

y = sim (net, in); 

Figure 3 shows the three steps of the ANN architecture used. It is made up of 8 neurons in the input layer, two hidden 

layers with 16 and 32 neurons in each, and 4 neurons in the output layer. The activation function inside the hidden layer 

is Logsig, whereas it is linear within the output layer. 
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Figure 3. The Used ANN Architecture 

4. Results and Discussion 

The ANN model was trained using the experimental data given in Tables 3 and 4. The performance of the ANN 

model was very good, as it showed a considerable reduction in MSE. Figure 4 shows that the error was very low, which 

indicates that the predicted values were almost identical to the actual experimental results. The results of the ANN 

simulation were considered satisfactory since both training and validation MSE curves decreased smoothly to reach a 

stability point, as illustrated in Figure 4. The very small difference between the two curves points out that no overfitting 

took place, which indicates that training and validation specimens were meticulously selected to provide good 

predictions. Tables 3 and 4 confirm the MSE’s forecast of close values of the actual and predicted outputs. 

 

Figure 4. The ANN performance indication graph 
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Tables 3 and 4 constitute a comprehensive representation of data obtained from past laboratory experiments, 

alongside outputs generated using Artificial Neural Networks (ANN). The listed criteria include significant 

characteristics like compressive and tensile strengths, density, and slump that describe the mechanical-physical features 

of concrete. However, a closer look at the results shows that there is a high correlation between the experimental and 

ANN-simulated data. A visible pattern indicating the optimum 10% to 20% glass aggregate inclusion range is 

remarkable. However, noticeable degradation in material properties can be observed across this range. This observation 

arising through the comparison of laboratory and ANN data not only emphasizes the reliability of artificial intelligence 

technology but also provides important insights into the efficient utilization of glass aggregates as a concrete 

composition. 

Table 3. Experimental and ANN results of compressive and tensile strengths, concrete density and slump 

Reference 

Experimental Results ANN Predicted Results 

Compressive 

Strength (MPa) 

Tensile 

Strength (MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Compressive 

Strength (MPa) 

Tensile 

Strength (MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Topçu & Canbaz 
(2004) [8] 

23.5 2.590 2340 95 22.9 2.58 2346 99 

21.67 2.340 2335 100 21.7 2.87 2356 103 

20.02 3.001 2340 80 20.8 2.95 2349 82 

16.12 2.350 2330 90 17.3 2.43 2337 91 

12.04 1.630 2335 80 13.4 1.59 2340 81 

Khan & Sarker 

(2020) [9] 

39.5 4.216 2399.9 85 39.7 4.22 2402 85 

40.5 4.269 2399.9 80 40.7 4.26 2403 80 

37 4.080 2399.9 90 37.2 4.11 2405 90 

36 4.025 2399.9 100 32.1 4.10 2387 108 

23.5 3.252 2399.9 90 22.1 2.95 2353 95 

39.5 4.216 2399.9 85 39.7 4.22 2402 85 

43 4.399 2399.9 95 43.1 4.33 2402 95 

39 4.189 2399.9 85 38.2 4.21 2384 85 

33 3.854 2399.9 120 32.1 3.91 2399 118 

30.5 3.705 2399.9 135 31.4 3.66 2395 135 

39.5 4.216 2399.9 85 39.7 4.22 2402 85 

36.5 4.053 2399.9 105 34.2 3.69 2402 103 

26 3.421 2399.9 90 26.2 3.43 2399 90 

15 2.598 2399.9 185 13.9 2.59 2437 187 

12.5 2.372 2399.9 215 10.4 2.32 2392 220 

Du & Tan (2014) 

[10] 

55.1 4.310 2375 120 52.0 4.20 2375 119 

56.5 4.230 2370 95 54.3 3.91 2285 93 

47.5 4.450 2360 90 47.5 4.48 2365 88 

45.2 4.420 2350 110 44.5 4.42 2376 107 

47.6 4.710 2340 100 46.1 4.65 2344 97 

57.2 4.620 2395 95 55.1 4.62 2400 95 

60.3 4.330 2390 105 59.4 4.41 2394 105 

62.1 4.650 2378 115 62.0 4.59 2381 114 

56.1 4.680 2372 110 56.5 4.71 2375 108 

60.1 4.690 2360 104 61.2 4.75 2363 102 

67.2 4.720 2450 95 65.8 5.05 2465 93 

65.1 4.720 2450 120 64.7 4.72 2454 120 

68.3 4.610 2400 100 68.4 4.68 2403 100 

70.2 4.620 2395 110 70.5 4.60 2395 110 

71.1 5.400 2383 115 72.2 5.11 2286 115 



Civil Engineering Journal         Vol. 10, No. 05, May, 2024 

1635 

 

Table 4. Experimental and ANN results of compressive and tensile strengths, concrete density and slump 

Reference 

Experimental Results ANN Predicted Results 

Compressive 

Strength (MPa) 

Tensile Strength 

(MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Compressive 

Strength (MPa) 

Tensile 

Strength (MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Olofinnade et al. 

(2016) [11] 

20 3.800 2063 20 18.8 4.14 2460 19 

20 3.000 2064 16 18.7 3.09 2062 15 

16 2.500 2063 16 15.6 2.50 2056 18 

15 2.300 2064 15 14.4 2.27 2055 16 

14 2.100 2063 15 14.3 2.10 2059 14 

Tamanna (2020) 

[12] 

40 3.400 2399 90 37.4 3.44 2398 88 

43 3.400 2372 60 39.9 3.15 2361 57 

32 3.500 2369 65 31.4 3.53 2372 63 

36 3.000 2356 40 34.2 3.11 2538 42 

Elavarasan & 
Dhanalakshmi 

(2016) [13] 

30.33 2.300 2391 65 30.2 2.52 2397 68 

31.33 2.520 2391 68 31.1 2.63 2397 70 

31 3.210 2391 73 30.7 2.83 2395 66 

29.66 3.100 2390.8 60 29.4 3.04 2396 60 

Hasan et al. 

(2023) [14] 

39.1 4.195 2366 39 38.2 4.80 2365 38 

41 4.295 2366 42 39.0 4.42 2366 41 

40.4 4.264 2366 46 38.7 4.25 2367 46 

34.8 3.957 2366 55 32.5 4.11 2371 57 

35.65 4.005 2366 61 33.6 3.95 2382 63 

32.81 3.842 2366 63 31.1 3.76 2397 64 

Olofinnade et al. 

(2018) [15] 

20.11 3.008 2375 55 19.7 3.21 2385 53 

23.75 3.269 2356 50 24.4 3.35 2356 54 

23.21 3.232 2321 50 23.2 3.29 2320 52 

18.75 2.905 2285 44 18.4 2.92 2283 43 

14.15 2.523 2240 40 14.1 2.55 2238 39 

Wright et al. 

(2014) [16] 

37.4 4.102 2375 114 39.0 4.13 2381 112 

34.9 3.963 2354 127 35.6 4.94 2383 124 

27.9 3.543 2370 38 29.1 3.66 2367 36 

29.2 3.625 2336 32 31.2 3.91 2375 31 

29 3.612 2368 127 30.2 3.60 2372 124 

28.1 3.556 2348 140 29.5 3.58 2353 136 

32.7 3.836 2378 127 29.6 3.88 2342 125 

Vijaya et al. 

(2015) [17] 

22.77 3.201 2389 25 23.3 3.15 2380 26 

25.88 3.413 2356 27 26.4 3.11 2350 28 

29.84 3.664 2322 29 31.0 3.17 2314 30 

24.66 3.331 2295 26 24.4 3.27 2301 26 

A comparative study between the experimental and ANN-predicted values is presented in Figures 5 to 8. 
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Figure 5. Compressive strength (Experimental and ANN-predicted) 

 

Figure 6. Splitting tensile strength (Experimental and ANN-predicted) 

 

Figure 7. Concrete density (Experimental and ANN-predicted) 
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Figure 8. Concrete slump (Experimental and ANN-predicted) 

Figures 5-8 show the remarkable proximity observed between experimental and Artificial Neural Networks (ANN) 

predicted data, which is attributed to extensive database inclusion. This dataset covers a wide range of concrete strengths 

and glass aggregate percentages, including all concrete ingredient weights as well as variable percentages of glass 

aggregate. This wide range of data reveals the interaction between these factors and enables a deeper understanding of 

the impact of glass aggregate on concrete characteristics. Additionally, the broad dataset confirms the strength and 

reliability of ANN-predicted results. An increase in glass aggregate percentage results in decreased compressive and 

tensile concrete strengths consequently. This phenomenon is due to the weaker bond between the hardened cement paste 

and the smooth surfaces of glass aggregates. In addition, glass aggregate is weaker compared to natural aggregates. The 

slump values are highly related to the water/cement ratio and the use of superplasticizers in concrete mixtures. It is worth 

mentioning that the increased glass aggregate percentage increases slump due to almost zero water absorption of glass 

and, at the same time, decreases slump due to the high angularity of external glass aggregate surfaces. Concurrently, the 

density results show sensitivity to the weights of concrete constituents used, which points out that composition has a 

major importance in deciding the concrete density. This broad knowledge underlines the complicated nature of factors 

that influence the properties of concrete containing glass aggregate. 

The results show a clear trend wherein the optimum percentages of glass aggregate are between 10% and 20%. For 

concrete mixes with glass aggregate percentages higher than 20%, there is a clear decline in concrete properties. The 

analysis highlights the importance of properly selecting the mix design proportions, including glass aggregate content 

in concrete mixes, to find an optimum balance between sustainability, material efficiency, and the overall satisfactory 

performance of concrete. 

In this study, the optimal range of glass aggregate was found to be 10% to 20%. This range is favorable for the 

concrete properties, as characteristics such as increased tensile strength, good shock absorption, and weathering 

capability also overshadow those of other percentages of the aggregate mixture. The works made of concrete with 

particles of glass as an aggregate, from 10% to 20%, have the best results in terms of compression strength, tension 

strength, density, and slump value. This interval represents the golden percentage of glass aggregates, where numerous 

benefits were provided to counterbalance the serious issues of high concentrations. However, when the glass aggregate 

content reaches upper levels of 20%, there is a darkness in the properties of concrete. Consequently, the most exposed 

to corrosive conditions experience a drop in compressive and tensile strengths as well as reduced density and workability 

of the concrete content, as measured by slump values of the fresh mix. The amount of glass incorporations that exist in 

the concrete may cause the matrix to diminish as a result of a lack of bonding and excess porosity. Consequently, the 

mechanical and physical performances of the concrete are degraded, which occurs from the decrease in the properties 

of the mix with a smaller percentage of glass aggregates. 

As a result, the appropriate volume of glass aggregate in the range of 10% to 20% between them comes to the 

forefront as a key factor for attaining an acceptable property of the concrete. With the optimal composition of glass 

concrete, producers, designers, and engineers can take advantage of the positive credentials of glass aggregate in 

concrete projects and, on the other hand, minimize the possible negative results. This inference suggests a clear path to 

sustainable concrete production and encourages deliberate exploration of using recycled materials in construction. 

The regression analysis was done using MATLAB software. Figure 10 presents a step-by-step comparison between 

the predicted and experimental results. There is a random and symmetric distribution of the data points above or below 

the 45-degree line, showing homogeneity in variance for this dataset. The closures of the mentioned data point to a line, 

indicating that the model fits well, as shown in Figure 9. This conclusion underpins the high accuracy of predicting 
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values by showing how few deviations occur in real comparison with ideal diagonal alignment. The overall 

determination coefficient, or R-value, of 0.9985 confirms the validity model developed hereinabove. This high R-value 

confirms the suggested model’s validity and accuracy in predicting values with precision. 

 

Figure 9. Regression analysis results (R-Values for training, testing, validation, and all datasets) 

5. Proposed ANN Model Verification 

The generated Artificial Neural Network (ANN) was used for predicting extra datasets obtained from existing 

literature, therefore verifying the efficiency of the proposed models. The dataset, outlined in Table 5, was collected from 

three independent years of past research, including a wide range of concrete compositions with varied percentages of 

glass aggregates. 

Table 5. Mix design proportions and data from previous experimental research for ANN-Mode Verification 

Reference 
Glass 

% 

Fine Glass 

(kg/m3) 

Coarse Glass 

(kg/m3) 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

Fine Aggregate 

(kg/m3) 

Coarse Aggregate 

(kg/m3) 

Saand et al. (2017) 
[33] 

0 0 0 429.9 193.5 0 644.9 1289.7 

4 26.13 0 436.13 196.3 0 628.1 1308.4 

8 52.37 0 437 196.64 0 603.1 1310.9 

12 79 0 439.5 197.77 0 580.23 1318.5 

16 104.2 0 435 195.7 0 548.3 1304.8 

20 129.4 0 432 194.3 0 518.5 1295.8 

24 155.2 0 431.6 194.2 0 492.2 1294.8 

28 180.8 0 431.1 194 0 465.8 1293.3 

32 206 0 429.8 193.4 0 438.6 1289.2 

36 229.3 0 425.2 191.3 0 408.5 1275.7 

40 250.8 0 418.5 188.3 0 376.9 1255.5 

Drzymala et al. 

(2020) [34] 

0 0 0 290 175 3 1034 881 

10 100 88 290 175 3 934 793 

30 313 264 290 175 3 721 617 

50 517 440 290 175 3 517 441 

100 1034 881 290 175 3 0 0 
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Ali & Al-Tersawy 

(2012) [35] 

0 0 0 385 140 5.25 936 936 

10 79.2 0 385 140 4.55 842.4 936 

20 158.4 0 385 140 4.2 748.8 936 

30 237.6 0 385 140 4.2 655.2 936 

40 316.8 0 385 140 3.85 561.6 936 

50 396 0 385 140 3.85 468 936 

0 0 0 440 160 7.2 890 890 

10 75.3 0 440 160 6.8 801 890 

20 150.6 0 440 160 6.8 712 890 

30 225.9 0 440 160 6.8 623 890 

40 301.2 0 440 160 6 534 890 

50 376.5 0 440 160 6 445 890 

0 0 0 495 180 8.1 846 846 

10 71.6 0 495 180 7.65 761.4 846 

20 148.2 0 495 180 7.65 676.8 846 

30 214.7 0 495 180 7.65 592.2 846 

40 286.3 0 495 180 6.75 507.6 846 

50 357.9 0 495 180 6.75 423 846 

Table 6 presents the most comprehensive list of parameters perfectly delivered by the proposed and, hence, carefully 

constructed ANN model for this specific aim. This model is an archetype, merging the creative powers of cutting-edge 

algorithms and current computation capabilities, which brings to light the ability of Artificial Neural Networks (ANNs) 

to outperform subsequently familiar problems even well beyond the initial training dataset. Using a bold mixture of 

neural ties and repetitive learning, the ANN achieves proficiency in the art of recognizing and copying that complex 

hidden within a wide range of architectural forms and innovative concrete distribution. Its capacity to bind the diversity 

of variants present in hydraulic binders and compress those data, rendering them in a meaningful and descriptive way, 

outlines ANN's remarkable agility and strength. 

Table 6. Experimental and ANN results of compressive and tensile strengths, concrete density, and slump for ANN-Model verification 

Reference 

Experimental Results ANN Predicted Results 

Compressive 

Strength (MPa) 

Tensile Strength 

(MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Compressive 

Strength (MPa) 

Tensile 

Strength (MPa) 

Density 

(kg/m3) 

Slump 

(mm) 

Saand et al. (2017) 

[33] 

31.5 3.765 2558 26 31.7 3.40 2574 21 

34.75 3.954 2595 29 34.8 3.86 2599 29 

39.25 4.203 2600 31 35.8 4.00 2601 33 

44 4.450 2615 34 41.3 4.16 2612 39 

38 4.135 2588 37 36.9 3.93 2588 37 

33 3.854 2570 39 32.3 3.76 2573 38 

30.25 3.690 2568 42 30.3 3.67 2571 41 

28.5 3.581 2565 45 28.1 3.55 2568 44 

26.5 3.453 2557 48 25.9 3.41 2561 47 

24.25 3.303 2530 51 24.0 3.26 2534 50 

23.5 3.252 2490 54 23.2 3.19 2494 53 

Drzymala et al. 

(2020) [34] 

46.19 4.559 2300 124.7 45.6 4.62 2306 124 

39.95 4.240 2290 141.1 37.9 4.87 2301 139 

31.17 3.745 2180 167.5 31.4 3.67 2190 169 

14.16 2.524 1960 191 15.2 2.53 1970 191 

4.23 1.380 1660 200 5.2 1.31 1680 205 
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Ali & Al-Tersawy 

(2012) [35] 

46.3 4.7 2402 267 48.5 4.87 2301 262 

43.5 4.2 2387 270 43.8 3.67 2190 270 

41.5 4.2 2372 273 41.7 2.53 1970 273 

40.4 4.1 2358 275 42.7 1.31 1680 285 

38.2 3.9 2343 282 38.2 4.32 2409 282 

35.6 3.2 2329 283 35.5 4.20 2382 282 

62.2 6.8 2387 268 61.8 4.25 2366 269 

59.4 6.2 2373 270 55.7 4.17 2352 263 

53.2 5.8 2359 272 53.0 3.92 2338 272 

51.6 5.7 2346 273 51.6 3.23 2325 273 

48.4 5.2 2331 275 48.6 6.82 2385 275 

47.5 4.9 2318 276 47.9 5.99 2385 276 

67.7 7.1 2375 270 67.4 5.77 2360 270 

65.2 6.8 2362 272 65.7 5.73 2349 278 

61.6 6.5 2354 273 61.6 5.20 2334 274 

58.5 6.4 2336 276 58.7 4.91 2321 276 

55.8 6.2 2322 276 56.1 7.10 2375 276 

53.6 5.5 2309 277 54.5 6.74 2367 279 

A comparative study was conducted between the experimental and ANN-predicted values. The results of this study 

are presented graphically in Figures 10 to 13. 

 

Figure 10. Concrete compressive strength (Experimental and ANN-predicted) 

 

Figure 11. Concrete splitting tensile strength (Experimental and ANN-predicted) 
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Figure 12. Concrete density (Experimental and ANN-predicted 

 

Figure 13. Concrete slump (Experimental and ANN-predicted) 

The ANN appears to be quite effective in this case, as when the data obtained from the experiment is closely matched 

with Figures 10 through 13, their striking similarity enhances the confidence as presented in Table 6. Careful comparison 

shows minimal discrepancy, resulting in little difference between the datasets. Moreover, the average difference between 

both datasets stays below 2% throughout all results. This exceptionally close agreement confirms the ability of the ANN 

model to reach down into and perfectly reproduce the detailed mechanics and physics underlying concrete properties. 

Along with that, the coefficient of determination (R-value), which is obtained because of the validation process, indicates 

that the ANN model is reliable for the forecasting model, with an outcome of about 0.99484. Such a high R-value just 

abilities the model of ANN to predict the bytes behavior of waste glass concrete firmly and just affirms the ability of the 

ANN model. The fact that the empirical results comported sufficiently with the modeled values, with the statistical 

significance (R-value) being very high as well, further vindicates the performance of the developed ANN methodology, 

especially its precision in faithfully reproducing the actual ways in which waste glass concrete operates as a material. 

ANN models deserve a lot of recognition as they produce an error rate of approximately 2% and in a consistent 

manner, which means that the predictive models must be accurate and reliable. This does not exceed the maximum error 

in the reduction and indicates the accuracy of the data obtained in the laboratory experiment and the data predicted by 

the ANN models. The reliability in the performance of the ANN models that shows the ability to represent and recreate 

the multidimensional and dynamic actions of the specimens incorporating the aggregate mix is thus evident. The low 

error margin percentage revealed by this model implies that ANN models can correctly predict yield strength, total 

porosity, dry density, and slump with a high degree of accuracy, which inspires confidence in their dependability. As 

such, stakeholders in the civil engineering industry can use these forecasting technologies with peace of mind to guide 

their decision-making processes, choose optimal concrete composition, and be aware of the performance of glass-infused 

cement in real-life case studies. 

The validation methods that are included in this study to check the credibility of the ANN models by using 

supplementary measures of experimental data are an essential part of model fitness checking to observe representational 

ability. Upon integrating diverse datasets acquired from multiple sources of experimental data, including past research, 

the verification process therefore equips the ANN models with a comprehensive and representative dataset, thereby 
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ensuring that these models are exposed to the envisaged representation. The ANN models can thus represent a broader 

concrete aggregate spectrum: Different combinations of increased glass-to-cement aggregates and harder concrete 

strengths can also be accommodated. Because of this, the ANN models are more capable of learning and comprehending 

the complex connections between input attributes (like very fine overlay percentages, cement consumption, and water-

cement ratio) and consequent physical properties (including compressive strength, tensile strength, density, and slump). 

In addition to this, the brand-new thing that can be checked by comparing the calculated values from ANN models 

against validated experimental data would be the ANN models' precision and credibility. The comparisons between 

predicted and experimental values as well as the results demonstrate the ANNs’ proficiency in approximating 

experimental outcomes, thereby exhibiting their ability to be replicated experimentally. The meaningful relationships 

between concrete mixture components and its properties demonstrated through the calibration and validation process 

reinforce the ANN models' generalization and prediction ability concerning working conditions that may vary. In 

conclusion, using successful validation strategies will increase the trust and reliability of the ANN simulation systems, 

so that developers and practitioners in the building industry can synthesize optimal concrete batches and make concrete 

performance predictions with more confidence. 

6. Conclusions 

Several conclusions that arise from this comprehensive study on the use of crushed waste glass to replace natural 

fine and coarse aggregate in concrete, combined with the predictive capabilities of Artificial Neural Networks (ANN), 

can be summarized as follows: 

• The research relies, in part, on a 20-year database with different concrete strength and glass aggregate contents 

as well as specimen constituent weights. This wide-range dataset is an excellent starting point for acquiring a 

deep understanding of the complex interaction between constituents in concrete mixes. 

• The accuracy of the ANN models is demonstrated by the complete overlap between experimental and predicted 

values. Throughout all analyses, the reported error margin is low and constant, around 2%. 

• The validation process shows the ANN model to be reliable, with coefficients of determination (R-values) often 

showing high accuracy. The validation R-value of 0.99484 reflects the robustness of predictive tools in simulating 

complexities within concrete. 

• The results reveal a distinct trend, whereby the optimal percentages for glass aggregate addition are between 10% 

and 20%. Higher glass content leads to an obvious decline in concrete properties. 

• This research has proven the effectiveness of ANN in predictive modeling. This in-depth study of factors 

influencing concrete behavior provides details on the use of glass aggregates in concrete to pave the way for 

future advancements in sustainable concrete technology. 

The prospects of study in this field show potential for further research and development. Future studies should be 

directed toward glass quality and properties to improve concrete properties, considering the differences in particle size, 

shape, or surface characteristics. A more detailed investigation of impacts on the environment and life cycle assessments 

could provide a deeper understanding of the sustainability of waste glass concrete. Other methods, including machine 

learning algorithms and deep learning models, could be applied alongside ANN to enhance the accuracy of predictions. 

Such a future line of research can not only change established methods but also open the door for innovative, eco-

friendly concrete technology solutions. 
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