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Abstract 

Heart Rate Variability (HRV) may be used as a psychological marker to assess drivers’ states from physiological signals 

such as an electrocardiogram (ECG), electroencephalogram (EEG), and photoplethysmography (PPG). This paper reviews 

HRV acquisition methods from drivers and machine learning approaches for driver cardiac health based on HRV 

classification. The study examines four publicly available ECG datasets and analyzes their HRV features, including time 

domain, frequency domain, short-term measures, and a combination of time and frequency domains. Eight machine 

learning classifiers, namely K-Nearest Neighbor, Decision Tree, Naive Bayes, Linear Discriminant Analysis, Support 

Vector Machine, Random Forest, Gradient Boost, and Adaboost, were used to determine whether the driver's state is 

normal or abnormal. The results show that K-Nearest Neighbor and Decision Tree classifiers had the highest accuracy at 

92.86%. The study concludes by assessing the performance of machine learning algorithms in classifying HRV for the 

driver's physiological condition using the Man-Whitney U test in terms of accuracy and F1 score. We have statistical 

evidence to support that the prediction quality is different when HRV analysis applies these three sets: (i) time domain 

measures or frequency domain measures; (ii) frequency domain measures or short-term measures; and (iii) combining time 

and frequency domains or only frequency domains. 
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1. Introduction 

The fluctuation in the intervals between adjacent heartbeats is referred to as heart rate (HR), whereas heart rate 

variability (HRV) is the number of heart beats per minute used to characterize the time series of the interval variation 

between subsequent heartbeats [1, 2]. HRV is an excellent predictor of human health and is thought to be capable of 

predicting existing or future health issues such as heart disease like myocardial infarction (MI), atrial fibrillation (AF), 

ventricular fibrillation (VF), congestive heart failure (CHF), cardiac arrhythmia, etc. [3, 4], and mental health disorders 

such as anxiety and depression. Moreover, since the European Society of Cardiology and the North American Society 

of Electrophysiology [5] established recommendations for the use of HRV, this approach has become more widely used 

and is not only confined to neurology, surgery, exercise physiology, physical activity, and anesthesia [6, 7]. HRV 

analysis in the time, frequency, and nonlinear domains has also been shown to be conceivable for the detection and 

identification of driver states [8, 9] in driver status monitoring systems. 
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Since HRV and the autonomic nervous system (ANS) are closely associated, HRV is a popular measurement that 

may be derived from non-intrusive and wearable physiological measurements [3], such as surface electrocardiograms 

(ECG), electroencephalograms (EEG), and photoplethysmography (PPG) [10]. 

The electrocardiogram (ECG) is the gold standard for HRV analysis [11], where the HRV signal from the ECG is 

derived from the R-R interval [8]. The ECG shows the voltage and time graph of the driver's heart's electrical activity. 

To establish a single lead channel for recording the ECG signal, at least three surface electrodes must be applied to the 

skin. Before beginning the recording, the ECG must be set up many times [8]. The heart rate, heart rate variability 

(HRV), and breathing rate can then be determined using the recorded ECG data and offer important insight into the 

driver's internal states [10]. Though the results might contain errors because of delay, biological and electromagnetic 

interference, and the complex ECG signal structure [8]. Suitable QRS detection algorithms must be used to derive the 

HRV signal. These algorithms must be used to identify acceptable interpolation and resampling, detect the peaks and 

their R wave, acquire the interval of RR, and provide a consistently sampled tachogram. ECG data that has been 

transformed into HRV for analysis where the QRS complex is dominant reveals the autonomic nervous system's reaction 

and enables the prediction of the driver's degree of stress [9]. 

Besides ECG, an electroencephalogram (EEG) is feasible to extract HRV as a matter of course during EEG data 

processing by installing a single EEG sensor on the chest [7]. During EEG tests, HRV indicators serve as supplementary 

assessments of the subject's physiological status. Information from EEG data is mostly employed in studies of brain 

activity. Mean frequency, energy contents, and bands are examples of frequency domain properties that can be used to 

determine a driver's state, such as driver fatigueness, which is revealed by the fronto-medial activity ϑ power [12], 

whereas standard deviation and average value are time-domain measures that provide information about driver alertness 

[13]. In a previous study, the EEG-Beat algorithm was proposed to perform automated analysis of HRV from the EEG. 

The algorithm implements a top-down divide-and-conquer technique to detect the signal peak instead of using QRS 

complex recognition. However, the algorithm was tested on health patients and found to be inappropriate for online and 

clinical applications [7]. In driving situations, placement of the EEG electrodes on the driver’s head may impair their 

ability to focus on the road and include noise. Hence, a filter is always used to pre-process the recorded data [13]. 

Alternatively, PPG, an electro-optical approach, has been proposed to derive and monitor the HRV signal due to its 

low-cost optical sensors, ease of sensor insertion, non-invasive nature, and inexpensive cost. With each cardiac cycle, 

PPG signals depict blood volume fluctuations in a superficial body location and pulsatile blood pressure changes [14]. 

The computation of the HRV signal from the PPG signal uses the inter-beat interval (IBI) or pulse interval (PPI), utilizing 

software algorithms [8]. The position of a peak in a PPG signal reflects the point in time when a heartbeat occurs. 

However, PPG signals from wearable devices are sensitive to any small error in identifying the correct location of peaks. 

Hence, a Bayesian learning system was proposed to improve HRV estimates when the PPG is affected by artifacts [15]. 

Thus, reliable detection of the position of peaks in the PPG signal is required for HRV computation, which leads to the 

exact computation of time intervals between successive heartbeats [15]. 

Researchers frequently use extracted features of HRV from at least 5-minute ECG data [11] to evaluate the health 

of control subjects with hypertension, stress, and cardiovascular diseases in driver status monitoring systems. Moreover, 

the driver monitoring system is a complex application where safety is crucial [12]. Hence, the deployment of machine 

learning systems in this type of system enables optimization of the monitoring while simultaneously providing 

interpretability of their reasoning. Machine learning is a process that allows computers to self-learn without the use of 

specialized code and may be used to build systems for data analysis, decision-making, and data preparation in real-world 

circumstances. This allows researchers to evaluate whether such reasoning is correct. For example, machine learning 

can demonstrate HRV classification and enhance driver state detection models while allowing interpretability of the 

learned model. Features derived from physiological signals, combined with machine learning, may offer highly accurate 

detection and recognition of driver states, which can promote safe driving [3, 13]. Supervised learning and unsupervised 

learning are machine learning approaches that have been employed to evaluate the reasoning of driver-state monitoring 

systems. Figure 1 shows the physiological-based driver monitoring system (DMS) components. 

 

Figure 1. Physiological-based DMS components 

Open source and private technologies, as well as equipment with higher mobility, cheaper cost, easier operation, and 

wider accessibility, have lately emerged as new instruments for monitoring individual cardiac health, including HRV 

recording and analysis. As HRV analysis has advanced, several technologies have been designed and tested, with 

portable transmission systems proving to be trustworthy. Mobile devices like chest heart rate monitors and smart phones 
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that have been synced with the transmitters are usually utilized for signal collection. The HRV analysis is done using 

external software [6]. Moreover, Google Fit, a Google smartphone program produced by Google, allows for the 

measurement of the number of heartbeats and respiration. Since smartphones have been part of our lives, Google may 

choose to profit from the opportunity for individuals to monitor their health in several settings, including while driving 

[14, 15]. Moreover, wearable and non-wearable devices allow drivers to monitor health factors using physiological 

sensors conveniently. 

This study employs eight supervised machine learning classifiers with distinct properties in order to perform 

comparative analysis on four publicly available drivers’ ECG datasets in order to offer the best prediction model for 

driver state monitoring systems. The study on different combinations of HRV parameters and the performance of the 

machine learning classifiers was also conducted. Section 2 presents related work on HRV analysis using machine 

learning approaches. Material and methods used for this study are explained in Section 3, and results are presented in 

the following Section 4. Lastly, the study is concluded in Section 5. 

2. Related Work 

Machine learning approaches or models have been implemented for HRV analysis. Most researchers train and test a 

range of machine learning algorithms before selecting the algorithm that best tackles the problem once all performance 

data has been collected. In general, HRV analysis employs feature selection, supervised and unsupervised machine 

learning, as well as deep learning, to classify different driver states based on HRV characteristics. 

2.1. Feature Selection 

Researchers have used shorter windows to extract information related to physiological function in real-time, in 

addition to automated diagnosis and categorization [16]. For instance, Castaldo et al. [5] proposed using ultra-short HRV 

to compensate for short HRV. Six ultra-short HRV features, including MeanNN, StdNN, MeanHR, StdHR, HF, and 

SD2, demonstrated consistency across all excerpt lengths, which ranged from 1 to 5 minutes when used in IBK to detect 

drivers’ mental health [17]. Feature selection algorithms like Principal Component Analysis (PCA) and Genetic 

Algorithm (GA) can simplify a classifier, improve classification accuracy, and shorten classification times [18–21] by 

selecting a subset of the most representative features from ECG data [19] for different types of drivers’ state monitoring 

systems. 

Persson et al. [18] implemented Sequential Forward Floating Selection (SFFS) to select the most influential features 

to predict driver drowsiness from HRV data. The SFFS was equipped with a binary decision tree classifier, five-fold 

cross-validation, twenty cross-validation trials, and an optimization score that balanced sensitivity and specificity. The 

SFFS technique was carried out 20 times on various feature selection set divisions since SFFS frequently produces low-

dimensional, non-redundant, but noise-sensitive feature sets. The final feature set was composed of the characteristics 

chosen in 20% of the repeats. 

Benchekroun et al. [9] proposed filtering and iterative HRV data imputation using a Gaussian distribution to improve 

classification accuracy in cases where the signals have a high percentage of missing data. The results show a stable F1 

score of 61% compared to other imputation methods, i.e., HRV distribution, variability, and characteristics (DVC), 

linear, shape-preserving piecewise cubic Hermite (pchip), and spline interpolation using the Python Toolbox HRV. 

Hasan et al. [14] applied two methods for selecting features for drowsiness detection, i.e., the ANOVA-F Test and 

the correlation-based feature selection algorithm. A final list of ensemble characteristics based on the stability selection 

strategy was created by combining the findings from the two methods. This approach selects an acceptable threshold 

value for each feature from various measurements based on a predetermined threshold. Then, the characteristics that 

have values over the threshold are given one point, while the other features are given zero points. As a result, the most 

crucial features are chosen. 

2.2. Supervised Learning 

Since 2010, the most popular technique for categorizing different heart diseases and symptoms associated with HRV 

has been supervised learning. Models like Decision Tree (DT), Linear Discriminant Analysis (LDA), Random Forest 

(RF), Support Vector Machine (SVM), and k-nearest neighbors (kNN) may predict labels based on related 

characteristics thanks to supervised models that learn the data and predict labels through learned mapping [16]. Table 1 

lists a summary of previous work on HRV classification based on drivers. 

For instance, in a driver drowsiness or sleepiness detection system, Persson et al. [18] examined the performance of 

four distinct binary classifiers: kNN, SVM, AdaBoost, and RF to detect drowsy drivers from binary and multiclass 

classifications of drowsy drivers. The random forest classifier produced the best overall results for binary classification. 

which implies that HRV classification requires the use of customized algorithms. In addition, hybrid combinations of 
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physiological sensors are strongly advised to improve the sensitivity and specificity of the driver drowsiness system. 

According to Hasan et al. [14], when 13 characteristics from the EEG, EOG, and ECG were used, Artificial Neural 

Network (ANN) classifiers produced the best overall results compared to KNN, SVM, and RF classifiers. 

Moreover, Vincente et al. [8] employed LDA to classify truck drivers ECG data based on driver drowsy detectors 

and sleep deprivation detectors. Although the detection was very accurate, the findings show that there are several 

inaccuracies in wireless ECG identification when a vehicle is moving and that some areas of the signal were blank when 

the truck was moving. This was addressed by Benchekroun et al. [9], who investigated the effect of imputation on 

classifiers when the collected signals have many missing data points. However, instead of LDA, RF was combined with 

the imputation method to determine subjects’ arousal state, either relaxed or stressed, in the lab environment. 

In another type of driver state monitoring system like driver stress detection and monitoring, Bousseljot [11] 

discovered that SVM-RBF was able to classify HRV parameters, i.e., time, frequency, nonlinear, and time-frequency 

domains, with 83% accuracy in determining drivers’ stress. However, there was no validation or testing conducted in 

that investigation. Iqbal et al. [22], on the other hand, investigated the performance of logistic regression, Gaussian 

Naïve Bayes, DT, RF, AdaBoost, and KNN on stress recognition in the Automobile Driver Dataset and SWELL-KW 

dataset. Results show that DT has the highest classification accuracy, followed by AdaBoost. An automated approach 

to assessing automobile drivers’ stress was proposed using SVM. Findings reveal that manual driving is more demanding 

compared to autonomous driving [23]. 

Moreover, when different HRV characteristics from short and ultra-short HRV were used, the IBK classifier 

performed the best compared to Multilayer Perceptron (MLP), SVM, MLP, DT, and LDA. Six of the 23 ultra-short 

HRV features (MeanNN, StdNN, MeanHR, StdHR, HF, and SD2) demonstrated consistency across all excerpt lengths 

(i.e., from 5 to 1 min) when used in a well-dimensioned automatic classifier to detect drivers’ mental health [17]. In 

another work, the synthetic minority over-sampling technique (SMOTE) was applied to reduce the effect of imbalanced 

data on classification accuracy. The study reveals that RF performed better compared to SVM and MLP in determining 

drivers’ normal and surprise states [24]. 

In contrast to supervised learning models, unsupervised machine learning models do not require class labels to 

classify drivers’ states. The models apply clustering techniques such as Affinity Propagation, Balanced Iterative 

Reducing and Clustering using Hierarchies (BIRCH), K-mean, Mini-Batch K-mean, Mean Shift, Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), and Ordering Points to Identify the Clustering Structure (OPTICS) 

for monitoring stress based on acquired data from wearable devices [22]. In a previous study, Wang and Guo employed 

the supervised ensemble classifier in conjunction with an unsupervised learning classifier to detect stress in drivers' foot 

galvanic skin response (GSR) data. Their suggested model detected stress with an accuracy of 90.1% [25]. Moreover, 

the combination of autoencoders and unsupervised deep learning to categorize mental stress related to HRV is a new 

approach that is expected to gain traction in 2019. Self-organizing map (SOM), a dimensional reduction technique 

developed through unsupervised learning, may identify the most useful elements needed to accurately characterize 

stress. To cluster and classify raw HRV data gathered from firefighters, we offer an unsupervised technique that 

combines autoencoders, i.e., convolutional autoencoder (CAE) and LSTM autoencoder (LAE), and density-based 

clustering with previous information [26]. 

Recently, deep learning has been used more often in HRV research to improve real-time automatic categorization. 

They can detect hidden patterns in input by using hidden layers and iteratively minimizing data mistakes prior to 

classification. As a result, the algorithm is better at gathering relevant data about the topic under investigation, 

classification accuracy improves, and fewer characteristics are required for real-time classification [16]. 

Convolutional neural network (CNN) architectures like LeNet, AlexNet, VGGNet, ResNet, Inception, DenseNet, 

and EfficientNet, recurrent neural networks (RNN), long-short-term memory (LSTM), and gated recurrent units are 

examples of popular deep supervised learning methods (GRU) [27–30]. For instance, a new drowsiness detection 

approach was presented in [31]. The approach uses raw R-R Interval (RRI) time series as inputs and trains the 

drowsiness detection model with LSTM and an autoencoder. The results revealed that RRI characteristics were 

superior to HRV features. Additionally, Oskooei et al. [32] presented a CNN-LSTM framework based on the 

integration of extracted HRV time domain parameters from raw ECG, vehicle data, and contextual data in drivers' 

stress level detection models in a variety of driving situations. The integration improves the classification accuracy 

of the classifier based on 27 drivers. In another study, Huang et al. [17] collected 15 drivers' biological data, including 

EEG (2 channels), ECG, EDA, RSP, and HR, in a simulated driving experiment. The driver's mental workload was 

classified using CNN, LSTM, and a combination of both, known as CNN-LSTM, after selecting features using 

XGBoost. The findings show that CNN_LSTM has the highest accuracy of 97.8% when utilizing 3-second samples 

and outperforms the CNN model in all circumstances. 
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Table 1. Summary of previous work on HRV classification based on drivers 

Application Machine Learning Approach Signals 

Driver Drowsiness 

Random Forest; Support vector machine; Decision Tree; Naive Bayes; 1D CNN2 [22] ECG 

Linear Discriminant Analysis (LDA) [8] ECG 

kNN; SVM; Random Forest; Artificial Neural Network [21] ECG; EOG; PPG 

XGBoost; CNN; ConvLSTM; CNN+LSTM [30] ECG 

Driver Stress 

SVM; MLP; RF [24] ECG 

SVM; KNN; Ensemble [32] ECG 

Random Forest; Support vector machine; Decision Tree; Naive Bayes; 1D CNN2 [31] ECG 

Auto detection of 

myocardial infraction (MI) 
Linear Discriminant Analysis (LDA) [8] ECG 

Mental Workload kNN; SVM; Random Forest; Artificial Neural Network [21] ECG; EEG; GSR; RESP; RR 

Surprise Driving XGBoost; CNN; ConvLSTM; CNN+LSTM [30] ECG 

Drowsiness; visual 
inattention; fatigue; 

cognitive inattention 

SVM; MLP; RF [24] ECG 

3. Method 

In this study, we followed the basic machine learning process as our research framework, which consists of five 
steps, i.e., acquire, pre-process, extract, classify, and evaluate, as shown in Figure 2. Based on our objectives for the 
study, we used publicly available datasets that have been used in previous research related to drivers’ physiological state 
monitoring systems, namely DriveDB, HCILAB, Drozy, and DMD, as described in Table 2. The PTB, PTB-XL, and 
MIT Affective Road Datasets were not included for further investigation since the datasets do not fulfill the objective 
of the study. The PTB Dataset and PTB-XL are acquired from clinical records and not specific to drivers, whereas the 
MIT Affective Road Dataset does not include ECG recordings. The ECG signals acquired then need to be pre-processed 
to remove noise from the individuals' movement, respiration, and electrical muscle activity. Besides that, environmental 
noise or technological aberrations caused by analog and digital signal processing might affect heart rate variability 
measurements [33]. After that, the analysis of HRV may be performed on long-term (a 24-hour record), short-term (a 
5-minute record), or ultra-short-term (less than 5-minute records). Moreover, for short-term recordings, the accuracy of 
HRV values is dependent on robust digital infinite impulse response (IIR) filters, such as analog models, which can 
provide NN interval series adequate to reflect physiological signals [34, 35]. Hence, 50Hz notch filtering and a bandpass 
filter of 0.75 Hz to 35 Hz were applied. 

 

Figure 2. Research framework 

Table 2. Datasets used by previous research for driver physiological measures 

Acquire Pre-process Extract Classify Evaluate

Dataset Description 

Stress Recognition in 
Automobile Driver database 

(DRIVEDB) [36, 37] 

The dataset is made up of ECG, EMG (right trapezius), GSR (galvanic skin resistance) measurements taken on the 
hand and foot, and breathing recordings taken by 13 healthy volunteers while driving on a predetermined route that 
included city streets, highways, and Z-zones in and around Boston, Massachusetts. The data collection was done to 
test the feasibility of automated stress detection. 

A Dataset of Real World Driving 

to Assess Driver Workload 
(HCILAB) [38] 

The dataset comprises around 2,500,000 ECG, skin conductance response (SCR), and body temperature samples, as 
well as a post-hoc video evaluation session of 10 drivers in a real-world motorway, highway, regular streets (50 km/h), 
and 30 km/h zone. The dataset was used to investigate the changes in drivers' mental workloads based on road 
conditions. 

PTB Dataset [36, 39] 
549 high-resolution 15-lead ECGs with clinical summaries (12 standard leads plus Frank XYZ leads). Each of the 294 
participants has one to five ECG records, and they include both healthy volunteers and patients with a variety of 
cardiac diseases such as myocardial infarction and heart failure. 

PTB-XL [40] 
The dataset comprises 21,837 clinical 12-lead ECG records of 10 seconds length from 18,885 patients classified based 
on the SCP-ECG standard including normal, hypertension, myocardial infraction, conduction disturbance and 
hypertrophy. 

MIT Affective Road Dataset [8] 

This dataset features 13 drives conducted by 10 drivers in total. The physiological signs recorded were EDA, HR, BR, 
and skin temperature. Furthermore, GPS data, films (filming inside and outside automobile scenes), and in-car 
temperature, humidity, and sound level were recorded. A stress measure from low (0) to high (1) was created in real-
time based on observation during the driving experiment. 

ULg Multimodality Drowsiness 
Database (DROZY) [41] 

Recordings of 14 subjects’ Psychomotor Vigilance Test (PVT) to measure drowsiness which includes Karolinska 
Sleepiness Scale (KSS), Kinect v2 Sensor, face landmarks and Polysomnography (PSG) i.e., 5 electroencephalogram 
(EEG) channels, 2 electrooculogram (EOG) channels, electrocardiogram (ECG), and electromyogram (EMG). 

Warwick-JLR Driver Monitoring 
Dataset (DMD) [42] 

Includes recordings of EDA and ECG from 13 subjects as well as data from vehicle CAN-bus during driving 
experiment to assess driver mental workload. 
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Once the pre-processing is finished, HRV feature analysis can be separated into time, frequency, and non-linear 

domains. We extract the HRV features using the Python Heart Rate Analysis Toolkit, which includes eight features from 

time domain measures and ten from frequency domain measures [43]. Besides exploring the time and frequency domains 

separately, we considered eight short-term measures, combining three features from time domain measures and five 

from frequency domain measures proposed in Zontone et al. [44] work as listed in Table 3. 

Table 3. HRV parameters 

Time domain Frequency domain Short-term measures 

BPM: heart rate in beats per minute 
VLF: Absolute power of the very-low-

frequency band (0.0033–0.04 Hz) in ms2. 
IBI: interbeat interval in millisecond. 

IBI: interbeat interval in millisecond 
LF: Absolute power of the low-frequency band 
(0.04–0.15 Hz) in ms2 d. 

SDNN: standard deviation of intervals between 
adjacent beats in millisecond 

SDNN: standard deviation of intervals 

between adjacent beats in millisecond 

HF: Absolute power of the high-frequency band 

(0.15–0.4 Hz) in ms2. 

RMSSD: root mean square of successive differences 

between adjacend R-R intervals in millisecond. 

SDSD: standard deviation of successive 
differences between adjacent R-R intervals 

LF/HF: Ratio of LF-to-HF power 

p_total: Total power. 

LF: Absolute power of the low-frequency band (0.04–
0.15 Hz) in ms2. 

pNN20: proportion of differences between 
R-R intervals greater than 20 ms 

VLF_perc: Relative powers of VLF band. 
HF: Absolute power of the high-frequency band 
(0.15–0.4 Hz) in ms2. 

pNN50: proportion of differences between 
R-R intervals greater than 50 ms 

LF_perc: Relative powers of LF band. 

HF_perc: Relative powers of HF band. 
LF/HF: Ratio of LF-to-HF power. 

RMSSD: root mean square of successive 
differences between adjacend R-R intervals 

in millisecond 

LF_nu: Power of LF band in normalized unit. LF_nu: Power of LF band in normalized unit. 

MAD: mean absolute deviation HF_nu: Power of HF band in normalized unit. HF_nu: Power of HF band in normalized unit. 

In this study, short-term HRV from ECG data was utilized to assess the performance of eight distinct machine 

learning classifiers, i.e., Adaboost (AB), Gradient Boost (GB), Random Forest (RF), K-nearest neighbors (KNN), Naïve 

Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT), and Linear Discriminant Analysis (LDA), to detect 

drivers’ physiological states, either normal or not. The NB classifier is a straightforward probabilistic classifier based 

on Bayes' theorem and strong independence assumptions between variables. Prior knowledge is used by the classifier to 

determine the probabilities of sample data. SVM uses kernels to solve the computational challenge of forecasting. The 

values of each variable are displayed as dots in a dimensional space with precise coordinates. The RF model is ensemble 

learning and tree-based, and it is used to build predictive models. The classifier generates a forest out of trees; more 

trees equals a more resilient forest. RF takes the data samples to form decision trees, calculates each tree, and uses the 

voting procedure to determine the best result. AdaBoost, or meta-learning, is widely regarded as one of the most effective 

boosting algorithms. It employs the iterative idea to investigate the flaws of weak algorithms and transform them into 

robust ones. 

The drivers’ states in each dataset were classified as normal (0) or abnormal (1) and the performance of all classifiers 

was assessed based on 70-30 splitting and 10-fold cross validation on accuracy and F1 score when different HRV 

parameters were included. 

4. Results and Discussion 

In general, the performance of machine learning classifiers is evaluated based on accuracy, precision, recall, F1 

Score and error rates. Even so, accuracy and F1 Score are two measures which are frequently used to assess the quality 

of classifiers in machine learning. Accuracy represents the ratio between correctly predicted values and all results. 

Classifiers with a higher accuracy rate are better than those with lower accuracy rate. However, accuracy is only valid 

if the data we are dealing with is balanced. On the contrary, besides precision and recall, F1 score is used to validate the 

performance of classifiers on imbalanced datasets. The F1 score indicates how accurate the model is by indicating how 

many correct classifications are produced. It does not miss positive outcomes and predicts negative ones as well. Hence, 

in this study accuracy and F1 score metrics were used in evaluating the performance of the machine learning classifiers. 

Figures 3 to 10 show the accuracy and F1-score of the classifiers which are evaluated in this study. The four dataset 

names were suffixed with the extracted features from the ECG i.e., t (time domain), f (frequency domain), tf 

(combination of time and frequency domain) and s (short-term measures). The highest value obtained based on 

individual dataset is in bold text. The level of accuracy achieved differs based on the databases and ECG features utilized. 

The HCI-lab database with time-domain features, coupled with KNN and DT classifiers, delivered the highest accuracy 

and F1 score, exceeding 90%. When it comes to Drozy-f, many classifiers had poor accuracy with less than 50%, and 

the highest accuracy achieved was only 52.63%. Regarding the F1 score, NB performs poorly, mainly when evaluated 

using the Drozy dataset. This is evident as NB produces a 0% F1 score for Drozy-f, Drozy-s, and Drozy-tf. 
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Figure 3. Accuracy of ML using time domain features 

 

Figure 4. Accuracy of ML using frequency domain features 

 

Figure 5. Accuracy of ML using short-term features 
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Figure 6. Accuracy of ML using time-frequency domain features 

 

Figure 7. Accuracy of ML using time domain features 

 

Figure 8. Accuracy of ML using frequency domain features 
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Figure 9. Accuracy of ML using short-term features 

 

Figure 10. Accuracy of ML using time-frequency domain features 

The poor performance can be seen as a result of having an imbalanced dataset. Moreover, we found that since 

accuracy does not consider how the data is distributed, a high value of accuracy does not mean that the model is actually 

able to correctly predict the outcomes. For example, the best model for dataset Drozy-f is generated by a decision tree 

with an accuracy of 52.63. However, the highest F1 score for the same dataset was produced by Gradient Boost, i.e., 

57.14%. Hence, in this case, the F1 score is a better metric to be used for imbalanced data such as Drozy-f. 

Nevertheless, comparing accuracy and F1 score alone makes it difficult to determine whether the performance of 

each machine learning classifier is significantly different from another. There is a probability that a classifier produced 

a higher accuracy and F1 score by random chance since this study only involved a few datasets. Another qualitative way 

to compare performance is based on the number of times the classifier produces the highest value of accuracy and F1 

score compared to other classifiers. However, this approach is very subjective. For instance, in our comparison, 

AdaBoost produced the highest accuracy (6 times) and F1 score (4 times) compared to other classifiers (refer to Figure 

11). Other classifiers have a similar number of occurrences, which makes it not feasible to determine the performance 

in this manner. Hence, statistical significance tests were applied to provide a better comparison of the classifiers. If the 

null hypothesis, or assumption, is rejected, it implies that the difference in the classifier's performance is statistically 

significant. 
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Figure 11. The frequency of ML achieved 1st rank: a) Accuracy, b) F1 score 

In this study, we use a non-parametric test known as the Man-Whitney U test, which is equivalent to the Wilcoxon 

Sum Rank Test. A two-tailed test is performed at a 95% confidence level (p<0.05). The null hypothesis can be rejected 

when the p-value is less than 0.05, which indicates that there is enough evidence to statistically reject that both classifiers 

A and B have identical performance. We evaluated the accuracy and F1 score of AdaBoost, Gradient Boost, Random 

Forest, Support Vector Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and Linear Discriminant Analysis 

(LDA) with one another for all datasets listed earlier in Table 3. The p-values are shown in Tables 4 and 5. From the 

results, we conclude that there is not enough evidence to statistically reject the null hypothesis. Hence, we do not have 

statistical evidence to claim that any of the investigated machine learning classifiers have different performance from 

the other classifiers in terms of accuracy and F1 score when tested on the datasets used for this study. 

Table 4. Comparison of machine learning classifiers using Man-Whitney U test p-values (accuracy) 

Accuracy AdaBoost Gradient Boost Random Forest SVM KNN DT NB LDA 

AdaBoost n/a 0.77948 0.56868 0.90448 0.77182 0.6672 0.23014 0.70394 

Gradient Boost 0 .77948 n/a 0.89656 0.65994 0.48392 0.85716 0.30772 0.92828 

RF 0.56868 0.89656 n/a 0.53526 0.33204 1.0000 0.40090 0.88866 

SVM 0.90448 0.65994 0.53526 n/a 0.71884 0.50926 0.21498 0.64552 

KNN 0.77182 0.48392 0.33204 0.71884 n/a 0.34722 0.10310 0.36812 

DT 0.6672 0.85716 1.0000 0.50926 0.34722 n/a 0.38978 0.84930 

NB 0.23014 0.30772 0.40090 0.21498 0.10310 0.38978 n/a 0.34722 

LDA 0.70394 0.92828 0.88866 0.64552 0.36812 0.84930 0.34722 n/a 

Table 5. Comparison of machine learning classifiers using Man-Whitney U test p-values (F1 score) 

F1 score AdaBoost Gradient Boost Random Forest SVM KNN DT NB LDA 

AdaBoost n/a 0.94420 0.52870 0.90448 0.62414 0.72634 0.18352 0.99202 

Gradient Boost 0.94420 n/a 0.33706 0.96012 0.62414 0 .71138 0.19020 0.93624 

RF 0.52870 0 .33706 n/a 0.54850 0.41794 0.21870 0.36282 0.41222 

SVM 0.90448 0.96012 0.54850 n/a 0.65994 0 .72786 0.22246 0.99202 

KNN 0 .62414 0.62414 0.41794 0.65994 n/a 0.65272 0.09492 0.70394 

DT 0.72634 0.71138 0.21870 0 .72786 0.65272 n/a 0.10524 0.68180 

NB 0.18352 0.19020 0.36282 0.22246 0.09492 0.10524 n/a 0.20054 

LDA 0.99202 0.93624 0.41222 0.99202 0.70394 0.68180 0.20054 n/a 

In addition, we further analyzed the impact of different HRV parameters on the machine learning classifiers accuracy 

and F1 score to predict driver states as either normal or abnormal using the Man-Whitney U test. The null hypothesis 

can be rejected when the p-value is less than 0.05, which indicates that there is enough evidence to statistically reject 

that different groups of HRV parameters have identical performance. Based on the significant p-values as underlined in 

Table 6, we have enough statistical evidence to reject the null hypothesis for time (T)-frequency (F), frequency (F)-
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short-term (S), and a combination of time and frequency (TF)-frequency (F). This indicates that the prediction quality 

is different when HRV analysis applies these three sets: (i) time domain measures or frequency domain measures; (ii) 

frequency domain measures or short-term measures; and (iii) combining time and frequency domains or only frequency 

domains. On the other hand, applying only the time domain measure is not different from applying the short-term 

measures or the combination of time and frequency domain measures. This may provide future researchers with more 

confidence to further investigate the HRV parameters in the context of monitoring drivers' states. 

Table 6. Comparison of Man-Whitney U test p-values on datasets with different HRV parameters 

p-value (accuracy) p-value (F1 score) 

 T F S TF T F S TF 

T n/a 0.00024 0 .23014 0.4354 n/a 0.00050 0.17384 0.17068 

F 0.00024 n/a 0.00600 0 .00298 0.00050 n/a 0.01596 0 .00528 

S .23014 0.00600 n/a 0.69654 0.17384 0.01596 n/a 0 .94420 

TF 0.4354 0.00298 0.69654 n/a 0.17068 0 .00528 0 .94420 n/a 

5. Conclusions 

In this study, we examined a prediction model for driver condition monitoring systems by combining heart rate 

variability (HRV) data with supervised machine learning methods. Our work aims to improve driver safety and 

encourage safe driving habits by combining the predictive power of HRV with the sophisticated capabilities of machine 

learning algorithms. Our conceptual framework is built on the HRV, which includes the variability in the intervals 

between successive heartbeats and is impacted by the autonomic nervous system's (ANS) activity. Correlations between 

HRV and other physiological and psychological disorders have been observed, making HRV a useful indicator of human 

health. A driver's physiological condition, stress levels, and general well-being can be investigated by examining HRV 

patterns. 

Eight different supervised machine learning classifiers, each with special qualities and abilities, are used in our study. 

The performance of these classifiers was assessed using four openly available datasets that include non-invasive signals, 

notably ECG recordings taken from drivers. Analyzing the performance of these classifiers provides opportunities to 

accurately predict driver states based on HRV characteristics. The findings of this study might influence the creation of 

cutting-edge driver assistance technologies that can cater to the physiological demands of drivers in real time, thereby 

enhancing overall traffic safety. Based on heart rate variability (HRV) metrics, which comprise time domain, frequency 

domain, short-term measurements, and a mix of time and frequency domains, classifiers' effectiveness in predicting 

normal or abnormal driver states is determined. The databases, extracted features, and classifiers utilized typically have 

an impact on the performances gained. 

For the HCI-lab dataset, KNN and DT had the greatest accuracy and F1 score, with time-domain features over 90%. 

There is no statistical evidence to reject the null hypothesis, according to Man-Whitney U test hypothesis testing. As a 

result, the accuracy and F1 score of the machine learning classifiers examined in this study are not significantly different 

from one another. When several HRV parameters were used on the datasets, there was enough statistical support to 

reject the null hypothesis. 

However, this study may have some limitations because the performance of numerous classifiers, especially the 

Drozy dataset, may have been impacted by the unbalanced dataset. A future study will investigate sampling techniques 

like SMOTE and do further research on HRV characteristics to overcome this issue. Additionally, unsupervised learning 

strategies may be used, particularly when class classification is difficult. To further assess the machine learning models, 

self-collected data for driver HRV analysis will also be captured using a vehicle simulator and in a real driving situation. 

The use of unsupervised learning techniques may also be advantageous, particularly when class labeling is difficult. 

Although the time and frequency domain HRV parameters were the major focus of this work, other HRV parameters or 

different feature extraction methods may be worth looking into. Research on sophisticated feature selection approaches 

and dimensionality reduction methods may also be used to determine which HRV characteristics are most useful for 

predicting driver conditions. 

6. Declarations  

6.1. Author Contributions 

Conceptualization, S.F.A.R. and S.Y.; methodology, S.F.A.R. and S.N.S.I; software, S.N.S.I.; validation, N.H.K., 

A.A.A. and M.F.A.A.; formal analysis, S.F.A.R. and S.N.S.I.; investigation, N.H.K. and A.A.A.; resources, M.F.A.A.; 

data curation, N.H.K. and M.F.A.A.; writing—original draft preparation, S.F.A.R., S.N.S.I., and S.Y.; writing—review 

and editing, M.F.A.A. and A.A.A.; visualization, S.F.A.R.; supervision, S.F.A.R.; project administration, M.F.A.A.; 

funding acquisition, S.F.A.R. and A.A.A. All authors have read and agreed to the published version of the manuscript. 



Civil Engineering Journal         Vol. 9, No. 09, September, 2023 

2283 

 

6.2. Data Availability Statement 

The data presented in this study are available in article. 

6.3. Funding 

This research is funded by TM R&D (RDTC/221046). 

6.4. Conflicts of Interest 

The authors declare no conflict of interest.  

7. References  

[1] Aimie-Salleh, N., Aliaa Abdul Ghani, N., Hasanudin, N., & Nur Shakiroh Shafie, S. (2020). Heart Rate Variability Recording 

System Using Photoplethysmography Sensor. Autonomic Nervous System Monitoring - Heart Rate Variability, IntechOpen, 

London, United Kingdom. doi:10.5772/intechopen.89901. 

[2] Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. 

doi:10.3390/s21186112. 

[3] Bhardwaj, R., & Balasubramanian, V. (2019). Viability of Cardiac Parameters Measured Unobtrusively Using Capacitive 

Coupled Electrocardiography (cECG) to Estimate Driver Performance. IEEE Sensors Journal, 19(11), 4321–4330. 

doi:10.1109/JSEN.2019.2898450. 

[4] Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: 

Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. 

doi:10.1093/oxfordjournals.eurheartj.a014868. 

[5] Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, L. (2019). Ultra-short term HRV features as surrogates of short 

term HRV: A case study on mental stress detection in real life. BMC Medical Informatics and Decision Making, 19(1), 1-13. 

doi:10.1186/s12911-019-0742-y. 

[6] de Oliveira Júnior, F. A., Pereira, R. A., Silva, A. S., de Brito Alves, J. L., Costa-Silva, J. H., Braga, V. A., & Balarini, C. M. 

(2022). Different acquisition systems for heart rate variability analysis may lead to diverse outcomes. Brazilian Journal of Medical 

and Biological Research, 55. doi:10.1590/1414-431X2021e11720. 

[7] Geronikolou, S. A., Chrousos, G. P., & Cokkinos, D. V. (2021). Heart Rate Variability Components in Electromagnetic 

Hypersensitive Persons. In Handbook of Computational Neurodegeneration, 1–10. Springer International Publishing. 

doi:10.1007/978-3-319-75479-6_54-1. 

[8] Aswathi, C. D., Mathew, N. A., Riyas, K. S., & Jose, R. (2021). Comparison of Machine Learning Algorithms for Heart Rate 

Variability Based Driver Drowsiness Detection. 2021 2nd Global Conference for Advancement in Technology (GCAT). 

doi:10.1109/gcat52182.2021.9587733. 

[9] Benchekroun, M., Chevallier, B., Istrate, D., Zalc, V., & Lenne, D. (2022). Preprocessing Methods for Ambulatory HRV Analysis 

Based on HRV Distribution, Variability and Characteristics (DVC). Sensors, 22(5), 1984. doi:10.3390/s22051984. 

[10] Bhor, P., Sodhi, G. S., & Sing, D. (2019). Classification of Heart Rate Variability through Machine Learning. International 

Journal of Electronic Engineering, 11(2), 73–80. 

[11] Bousseljot, R.-D. (1995). Use of the PTB’s CARDIODAT ECG signal database via the Internet [in German]. Biomedical 

Engineering, 40. doi:10.13026/C28C71. 

[12] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. 

K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex 

physiologic signals. Circulation, 101(23), 215– 220. doi:10.1161/01.cir.101.23.e215. 

[13] Hantono, B. S., Nugroho, L. E., & Santosa, P. I. (2020). Mental stress detection via heart rate variability using machine learning. 

International Journal on Electrical Engineering and Informatics, 12(3), 431–444. doi:10.15676/ijeei.2020.12.3.3. 

[14] Hasan, M. M., Watling, C. N., & Larue, G. S. (2022). Physiological signal-based drowsiness detection using machine learning: 

Singular and hybrid signal approaches. Journal of Safety Research, 80, 215–225. doi:10.1016/j.jsr.2021.12.001. 

[15] Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE 

Transactions on Intelligent Transportation Systems, 6(2), 156–166. doi:10.1109/TITS.2005.848368. 

[16] Hejjel, L. (2004). Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability 

analysis: to do or not to do?. Medical Science Monitor, 10(1), MT6-MT13. 



Civil Engineering Journal         Vol. 9, No. 09, September, 2023 

2284 

 

[17] Huang, J., Liu, Y., & Peng, X. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative 

study. Biomedical Signal Processing and Control, 71. doi:10.1016/j.bspc.2021.103094. 

[18] Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert 

versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 

22(6), 3316–3325. doi:10.1109/TITS.2020.2981941. 

[19] Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in Heart-Rate Variability Signal Analysis. Frontiers in Digital Health, 3. 

doi:10.3389/fdgth.2021.639444. 

[20] Iwamoto, H., Hori, K., Fujiwara, K., & Kano, M. (2021). Real-driving-implementable drowsy driving detection method using 

heart rate variability based on long short-term memory and autoencoder. IFAC-PapersOnLine, 54(15), 526–531. 

doi:10.1016/j.ifacol.2021.10.310. 

[21] Kakaria, S., Bigné, E., Catrambone, V., & Valenza, G. (2022). Heart rate variability in marketing research: A systematic review 

and methodological perspectives. Psychology &amp; Marketing, 40(1), 190–208. doi:10.1002/mar.21734. 

[22] Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). Exploring Unsupervised Machine Learning Classification Methods for 

Physiological Stress Detection. Frontiers in Medical Technology, 4. doi:10.3389/fmedt.2022.782756.  

[23] Koay, H. V., Chuah, J. H., Chow, C. O., & Chang, Y. L. (2022). Detecting and recognizing driver distraction through various 

data modality using machine learning: A review, recent advances, simplified framework and open challenges (2014–2021). 

Engineering Applications of Artificial Intelligence, 115, 105309. doi:10.1016/j.engappai.2022.105309. 

[24] Liu, S., Koch, K., Zhou, Z., Maritsch, M., He, X., Fleisch, E., & Wortmann, F. (2022). Toward Nonintrusive Camera-Based 

Heart Rate Variability Estimation in the Car under Naturalistic Condition. IEEE Internet of Things Journal, 9(14), 11699–11711. 

doi:10.1109/JIOT.2021.3131742. 

[25] Lopez-Martinez, D., El-Haouij, N., & Picard, R. (2019). Detection of Real-World Driving-Induced Affective State Using 

Physiological Signals and Multi-View Multi-Task Machine Learning. 2019 8th International Conference on Affective Computing 

and Intelligent Interaction Workshops and Demos (ACIIW). doi:10.1109/aciiw.2019.8925190. 

[26] Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., & Marberger, C. (2020, October). The 

Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire 

Knowledge About the Driver's State. 22nd International Conference on Human-Computer Interaction with Mobile Devices and 

Services . doi:10.1145/3406324.3425896. 

[27] Massoz, Q., Langohr, T., Francois, C., & Verly, J. G. (2016). The ULG multimodality drowsiness database (called DROZY) 

and examples of use. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). 

doi:10.1109/wacv.2016.7477715. 

[28] Munla, N., Khalil, M., Shahin, A., & Mourad, A. (2015). Driver stress level detection using HRV analysis. 2015 International 

Conference on Advances in Biomedical Engineering, ICABME 2015, 61–64. doi:10.1109/ICABME.2015.7323251. 

[29] Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical 

and Engineering Sciences in Medicine, 43(2), 525–537. doi:10.1007/s13246-020-00853-8. 

[30] Nguyen, T. T., Aoki, H., Le, A. S., Akio, H., Aoki, K., Inagami, M., & Suzuki, T. (2021). Driver State Detection Based on 

Cardiovascular System and Driver Reaction Information Using a Graphical Model. Journal of Transportation Technologies, 

11(02), 139–156. doi:10.4236/jtts.2021.112009. 

[31] Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term 

heart rate variability in healthy adults. PACE - Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi:10.1111/j.1540-

8159.2010.02841.x. 

[32] Oskooei, A., Chau, S. M., Weiss, J., Sridhar, A., Martínez, M. R., & Michel, B. (2020). DeStress: Deep Learning for 

Unsupervised Identification of Mental Stress in Firefighters from Heart-Rate Variability (HRV) Data. Studies in Computational 

Intelligence, 93–105, Springer, Cham, Switzerland. doi:10.1007/978-3-030-53352-6_9. 

[33] Kim, J. K., & Ahn, J. M. (2019). Digital IIR filters for heart rate variability; a comparison between Butterworth and elliptic 

filters. International Journal of Scientific and Technology Research, 8(12), 3509–3513. 

[34] Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., & Chandran, V. (2019). Automatic driver stress level classification 

using multimodal deep learning. Expert Systems with Applications, 138. doi:10.1016/j.eswa.2019.07.010. 

[35] Riganello, F., Larroque, S. K., Bahri, M. A., Heine, L., Martial, C., Carrière, M., Charland-Verville, V., Aubinet, C., 

Vanhaudenhuyse, A., Chatelle, C., Laureys, S., & Di Perri, C. (2018). A Heartbeat Away From Consciousness: Heart Rate 

Variability Entropy Can Discriminate Disorders of Consciousness and Is Correlated with Resting-State fMRI Brain Connectivity 

of the Central Autonomic Network. Frontiers in Neurology, 9. doi:10.3389/fneur.2018.00769. 



Civil Engineering Journal         Vol. 9, No. 09, September, 2023 

2285 

 

[36] Riposan-Taylor, A., & Taylor, I. J. (2018). Personal Connected Devices for Healthcare. The Internet of Things for Smart Urban 

Ecosystems, 333–361, Springer, Cham, Switzerland. doi:10.1007/978-3-319-96550-5_14. 

[37] Schneegass, S., Pfleging, B., Broy, N., Heinrich, F., & Schmidt, A. (2013). A data set of real world driving to assess driver 

workload. Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular 

Applications. doi:10.1145/2516540.2516561. 

[38] Nunes, C., Beatriz-Afonso, A., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic 

Achievement. Emerging Science Journal, 6(Special Issue), 137-149. doi:10.28991/ESJ-2022-SIED-010. 

[39] Taylor, P., Griffiths, N., Bhalerao, A., Xu, Z., Gelencser, A., & Popham, T. (2017). Investigating the feasibility of vehicle 

telemetry data as a means of predicting driver workload. International Journal of Mobile Human Computer Interaction, 9(3), 

54–72. doi:10.4018/ijmhci.2017070104. 

[40] van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy 

signals. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 368–378. doi:10.1016/j.trf.2019.09.015. 

[41] Vicente, J., Laguna, P., Bartra, A., & Bailón, R. (2016). Drowsiness detection using heart rate variability. Medical and Biological 

Engineering and Computing, 54(6), 927–937. doi:10.1007/s11517-015-1448-7. 

[42] Wagner, P., Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large 

publicly available electrocardiography dataset. Scientific Data, 7(1), 154. doi:10.1038/s41597-020-0495-6. 

[43] Wang, K., & Guo, P. (2021). An Ensemble Classification Model with Unsupervised Representation Learning for Driving Stress 

Recognition Using Physiological Signals. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3303–3315. 

doi:10.1109/TITS.2020.2980555. 

[44] Zontone, P., Affanni, A., Bernardini, R., Brisinda, D., Del Linz, L., Formaggia, F., Minen, D., Minen, M., Savorgnan, C., Piras, 

A., Rinaldo, R., & Fenici, R. (2020). Comparative assessment of drivers’ stress induced by autonomous and manual driving with 

heart rate variability parameters and machine learning analysis of electrodermal activity. European Heart Journal, 41. 

doi:10.1093/ehjci/ehaa946.3515. 

https://doi.org/10.28991/ESJ-2022-SIED-010

