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Abstract 

This study explores how dynamic characteristics of concrete, such as dynamic shear modulus, dynamic modulus of 

elasticity, and dynamic Poisson's ratio, affect stability and performance in civil engineering applications. Traditional testing 

procedures, which include the time-consuming and costly process of mixing and casting specimens, are both time-

consuming and costly. The primary objective of this research is to improve efficiency by using Artificial Neural Networks 

(ANNs) and regression analysis to predict the dynamic properties of concrete, providing a machine-learning-based 

alternative to traditional experimental methodologies. A set of 72 concrete specimens was methodically built and evaluated, 

with compressive strengths of 50 MPa, aspect ratios ranging from 1 to 2.5, and an average density of 2400 kg/m3. An input 

dataset and ANN targets were built using these samples. The ANN model, which used cutting-edge deep learning 

techniques, went through extensive training, validation, and testing, as well as statistical regression analysis. A comparison 

shows that the predicted dynamic modulus of elasticity and shear modulus using both ANN and regression approaches 

nearly match the experimental values, with a maximum error of 5%. Despite good forecasts for the dynamic Poisson's 

ratio, errors of up to 20% were detected on occasion, which were attributed to sample shape variations. 
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1. Introduction 

Concrete, a key building material recognized for its strength and adaptability, is critical to contemporary society's 

infrastructure. Concrete's mechanical qualities, particularly its dynamic properties, are critical in determining the 

stability and performance of numerous civil engineering applications. The primary subject of much previous research 

on concrete was its dynamic compressive qualities, while tensile and Poisson's ratio properties were examined 

considerably less frequently [1]. During their service life, concrete buildings may be subjected to intensely dynamic 

loadings such as projectile impact and contact explosion, which would release a substantial amount of energy in a short 

period, emphasizing the need to investigate the dynamic characteristics of concrete [2]. Dynamic characteristics of 

concrete, such as dynamic shear modulus, dynamic modulus of elasticity, and dynamic Poisson's ratio, are important 

indications of how concrete buildings respond to external pressures like earthquakes and dynamic impacts. Estimating 

these qualities accurately is critical for ensuring the safety and lifespan of concrete structures. The dynamic 

characteristics of fine-grained concrete and foamed concrete were examined to assess these qualities and their usefulness 

in civil engineering construction [3, 4]. 

For testing these dynamic properties, the ultrasonic method is a beneficial, non-destructive tool. This approach gives 

critical insights into features such as dynamic shear modulus, dynamic modulus of elasticity, and dynamic Poisson's 
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ratio by submitting concrete specimens to high-frequency ultrasonic pulses and studying their propagation through the 

material [5]. Ultrasonic pulse-echo testing usually necessitates the use of specialist equipment such as ultrasonic 

transducers, a pulse generator, and a receiver. The concrete specimen is tested by delivering high-frequency ultrasonic 

pulses into it. These pulses move through the material until they come into contact with an interface or a change in the 

substance's characteristics. The ultrasonic waves undergo some reflection back to the receiver when they contact limits, 

voids, or faults in the concrete. The time it takes for the wave to travel to and return from the border is measured. This 

duration, referred to as the "time-of-flight," is proportional to the depth and characteristics of the concrete. The ultrasonic 

wave velocity through concrete is intimately connected to its dynamic qualities. In testing, two types of waves are used: 

compressional (P-waves) and shear (S-waves). P-wave velocity is generally quicker and is proportional to the dynamic 

modulus of elasticity, whereas S-wave velocity is proportional to the shear modulus. The density and stiffness of the 

concrete affect the wave velocity. The obtained ultrasonic signals may be submitted to frequency analysis, allowing 

researchers to establish the concrete sample's resonance frequencies. These resonant frequencies give information on 

the specimen's inherent frequencies and mode shapes, which is critical to knowing its dynamic behavior. The observed 

velocities of the longitudinal and transverse waves are used to calculate the dynamic Poisson's ratio and the dynamic 

modulus of elasticity of concrete. These predicted values obtained could be compared to the theoretically estimated 

modulus of elasticity [6, 7]. 

Many earlier investigations on the dynamic characteristics of concrete have been conducted, including the dynamic 

compression mechanical properties of polyoxymethylene-fiber-reinforced concrete [8]. Dynamic properties test and 

constitutive study of lightweight aggregate concrete under uniaxial compression [9]. The correlation between static and 

dynamic modulus of elasticity on different concrete mixes [10] and the dynamic compressive properties of micro-

concrete under different strain rates [11]. Dynamic deformation and fracturing properties of concrete under biaxial 

confinements [12], dynamic properties of lightweight aggregate and cellular lightweight concrete [13, 14], and dynamic 

properties of strain-hardening cementitious composite reinforced with basalt and steel fibers [15]. 

Historically, approaches to dynamic properties estimation depended on time-consuming and frequently expensive 

experimental testing, which may not be practicable in all circumstances. The demand for fast, cost-effective, and exact 

approaches to estimating these qualities has fueled computational intelligence research, notably Artificial Neural 

Networks (ANNs) [16, 17]. ANNs, a type of machine learning, have emerged as a potential method for learning from 

data and predicting complicated material behavior, providing an alternative to traditional experimental approaches. 

Because of their capacity to capture subtle non-linear correlations within data, they are well-suited to modeling the 

dynamic characteristics of concrete, which frequently display non-linear and time-dependent behavior. The use of 

Artificial Neural Networks (ANNs) in concrete technology and building has several applications and benefits. Concrete 

material qualities, such as compressive strength, tensile strength, and durability parameters, can be estimated using 

ANNs. ANNs may be used to provide more efficient and cost-effective alternatives to standard laboratory testing, 

allowing for faster property assessment [18-20]. 

ANNs can help optimize concrete mix designs by predicting the best combinations of elements (cement, aggregates, 

water, and admixtures) to meet specified performance criteria such as intended strength, workability, and durability [10, 

21]. Also, it could be used to optimize the use of tuff stone content in lightweight concrete [15]. It is also used in concrete 

manufacturing to regulate quality. They are capable of monitoring and controlling the mixing and curing processes, 

guaranteeing that the concrete fulfills the needed standards and specifications [22]. Analyzing non-destructive testing 

data, such as ultrasonic testing and ground-penetrating radar, is conducted using ANNs. They aid in determining the 

state and structural integrity of concrete elements, as well as detecting flaws and abnormalities [7, 23]. The identification 

of symptoms of degradation or damage in concrete structures such as bridges and buildings over time is carried out using 

ANN for upkeep and safety [24, 25]. Concrete constructions subjected to environmental conditions such as corrosion, 

freeze-thaw cycles, and alkali-silica reactions are predicted using ANNs. These forecasts guide maintenance and repair 

efforts [26]. ANNs can help with concrete structure design optimization, such as identifying the best reinforcement 

scheme, slab thickness, or column dimensions for load-bearing capacity, safety, and cost-effectiveness [27, 28]. It is 

also used to study and forecast the complicated stress-strain behavior of restricted concrete columns under varied loading 

circumstances. ANNs examine experimental and simulation data to improve our knowledge of structural reactions, 

allowing us to build stronger and earthquake-resistant concrete structures [2]. Additionally, ANNs are utilized to 

estimate the dynamic parameter determination of concrete terrace walls with system identification [29]. Evaluate the 

dynamic properties of pre-treated rubberized concrete under incremental loading [30]. Evaluate the mechanical and 

dynamic properties of rubberized concrete [31], study the effect of loading rate on the dynamic properties of plastic 

concrete under triaxial loading [28], predict the residual flexural strength of fiber-reinforced concrete [32, 33], calculate 

the shear strength of corrosion-reinforced concrete beams [28], and validate and predict the physical properties of self-

compacting concrete [34]. Predictive models based on ANNs are used to predict the ultimate conditions and stress-strain 

behavior of steel-confined ultra-high-performance concrete [35] and for the prediction of concrete properties [36]. 

Numerous experimental investigations have been conducted in the field of concrete engineering to anticipate the 

dynamic characteristics of concrete, providing significant insights into its behavior under varied settings. However, there 
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is a significant gap in the investigation of using Artificial Neural Network (ANN) approaches to predict these 

characteristics. Despite the great number of traditional experimental investigations, the untapped potential of ANN in 

forecasting concrete dynamics is an uncharted field. Recognizing this gap, the current study seeks to address and bridge 

it by utilizing the power of ANN, thereby contributing to a more comprehensive understanding of concrete behavior and 

paving the way for innovative approaches in the field of structural engineering, which highlights the significance of this 

study. 

The primary objectives of this research are to create and evaluate an effective approach for predicting the dynamic 

characteristics of concrete using Artificial Neural Networks (ANNs), such as dynamic shear modulus, dynamic modulus 

of elasticity, and dynamic Poisson's ratio. This may improve the accuracy and efficiency of property forecasts by using 

the power offered by machine learning as well as computational modeling, providing a viable alternative to standard 

experimental testing techniques. Furthermore, by offering a scalable and accessible approach for measuring the dynamic 

behavior of concrete materials, this research aims to contribute to the more general fields of civil engineering and 

structural dynamics. The study also aims to bridge the gap between the rising need for precise property estimates and 

the promise that ANNs provide in this respect. It is expected to provide insights that help improve the safety, 

dependability, and sustainability of concrete buildings in a variety of real-world applications through extensive testing 

and assessment. 

The introductory section provides a thorough study of the most recent body of literature on the subject under 

consideration. The next section describes the materials and procedures used in this study, as well as the data sources 

used. The final portion expands on the findings and discussion, including the validation of the suggested model, a 

comparative analysis, and the implications of the results, all set against the background of earlier research attempts. The 

final section summarizes the study's findings and makes recommendations for future research in this field. This 

organized methodology allows a thorough examination of the research landscape, methodological complexities, 

findings, and implications, providing a well-rounded view of the study's contributions and future research options. 

2. Materials and Experimental Program 

2.1. Materials 

The following ingredients and mix proportions were utilized in this study: Portland cement (Type I), coarse aggregate 

with a maximum size of 20 mm and a specific gravity of 2.65, natural sand with a specific gravity of 2.67 and a modulus 

of fineness of 2.77, micro silica of 2.17 specific gravity, superplasticizer with a specific gravity of 1.30, and fly ash 

(Class F) with a specific gravity of 2.30. Those mix proportions apply to typical-weight concrete with a target 

compressive strength of 50 MPa or more at 28 days. The ingredients were mixed in a 0.25 m3 laboratory mixer. The mix 

proportions utilized in this experiment are given in Table 1. The density of all the produced concrete was around 2400 

kg/m3. 

Table 1. Mix Proportions by Weight [7] 

Coarse Aggregate: Fine Aggregate 1: 1.5 

Cement: Fly Ash: Micro Silica 11.2: 2.16 :1 

Cement +Fly Ash+ Micro Silica: Coarse Aggregate: Fine Aggregate 1: 1.92: 1.28 

Water/ cement Ratio 0.30 

Water/ (cement+ micro silica) Ratio 0.32 

2.2. Experimental Program 

The experimental program was created to investigate the dynamic physical characteristics of concrete and to assess 

the influence of concrete specimen size on these qualities. Prisms and cylinders with varied aspect ratios (L/d) (ranging 

from 1.0 to 2.5) were utilized as specimens. Table 2 shows the dimensions of the specimens utilized in this investigation. 

Table 2. Specimens type, dimensions, and quantities [7] 

Designation Type and Dimensions (mm) No. of Specimens 

C150 Cube 150×150×150 12 

C225 Prism 150×150×225 12 

C300 Prism 150×150×300 12 

C375 Prism 150x150×375 12 

S200 Cylinders 100×200 12 

S300 Cylinders 150×300 12 
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The careful use of specifically constructed molds for producing cubes, prisms, and cylinders for this study 

represented a varied spectrum of geometric shapes often found in building operations. After the concrete examples were 

cast, they underwent a rigorous demolding procedure to ensure structural integrity. Following that, the demolded 

specimens went through a drying phase at room temperature, precisely 20°C. This governed drying process is crucial 

for limiting moisture's possible influence on the following testing processes. The designed concrete specimens were 

next subjected to non-destructive testing using an ultrasonic pulse velocity tester according to the requirements provided 

in ASTM C587-09, as shown in Figure 1. The use of this testing apparatus corresponds to defined standards, ensuring 

consistency and accuracy in assessing the dynamic characteristics of concrete. The ASTM-compliant ultrasonic pulse 

velocity tester is a trustworthy instrument for evaluating the quality and structural features of concrete specimens, adding 

vital data to the whole study. The careful attention to each stage in this procedure, from specimen production to non-

destructive testing, demonstrates a dedication to scientific rigor and supports the dependability of the obtained results in 

assessing the dynamic behavior of concrete. 

 

Figure 1. Ultrasonic pulse velocity tester (ASTM C587-09) [37] 

ASTM C597-09 is an ASTM International standard that describes how to use a resonant frequency apparatus to 

determine the dynamic modulus of elasticity and damping characteristics of concrete. The inherent frequencies of 

standard cubes and cylindrical concrete specimens exposed to vibrations are measured using this apparatus. ASTM 

C597-09 is used by inserting a tested specimen into the device and measuring resonance frequencies after applying 

force. The collected data gives insights into the dynamic behavior of concrete, assisting in the assessment of structural 

performance. The Results of the dynamic properties are given in Table 3. 

Table 3. Experimental, ANN, and Regression Analysis Results of tested specimens 

Designation 
Strength 

(MPa) 
L/D 

Experimental ANN Predicted Regression Analysis 

Ed (GPa) Gd (GPa) υd Ed (GPa) Gd (GPa) υd Ed (GPa) Gd (GPa) υd 

C375 53 2.5 38.52 15.60 0.235 38.46 16.20 0.213 38.97 15.72 0.208 

C375 53 2.5 38.50 15.59 0.234 38.46 16.20 0.213 38.97 15.72 0.208 

C375 52 2.5 37.98 15.75 0.206 37.99 15.72 0.219 38.54 15.54 0.209 

C375 52 2.5 37.98 15.73 0.205 37.99 15.72 0.219 38.54 15.54 0.209 

C375 55 2.5 39.37 17.02 0.158 39.36 17.17 0.201 39.81 16.09 0.205 

C375 55 2.5 39.37 17.00 0.156 39.36 17.17 0.201 39.81 16.09 0.205 

C375 54 2.5 38.97 16.82 0.160 38.92 16.69 0.207 39.39 15.91 0.207 

C375 54 2.5 38.97 16.80 0.159 38.92 16.69 0.207 39.39 15.91 0.207 

C375 52 2.5 37.89 15.68 0.205 37.99 15.72 0.219 38.54 15.54 0.209 

C375 52 2.5 37.89 15.70 0.207 37.99 15.72 0.219 38.54 15.54 0.209 

C375 53 2.5 38.64 16.25 0.186 38.46 16.20 0.213 38.97 15.72 0.208 

C375 53 2.5 38.64 16.29 0.188 38.46 16.20 0.213 38.97 15.72 0.208 

C300 55 2.0 39.26 16.52 0.188 39.30 15.79 0.210 39.46 15.91 0.211 

C300 55 2.0 39.26 16.52 0.188 39.30 15.79 0.210 39.46 15.91 0.211 
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C300 58 2.0 40.90 17.52 0.167 40.69 17.07 0.191 40.73 16.46 0.207 

C300 58 2.0 40.90 17.52 0.167 40.69 17.07 0.191 40.73 16.46 0.207 

C300 56 2.0 39.59 16.40 0.207 39.76 16.21 0.204 39.88 16.09 0.215 

C300 56 2.0 39.59 16.40 0.207 39.76 16.21 0.204 39.88 16.09 0.215 

C300 53 2.0 38.71 15.90 0.217 38.36 14.95 0.222 38.61 15.54 0.219 

C300 53 2.0 38.71 15.90 0.217 38.36 14.95 0.222 38.61 15.54 0.219 

C300 57 2.0 40.54 16.17 0.253 40.23 16.64 0.197 40.30 16.27 0.214 

C300 57 2.0 40.54 16.17 0.253 40.23 16.64 0.197 40.30 16.27 0.214 

C300 56 2.0 39.75 16.46 0.207 39.76 16.21 0.204 39.88 16.09 0.215 

C300 56 2.0 39.75 16.46 0.207 39.76 16.21 0.204 39.88 16.09 0.215 

C225 52 1.5 37.29 14.70 0.266 37.25 14.89 0.236 37.84 15.18 0.226 

C225 52 1.5 37.31 14.72 0.267 37.25 14.89 0.236 37.84 15.18 0.226 

C225 50 1.5 36.48 14.86 0.226 36.66 14.50 0.242 37.00 14.81 0.228 

C225 52 1.5 36.50 14.88 0.228 37.25 14.89 0.236 37.84 15.18 0.226 

C225 52 1.5 37.50 14.88 0.260 37.25 14.89 0.236 37.84 15.18 0.226 

C225 53 1.5 37.54 14.90 0.263 37.55 15.10 0.234 38.26 15.36 0.225 

C225 52 1.5 37.51 14.64 0.280 37.25 14.89 0.236 37.84 15.18 0.226 

C225 53 1.5 37.55 14.68 0.282 37.55 15.10 0.234 38.26 15.36 0.225 

C225 54 1.5 38.48 15.74 0.220 37.85 15.31 0.230 38.69 15.54 0.224 

C225 54 1.5 38.52 15.78 0.224 37.85 15.31 0.230 38.69 15.54 0.224 

C225 55 1.5 39.71 16.23 0.221 38.14 15.54 0.227 39.11 15.73 0.222 

C225 55 1.5 39.75 16.227 0.225 38.14 15.54 0.227 39.11 15.73 0.222 

C150 57 1.0 40.24 15.61 0.286 39.94 16.07 0.260 39.60 15.91 0.226 

C150 57 1.0 40.28 15.65 0.288 39.94 16.07 0.260 39.60 15.91 0.226 

C150 56 1.0 39.22 16.24 0.205 39.65 15.92 0.262 39.18 15.73 0.227 

C150 56 1.0 39.26 16.28 0.209 39.65 15.92 0.262 39.18 15.73 0.227 

C150 58 1.0 40.60 16.37 0.237 40.22 16.23 0.259 40.02 16.09 0.225 

C150 58 1.0 40.64 16.41 0.241 40.22 16.23 0.259 40.02 16.09 0.225 

C150 52 1.0 39.51 15.90 0.240 38.48 15.37 0.268 37.49 15.00 0.232 

C150 53 1.0 39.55 15.94 0.244 38.77 15.50 0.266 37.91 15.18 0.231 

C150 54 1.0 38.76 15.50 0.248 39.07 15.63 0.265 38.33 15.36 0.230 

C150 54 1.0 38.80 15.52 0.252 39.07 15.63 0.265 38.33 15.36 0.230 

C150 58 1.0 40.26 16.34 0.230 40.22 16.23 0.259 40.02 16.09 0.225 

C150 59 1.0 40.30 16.38 0.232 40.50 16.39 0.257 40.45 16.28 0.224 

S300 53 2.0 38.47 15.00 0.280 38.36 14.95 0.222 38.61 15.54 0.219 

S300 54 2.0 38.49 15.04 0.284 38.83 15.37 0.216 39.04 15.72 0.218 

S300 53 2.0 38.07 14.86 0.277 38.36 14.95 0.222 38.61 15.54 0.219 

S300 52 2.0 38.11 14.90 0.281 37.88 14.54 0.228 38.19 15.36 0.220 

S300 52 2.0 38.46 14.97 0.281 37.88 14.54 0.228 38.19 15.36 0.220 

S300 53 2.0 38.50 14.01 0.284 38.36 14.95 0.222 38.61 15.54 0.219 

S300 52 2.0 37.80 14.12 0.339 37.88 14.54 0.228 38.19 15.36 0.220 

S300 52 2.0 37.82 14.11 0.341 37.88 14.54 0.228 38.19 15.36 0.220 

S300 52 2.0 37.66 14.00 0.344 37.88 14.54 0.228 38.19 15.36 0.220 

S300 52 2.0 37.70 14.00 0.348 37.88 14.54 0.228 38.19 15.36 0.220 

S300 58 2.0 40.26 16.34 0.230 40.22 16.23 0.259 40.02 16.09 0.225 

S300 59 2.0 40.30 16.38 0.232 40.50 16.39 0.257 40.45 16.28 0.224 

S200 55 2.0 39.45 15.43 0.275 39.75 15.67 0.235 39.46 15.91 0.217 

S200 55 2.0 39.49 15.47 0.279 39.75 15.67 0.235 39.46 15.91 0.217 

S200 53 2.0 38.64 15.10 0.278 39.19 15.31 0.240 38.61 15.54 0.219 

S200 52 2.0 38.68 15.12 0.281 38.91 15.15 0.242 38.19 15.36 0.220 

S200 52 2.0 39.84 15.20 0.308 38.91 15.15 0.242 38.19 15.36 0.220 

S200 55 2.0 39.88 15.22 0.312 39.75 15.67 0.235 39.46 15.91 0.217 

S200 57 2.0 40.32 15.68 0.282 40.30 16.05 0.229 40.30 16.27 0.214 

S200 57 2.0 40.36 15.72 0.286 40.30 16.05 0.229 40.30 16.27 0.214 

S200 52 2.0 39.00 15.33 0.270 38.91 15.15 0.242 38.19 15.36 0.220 

S200 52 2.0 39.04 15.37 0.272 38.91 15.15 0.242 38.19 15.36 0.220 

S200 55 2.0 39.30 15.83 0.238 39.75 15.67 0.235 39.46 15.91 0.217 

S200 56 2.0 39.32 15.87 0.242 40.03 15.85 0.232 39.88 16.09 0.215 
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3. Methodology 

3.1. Artificial Neural Networks 

Artificial Neural Networks (ANN) provide a rigorous mathematical framework that may be used for predictive 

modeling in a variety of experimental areas, including the evaluation of the dynamic properties of concrete. These 

networks, which are made up of linked neurons, have connections that are weighed and built in layered designs (as seen 

in Figure 2-a). Individual neurons in an ANN perform two important activities, as shown in Figure 2-b. To begin, these 

neurons are used to compute the total of the products produced from each input, together with the associated weight. 

The output is then generated using an activation function appropriate to the ANN layer. The output transformation is 

determined by several activation functions, such as linear, logsig, or tansig. The output of a linear activation function is 

the computed summation, but utilizing logsig or tansig functions requires applying the relevant mathematical functions 

(as shown in Figure 3) [19, 20]. 

  

(a) (b) 

Figure 2. a- Neural Network Architecture, and b- ANN neuron operations  

 

Figure 3. Activation functions of Logsig (left), and Tansig (right) [23] 

3.2. Building an ANN Prediction Tool 

Figure 4 gives a high-level overview of the primary procedures involved in creating an ANN model for use as a tool 

for prediction and illustrates a thorough visual depiction of the methodological processes used throughout this 

investigation. This diagram encapsulates the systematic and sequential techniques used to achieve the study objectives. 

Each step was thoroughly devised and carried out, taking into account the complexities of the experimental setup, data-

gathering techniques, and analytical methodologies. The picture is a visual roadmap that explains the methodological 

framework that led to the investigation into the dynamic characteristics of concrete. It gives a thorough and informative 

portrayal of the research workflow, allowing for a more nuanced understanding of the activities necessary to guarantee 

the study's outcomes: rigor, correctness, and dependability. 

The first step is to collect the necessary experimental data. It is necessary to arrange this data into a 2D matrix format, 

with each testing sample represented in its own column and the total sample count represented by the number of rows. 

A new matrix with 'm' columns is also required, where 'm' is the number of variables of interest to be examined. 

Following data collection, the data must be normalized. The purpose of this operation is to minimize the values of the 

incoming data to a predetermined range of 0 to 1. This is performed by dividing each data point by the greatest value 

associated with it. The next phase of this procedure is to build ANN's architectural design. During this phase, important 

structural decisions are made, such as defining the number of layers, assigning neurons to each layer, and selecting 

appropriate activation functions for each layer. Following architectural configuration, the important ANN parameters, 
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most notably the Mean Squared Error (MSE), and the number of training cycles, are determined. The ANN model is 

then trained, and the gained MSE is assessed. If the MSE falls within the specified acceptable range, the trained artificial 

intelligence (ANN) model is kept for use as a forecasting tool in the future. If the MSE falls short of expectations, the 

fifth step is to launch an iterative method in which more training cycles are performed, with the results acting as inputs 

to the previous phase. The last stage entails an in-depth analysis of the MSE requirements. If these requirements are not 

satisfied, the ANN design must be refined methodically. Modifications to the number of layers, modifications to 

activation functions, or an increase in the number of the selected training cycles, followed by a training process 

repetition, are all conceivable. 

 

Figure 4. Methodology Flowchart of ANN predictor building, training, and validation 

3.3. ANN Model Implementation Using MATLAB Software 

The use of Artificial Neural Networks (ANN) to forecast the dynamic characteristics of concrete, especially inside 

the MATLAB software environment, represents a reliable and practical technique. MATLAB has a comprehensive range 

of tools and methods for creating, training, and analyzing neural network models. Engineers and researchers can use 

MATLAB's Neural Network Toolbox to create intricate ANN architectures, defining the network structure, number of 

layers, neurons, and activation functions necessary for predicting dynamic properties such as the dynamic modulus of 

elasticity, the dynamic shear modulus, and Poisson's ratio in concrete. The user-friendly interface of MATLAB allows 

for quick data preparation, training, and validation of ANN models utilizing a variety of datasets collected from 

experimental testing, non-destructive assessments, or simulations. Engineers may construct precise and trustworthy 

prediction models for concrete's dynamic characteristics by harnessing MATLAB's computational skills and specific 

neural network features, enabling improvements in the structural analysis and design of concrete structures. The findings 

of a study of 72 concrete specimens have been gathered. The usage of a MATLAB code dedicated to network 

construction, training, and testing benefited the development and evaluation of the ANN mode. 

Data= data'; 

Data= data/2491.8; 

In=data (1:6, :); 

Tar= data (7:9, :); 

Net=newcf (in, tar, [6 12], {'tansig','tansig'}); 
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Net= init (net); 

net.trainParam.goal=0; 

net.trainParam.epochs=1000; 

Net =train (net, in, tar); 

y=sim (net, in); 

Figure 5 illustrates the three stages of the ANN architecture employed. It consists of an input layer with 6 neurons, 

two hidden layers with 6 and 12 neurons, and an output layer with 3 neurons. The activation function inside the hidden 

layer is Logsig, but the activation function within the output layer is linear. 

 

Figure 5. Used Artificial Neural Network 

3.4. MATLAB and R-Programming Regression Analysis 

Regression analysis is an effective statistical tool for examining relationships between two or more variables. 

Although regression analysis can be performed in a variety of methods, the common thread is an assessment of the 

influence of one or more independent variables on a dependent variable. Regression analysis was employed in this study 

to estimate the dynamic properties of concrete using MATLAB and R-programming tools. The following equations 

were obtained from the regression analysis: 

Ed = - 110.2111+ 0.4223 fc + 0.0521 γc + 0.7018 (L/D) (1) 

Gd = - 55.8351+ 0.1829 fc + 0.0254 γc + 0.3616 (L/D) (2) 

ʋd = 1.29 - 0.0013 fc + 0.000041 γc + 0.0117(L/D) (3) 

where Ed is Dynamic modulus of elasticity of concrete (GPa), Gd is Dynamic shear modulus of concrete (GPa), ʋd = 

Poisson’s ratio of concrete, fc is concrete compressive strength (MPa), γc is concrete density (kg/m3), and L/D is Aspect 

ratio which is expressed as the length (L) to diameter (D) ratio in cylindrical samples of concrete or the height-to-width 

ratio in prismatic specimens. 

4. Results and Discussion 

The dataset provided in Table 3 was used to train the ANN. The ANN model worked brilliantly, lowering the Mean 

Squared Error (MSE) between predicted and target values. Figure 6 shows that the error was extremely low, registering 

a value of 1.22x10-8, suggesting that the expected outputs were near the planned targets. The ANN simulation results 

were deemed sufficient since, as shown in Figure 6, both the training and validation MSE curves exhibited a steady 

decline until approaching a stability point. The negligible distinction between the two curves demonstrated that no 

overfitting occurred, meaning that the number of training and validation specimens was carefully set for trustworthy 

predictions. Table 3 validates the predicted outputs' proximity to the desired values, as shown by the MSE in Figure 6. 

The regression analysis was carried out using the MATLAB software, and the experimental data is presented in 

Table 3. This analytical approach was used to identify correlations and patterns in the dataset, and the resulting 

regression results have been thoroughly recorded and elegantly incorporated into the same table for easy reference. A 

detailed comparison study was conducted to guarantee a full assessment and validation of the prediction models. This 

entailed a thorough review of the results of experimental testing, Artificial Neural Network (ANN) modeling, and 

statistical regression analysis. Figures 7 to 9 carefully illustrate and graphically display the outcomes of this comparative 

investigation. These figures provide a clear and precise picture of the concordance or discrepancies between the 

experimental, ANN, and statistical regression analysis results. This comprehensive approach to comparative research 

enables a detailed understanding of each method's accuracy, dependability, and usefulness in forecasting the dynamic 

features of the concrete under examination. 
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Figure 6. ANN performance indicator 

 

Figure 7. Dynamic Modulus of Elasticity for Test Specimens (Experimental, ANN, and Regression Analysis Results 

 

Figure 8. Dynamic Shear Modulus for Test Specimens (Experimental, ANN, and Regression Analysis Results) 
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Figure 9. Dynamic Poisson’s Ratio for Test Specimens (Experimental, ANN and Regression Analysis Results) 

Figures 7 and 8 demonstrate a thorough visual presentation of the findings of the investigation comparing the 

expected dynamic modulus of elasticity and shear modulus. In this comparison investigation, both Artificial Neural 

Network (ANN) modeling and regression analysis approaches were used, and the results are surprisingly comparable 

with those obtained from experimental testing. The degree of agreement is strikingly high, with a maximum inaccuracy 

of 5% found. This tight agreement highlights the resilience and dependability of both ANN and regression analysis 

approaches in predicting the dynamic modulus of elasticity and concrete shear modulus. Figure 9 adds information on 

the dynamic Poisson's ratio, demonstrating a margin of error of about 20% for a certain number of specimens. This 

observed disparity, although existent, is restricted to specific occurrences and reflects the inherent difficulties associated 

with precisely estimating the dynamic Poisson's ratio, especially when sample variances or experimental subtleties are 

present. These figures' quiet insights contribute to a full understanding of the techniques' prediction capacities, 

prompting future modifications and considerations in the interpretation of dynamic characteristics in concrete. 

The interpretation of this expected error is mainly due to the aspect ratio, which can affect the dynamic characteristics 

of concrete. According to research, the aspect ratio of cylindrical and prismatic specimens can impact dynamic qualities 

such as the dynamic modulus of elasticity and the dynamic Poisson's ratio. In general, as the aspect ratio increases, so 

does the dynamic modulus of elasticity. This decline is particularly noticeable at larger aspect ratios. This phenomenon 

happens to be due to the concrete specimen's diminished lateral confinement effect as the aspect ratio increases, 

influencing its dynamic behavior. Similarly, an increase in the aspect ratio might lead to a decrease in the value of the 

dynamic Poisson's ratio. Under dynamic loading circumstances, this reduction is frequently linked with a reduction in 

transverse elongation, leading to changes in the Poisson's ratio. It is crucial to note that these impacts might vary based 

on the concrete's unique composition, testing procedures, and ambient circumstances. The influence of the aspect ratio 

on dynamic characteristics is just one of numerous elements that can affect the performance of concrete under dynamic 

stress, and it is frequently investigated in conjunction with other parameters to understand its overall impact. Beyond 

mix design and aspect ratio, predicting dynamic characteristics in concrete requires taking into account many relevant 

aspects. Curing conditions, which include temperature and humidity throughout the curing phase, have a considerable 

influence on the dynamic behavior of concrete. Aggregate parameters such as compassion, size, shape, and gradation 

are critical in influencing the total dynamic response. The water-to-cement ratio, which is an important aspect of the 

strength and durability of concrete, can affect its dynamic properties. Chemical admixtures provide an additional degree 

of complexity by changing rheological and mechanical properties. Variations in dynamic characteristics are also caused 

by temperature changes during curing and testing, loading rate, concrete age, and the presence and layout of reinforcing 

components. Furthermore, the testing methodology used, such as ultrasonic or resonance testing, brings subtleties to the 

results. A comprehensive understanding of these many factors is critical for improving prediction models and ensuring 

correct evaluations of concrete's dynamic behavior in a variety of structural applications. 

Regression analysis was conducted by MATLAB software. Figure 10 displays a thorough representation of projected 

values vs comparable experimental data. The observed distribution shows a random and symmetrical scattering of data 

points above and below the 45-degree diagonal line, indicating consistent variance across the dataset. The closeness of 

these data points to the diagonal line indicates that the model has a high level of goodness-of-fit. This finding emphasizes 

the model's accuracy in predicting values, as indicated by the model's little divergence from the idealized diagonal 

alignment. The total coefficient of determination (R-value) confirms the model's correctness, with a value of 0.99271. 

This strong R-value validates the suggested model's dependability and precision in predicting values with a high level 

of confidence. 
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Figure 10. Regression predicted values vs. measured experimental results 

5. Verification of the Proposed ANN Model 

They developed an ANN model that was used to predict a unique dataset obtained from the available literature to 

demonstrate its usefulness. This dataset was divided into two distinct sets: The first set is for the use of concrete prisms 

with concrete strengths ranging from 20 to 45 MPa, an average concrete density of 2285 kg/m3, and an aspect ratio of 

7.85 to 15.93 [5]. The second set is for the use of standard concrete 15 cm cubes with concrete strengths ranging from 

20 to 45 MPa, an aspect ratio of 1.0, and an average concrete density of 2430 kg/m3 [20]. 

The dataset verification findings, extensively shown in Table 4, give a complete analysis of the efficacy and 

dependability of the prediction models used in this investigation. A careful examination of the validation results reveals 

that the dynamic characteristics of concrete could be predicted properly and dependably. Table 4 provides a thorough 

validation of the predictive models' performance, providing a quantitative assessment of their capacity to replicate and 

forecast the dynamic characteristics gained from experimental testing. This validation stage is critical for confirming 

the robustness of the created models, bolstering the credibility of the study's findings, and indicating the possibility of 

wider application in practical situations involving concrete materials and structural dynamics. The comprehensive 

display of these validation results in Table 4 contributes to the research methodology's transparency and accountability, 

allowing participants and researchers to assess the correctness and dependability of the prediction models used in the 

study. 

Table 4. Experimental, ANN predicted, and regression analysis results of concrete specimens 

Ref. 
Unit Weight 

(kg/m3) 

Strength 

(MPa) 
L/D 

Experimental ANN Predicted Regression Analysis 

Ed 

(GPa) 

Gd 

(GPa) 
υd 

Ed 

(GPa) 

Gd 

(GPa) 

Ed 

(GPa) 

Ed 

(GPa) 

Gd 

(GPa) 
υd 

[14] 

2273 22.6 15.15 29.2 11.9 0.167 28.90 11.60 0.280 28.39 11.51 0.154 

2265 22.6 14.91 28.7 11.6 0.168 28.60 11.66 0.263 27.80 11.22 0.160 

2314 22.6 15.60 28.9 11.7 0.188 28.86 11.71 0.328 30.84 12.72 0.132 

2284 22.6 15.93 28.8 11.7 0.181 29.39 11.75 0.310 29.51 12.07 0.140 

2276 22.6 15.27 28.8 11.7 0.180 28.91 11.65 0.283 28.63 11.63 0.151 

2299 22.6 7.85 29.5 11.8 0.177 12.22 14.88 0.260 24.62 9.53 0.228 

[35] 

2408.40 20.88 1.0 23.83 9.25 0.288 23.74 9.20 0.322 24.79 9.52 0.266 

2412.20 22.00 1.0 24.18 9.36 0.291 24.44 9.52 0.317 25.46 9.82 0.263 

2406.70 21.33 1.0 23.87 9.24 0.291 24.07 9.37 0.319 24.89 9.56 0.266 

2414.20 22.44 1.0 24.42 9.47 0.290 24.73 9.64 0.315 25.75 9.95 0.262 

2416.80 21.77 1.0 24.16 9.38 0.288 24.17 9.37 0.321 25.60 9.89 0.261 

2421.10 21.44 1.0 24.05 9.30 0.293 23.85 9.19 0.325 25.68 9.94 0.260 

2405.80 22.22 1.0 24.30 9.43 0.288 24.74 9.69 0.312 25.22 9.70 0.265 

2408.40 21.55 1.0 23.98 9.25 0.296 24.19 9.42 0.318 25.07 9.64 0.265 
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2416.20 21.77 1.0 24.03 9.29 0.294 24.19 9.38 0.321 25.57 9.88 0.262 

2429.41 28.00 1.0 28.64 11.23 0.275 29.54 11.64 0.276 28.89 11.35 0.249 

2440.03 26.66 1.0 28.06 10.97 0.279 27.90 10.92 0.294 28.87 11.38 0.246 

2456.72 27.77 1.0 28.48 11.14 0.278 28.48 11.14 0.293 30.21 12.01 0.238 

2425.01 28.44 1.0 28.70 11.21 0.280 30.06 11.87 0.270 28.84 11.32 0.250 

2436.80 27.33 1.0 28.25 11.05 0.278 28.68 11.26 0.286 28.99 11.42 0.246 

2418.03 28.22 1.0 28.58 11.18 0.278 30.02 11.86 0.268 28.39 11.11 0.253 

2432.81 27.11 1.0 28.21 11.04 0.278 28.57 11.22 0.285 28.69 11.28 0.248 

2446.42 28.88 1.0 28.88 11.31 0.277 29.91 11.79 0.278 30.15 11.95 0.241 

2428.21 27.77 1.0 28.39 11.12 0.276 29.35 11.56 0.277 28.73 11.28 0.249 

2435.63 31.77 1.0 33.03 13.22 0.249 32.44 12.96 0.259 30.80 12.20 0.242 

2445.41 31.33 1.0 32.91 13.16 0.250 31.98 12.75 0.263 31.13 12.37 0.238 

2454.80 30.22 1.0 32.69 13.10 0.248 30.89 12.24 0.272 31.15 12.41 0.236 

2434.61 33.55 1.0 33.81 13.56 0.247 33.40 13.45 0.257 31.50 12.50 0.240 

2448.53 32.00 1.0 33.60 13.53 0.242 32.38 12.95 0.262 31.57 12.57 0.236 

2430.42 32.88 1.0 33.95 13.66 0.243 33.12 13.29 0.256 31.00 12.27 0.242 

2459.30 30.66 1.0 32.75 13.12 0.248 31.14 12.36 0.272 31.57 12.60 0.233 

2442.41 31.11 1.0 33.16 13.37 0.240 31.89 12.70 0.263 30.88 12.25 0.240 

2436.22 34.44 1.0 34.13 13.68 0.247 33.78 13.65 0.258 31.96 12.71 0.238 

2437.83 38.22 1.0 35.14 14.27 0.231 35.14 14.30 0.263 33.64 13.44 0.233 

2456.81 39.77 1.0 35.70 14.40 0.240 35.82 14.62 0.264 35.29 14.20 0.223 

2445.70 39.11 1.0 35.12 14.21 0.236 35.50 14.47 0.264 34.43 13.80 0.229 

2435.71 40.66 1.0 35.70 14.38 0.241 35.92 14.58 0.265 34.56 13.83 0.231 

2464.73 41.33 1.0 36.15 14.67 0.232 36.50 14.86 0.264 36.36 14.69 0.218 

2446.44 39.77 1.0 35.55 14.33 0.240 35.74 14.55 0.265 34.75 13.94 0.228 

2454.51 42.66 1.0 36.55 14.74 0.240 36.87 14.95 0.265 36.39 14.67 0.221 

2463.70 41.77 1.0 36.14 14.67 0.232 36.66 14.91 0.264 36.49 14.74 0.218 

2446.81 42.22 1.0 36.20 14.68 0.233 36.60 14.84 0.266 35.80 14.40 0.224 

2456.68 45.11 1.0 38.58 15.59 0.237 37.82 15.23 0.264 37.53 15.18 0.217 

2465.18 44.00 1.0 38.13 15.41 0.237 37.55 15.18 0.264 37.51 15.19 0.215 

2462.22 44.88 1.0 38.35 15.51 0.236 37.84 15.25 0.264 37.73 15.28 0.215 

2473.26 45.11 1.0 38.46 15.58 0.234 38.12 15.36 0.262 38.40 15.60 0.210 

2491.85 43.77 1.0 38.16 15.45 0.235 37.81 15.33 0.260 38.80 15.83 0.204 

2468.70 43.55 1.0 38.07 15.43 0.234 37.43 15.15 0.263 37.50 15.20 0.214 

2490.74 43.11 1.0 37.82 15.32 0.234 37.51 15.24 0.261 38.46 15.68 0.205 

2486.67 44.88 1.0 38.34 15.53 0.234 38.24 15.42 0.260 39.00 15.90 0.205 

2464.81 44.44 1.0 38.33 15.53 0.234 37.71 15.22 0.264 37.67 15.26 0.214 

Figures 11 and 12 show a comprehensive visual illustration of the comparison of the anticipated dynamic modulus 

of elasticity and shear modulus obtained by both Artificial Neural Network (ANN) modeling and regression analysis. 

These predictions are compared to the validation dataset's experimental testing outcomes. Surprisingly, the results of 

both ANN and regression analysis methodologies nearly match those of experimental testing, with a maximum error of 

5%. This remarkably close agreement highlights the resilience and dependability of both modeling techniques in 

successfully forecasting the dynamic modulus of elasticity and shear modulus for concrete, as confirmed against a 

different dataset. Figure 13 looks into the dynamic Poisson's ratio, revealing a margin of error of roughly 20% for 

specimens with notable aspect ratio values. This observed disparity is consistent with the findings in the results and 

discussion sections, where the influence of aspect ratio on dynamic characteristics was carefully investigated. This 

sophisticated knowledge enables a contextual explanation of the observed mistakes in forecasting the dynamic Poisson's 

ratio, stressing the impact of certain geometric properties on the predictive models' performance. The clear illustration 

of these results in Figures 11, 12, and 13 adds depth to the study's conclusions, providing a nuanced view of the predictive 

capabilities of the approaches used across several elements of concrete's dynamic behavior. 



Civil Engineering Journal         Vol. 10, No. 01, January, 2024 

261 

 

 

Figure 11. Dynamic Modulus of Elasticity for the Validation Datasets (Experimental, ANN and Regression Analysis Results) 

 

Figure 12. Dynamic Shear Modulus for Validation Datasets (Experimental, ANN, and Regression Analysis Results) 

 

Figure 13. Dynamic Poisson’s Ratio for Validation Datasets (Experimental, ANN, and Regression Analysis Results) 
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6. Conclusions 

Throughout this study, an in-depth examination of the dynamic characteristics of concrete was undertaken utilizing 

a variety of approaches, including ultrasonic testing, Artificial Neural Networks (ANNs), and Regression Analysis. The 

research looked at the consequences of elements, including material properties and geometric characteristics, giving 

insight into their impact on the dynamic behavior of concrete. The research effort aims to improve the knowledge of 

how concrete responds to dynamic loads by using modern tools and methodologies, thereby considerably adding to civil 

engineering and construction. These detailed evaluations served as the foundation for generating significant findings 

critical to the advancement of concrete technology and structural dynamics, including the following: 

• This study has successfully demonstrated the capability of non-destructive testing using an ultrasonic pulse 

velocity tester to provide accurate and acceptable estimates of concrete's dynamic mechanical properties. This 

approach proves to be highly reliable, offering dynamic property predictions that align well with those obtained in 

prior research investigations. 

• There is a remarkable consistency between the experimental results and those obtained through ANN modeling 

and statistical regression analysis. The dynamic properties of concrete estimations from the ANN and regression 

analysis exhibited an error margin of less than 5%, but for a few specimens, it reached about 20%, especially for 

significant aspect ratios compared to the experimental findings. This exceptionally close agreement between 

experimental and computational methods underscores the accuracy and reliability of the developed ANN model, 

making it a powerful tool for estimating concrete's dynamic properties in real-world applications. 

• The study not only validates the effectiveness of non-destructive testing for dynamic property estimation, but it 

also reveals nuances in the relationship between dynamic properties and aspect ratio in specific concrete scenarios, 

as evidenced by the comparison study of the Poisons ratio, which leads to an error of up to 20%. 

• The results of this study offer various intriguing areas for future research in the field of concrete materials and 

structural dynamics. To begin with, incorporating sophisticated machine learning techniques other than ANNs, 

such as deep learning and convolutional neural networks (CNNs), gives an intriguing opportunity to enhance and 

broaden the scope of dynamic property estimation. Furthermore, examining broad datasets reflecting various 

concrete mix designs, ambient circumstances, and structural configurations can offer a more thorough knowledge 

of the subtle interactions between material attributes. Finally, the integration of multi-modal data sources, such as 

ultrasonic testing, acoustic emission, and vibration analysis, may allow for a more holistic approach to dynamic 

property estimation, improving the resilience and reliability of predictions. 
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