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Abstract 

The utilization of nanosilica and cellulose nanocrystals (CNCs) in cement geopolymers remains challenged by intricacies 

and uncertainties regarding their concentration, posing difficulties in the formulation of systematic geopolymer mix 

designs. This study aims to formulate models based on Artificial Neural Networks (ANN) capable of forecasting the 

compressive strength of geopolymers through the utilization of experimentally acquired data. Nanosilica was applied at 

concentrations of 2%–4% and CNCs at 1%–3%. ANN was modeled using MATLAB to predict the compressive strength 

of the geopolymer. The results indicated an effect of nanosilica and CNCs on the compressive strength of geopolymer at 

2%–4% concentration and 1%–3% CNCs. The best ANN was the GDX training function, purelin activation function, LGD 

and LGDM learning functions, Lr 0.1 and 0.01 at the number of epochs 3812 out of 25000 and 1774 out of 25000, resulting 

in the best correlation values of 0.994 and 0.959; the lowest RMSE values are 0.022 and 0.110. The results of the ANN 

model built based on actual data prove that the model is helpful for accurate simulation to predict the compressive strength 

of geopolymer cement. This study contributes novelty by optimizing the design model for Geopolymer Cements 

incorporating nanosilica and CNCs. 

Keywords: Artificial Neural Network; Nanosilica; Cellulose Nanocrystals (CNCs); A.Donax L. 

1. Introduction 

Geopolymers are inorganic aluminosilicate polymers produced by adding various aluminosilicates (waste rich in 

silicon and aluminum) and alkaline solutions as activators. The most common alkaline solution used in polymerization 

is a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). Geopolymers have been composited with 
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different materials due to their excellent material properties and easy bonding with different materials. The use of 

geopolymer composites has attracted many researchers, such as the use of rice husk ash [1], glass waste [2], coconut 

fiber (coir) [3, 4], palm oil fuel ash (POFA) [5], and many more. 

Nanotechnology plays a significant role in developing geopolymer composites, and nanomaterials have been 

designed to increase the mechanical strength of geopolymers [6–9]. Nanomaterials often added to geopolymers are 

nanosilica, but in its development, fiber has become the best alternative for improving the tensile strength of 

geopolymers. Fibers used in geopolymers must first be treated to remove unnecessary fiber parts that negatively affect 

the geopolymer. Cellulose nanocrystals (CNCs) are promising alternative materials in geopolymers. The CNCs that 

have been added to the geopolymers are sawdust [10], typha plants [11, 12], wood pulp [13], and CNCs provided by 

Sigma Aldrich Company [14]. 

Plant-derived fibers can reinforce cement-based products [15–19]. The fibers used in this study are from Arundo 

Donax L. This plant is a non-timber plant growing abundantly and naturally in Indonesia. Due to its high growth rate, it 

is an invasive and aggressive species, and its removal is complex. A. Donax L has a high cellulose content and can be 

applied to various needs [20]. The high growth rate of this plant allows access to significant raw material reserves. A. 

Donax L fiber has a tensile strength of 248 MPa with a Young's modulus of 9.4 GPa. This fiber can be modified into 

CNCs and composited with nanosilica to obtain the best compressive strength. 

In this study, nanosilica was derived from Rice Husk Ash (RHA) due to the high silica content (91.78%) [21, 22]. 

Incorporating nanosilica exhibits good pozzolanic reactivity, and its capacity to fill pores plays a pivotal role in 

developing high-performance geopolymer cement [23]. The synergy between fly ash, nanosilica from rice husk ash, and 

cellulose nanocrystals (CNCs) derived from A. Donax L fibers will yield a geopolymer cement with exceptional 

performance characteristics. 

The utilization of geopolymer cement in the construction industry is confronted with the challenge of discovering the 

appropriate, rapid, and accurate formulation to enable swift application. Previous studies have incorporated nanosilica 

in geopolymer mixtures ranging from 2% to 10% [24, 25] and CNCs at levels of 1% to 3% [26-28]. However, these 

studies have not yet been able to accurately predict the strength of geopolymers or find correlations between variables. 

Therefore, this study adopts an approach to predict the mechanical strength of the composite of these two materials. In 

recent years, machine learning techniques have been used by researchers to predict the properties of geopolymer 

materials. Artificial Neural Networks (ANN) have increased in popularity. It has accurately predicted geopolymers' 

strength properties in civil engineering applications and has been recently evaluated in many works [29–33]. So far, 

studies on predicting the compressive strength of nanosilica-based geopolymers and CNCs with artificial intelligence 

models are unfrequent. 

The compressive strength of geopolymer paste with the addition of nanosilica and CNCs can be predicted by 

traditional mathematical statistical forecasting and by machine learning techniques. Currently, more attention is paid to 

the second, such as ANN, because traditional mathematics statistical forecasting methods use a lot of data. ANN studies 

complex systems and has been widely applied to predict the mechanical strength of geopolymers. The network can 

discover the correlation between variables from the example through iteration without requiring prior knowledge about 

the relationship between the investigated variables [29]. ANN tries each sample alternately, using the input to calculate 

answers compared with the experimental response obtained. If false, the ANN corrects the network by changing the 

internal connections. The trial-and-error processes continue until the network outputs match the pattern to a specified 

level of accuracy [30]. 

Accurate ANN based models on geopolymer concrete to predict flexural strength have been carried out and produce 

high prediction accuracy with R values in the range of 0.95 to 0.99 [34]. The ANN models also developed on 

geopolymers using class-F fly ash proved to be an efficient tool for predicting compressive strength with a value of 0.85 

[35]. ANN models were also applied to geopolymer-based soil stabilization, showing that ANN could predict the 

compressive strength of stabilized soils [36]. The slump and strength of fly ash-based geopolymer can also be evaluated 

with ANN models where the results show The R-value of 0.91. ANN models are the most cost-effective and time-

effective way to solve complex problems, especially in materials engineering [37]. Based on the literature review, it 

becomes evident that there is a lack of comprehensive studies elucidating the accurate compressive strength of nanosilica 

composites and CNCs within geopolymers. Therefore, it is imperative to undertake predictive analyses of geopolymer 

compressive strength using experimentally derived data. 

Developing Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements involved 

several stages. Firstly, a thorough review of the advancements in Artificial Neural Network (ANN) models in the context 

of geopolymer was conducted. Subsequently, the materials and methodology were delineated, encompassing the testing 

of ANN models alongside the employed prediction evaluation methods. Subsequently, we will present our findings to 

showcase the developed models’ effectiveness and accuracy in predicting compressive strength. We will then discuss 

the results comprehensively, analyzing the implications and potential applications of our findings in the field of 

construction materials. 
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2. Materials and Methods 

2.1. Material 

The raw materials used were fly ash with an average particle size of 30 µm and white-coloured RHA from a rice 

refinery. The stem fiber of A. Donax L.. was collected in an open field. Figure 1 shows the A. Donax L. plant fiber and 

its TEM image. The chemical reagents used were NaOH (Merck®, 97%), Na2SiO3, H2O2 (Merck®, 50%), H2SO4 

(Merck®, 95-98%). All chemicals were used without any further purification processes. 

2.2. Synthesis Nanosilica and CNCs 

Nanosilica was synthesized based on previous research [22] with a ball mill at 600 rpm for 10 hours, and the average 

particle size obtained was 339.09 nm. Synthesis of CNCs was conducted using A. Donax L. fibers, followed by acid 

hydrolysis process. The extraction and isolation method was carried out according to the method that has been done 

before [6]. From this process, CNCs with an average diameter of 50-95 nm are obtained and calculated using imageJ 

software. Figure 1 shows TEM Image from raw material. 

 

Figure 1. TEM Image from raw material (a) CNCs from A. Donax L fiber, (b) nanosilica from RHA 

2.3. Process of Preparing Geopolymer Composites 

The geopolymer paste was derived by mixing fly ash, nanosilica, and CNCs evenly and then adding the alkaline 

solution. The nanosilica concentration was 2%-4% while the CNCs were 1%-3%. This solution was prepared by 

dissolving 10 M NaOH with Na2SiO3 in a 1:1 ratio. The polymerization process hardened the geopolymer paste, and at 

the age of 28 days, compressive strength was tested. 

2.4. Testing of ANN Model 

This research used MATLAB application with ANN method by applying a backpropagation algorithm to predict 

compressive strength (MPa). The input data consisted of Nanosilica (%) and Cellulose Nanocrystals (%), while the 

compressive strength (MPa) was the target. Each input and target data variable amounted to 136 data. This study employs 

the multilayer backpropagation ANN algorithm. Backpropagation ANN is a feedforward neural network with multiple 

hidden layers and has been the preferred choice of researchers for data modeling. Figure 2 shows the modeling stages 

using the multilayer backpropagation ANN algorithm for model development. 

(a) 

(b) 
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Figure 2. Flowchart of ANN Algorithm for Model Development 

2.5. Artificial Neural Network Backpropagation (ANN-B) Modeling 

Artificial Neural Network Backpropagation (ANN-B) is a statistical and non-statistical data modelling tool. ANN-

B can perform complex correlation modelling between input and output to find patterns in the data. In general, the 

architecture of ANN-B consists of an input layer, a hidden layer, and an output layer. Furthermore, other parameters 

such as weight, bias, learning rate, threshold, and epoch are needed, which are already equipped in the MATLAB 

application. The activation functions used during the training and testing of the ANN-B model in this study are 

LOGSIG and PURLINE. The purelin activation function, or transfer function, is responsible for the connection 

between the input and output of a node in a neural network. The purelin or linear activation function is mathematically 

expressed as follows [38]: 

𝑓(𝑥) = 𝑥 (1) 

where 𝑓(𝑥) = 𝑥 represents the identity function or linear function, this implies that the output of this function is equal 

to the input x provided. 

2.6. Architecture of ANN-B 

The ANN model's training, testing, and validation are divided into two stages. The first stage used random data with 

the ANN-B architecture consisting of one input layer, one hidden layer with 10, 20, and 30 neurons, and one output 

layer. This stage also used the training functions: Train-CGB, Train-GD, and Train-GDX. Each training function can be 

described as follows: Train-CGB is Conjugate gradient backpropagation with Powell-Beale restarts, Train-DG is 

Gradient descent backpropagation, and Train-GDX is Gradient descent with momentum and adaptive learning rate 

backpropagation. The PURLINE activation function or linear function was used in the output layer, which has the same 

output value as the input value, while the learning functions were LearnGD and LearnGDM. In general, the first ANN-

B architecture is shown in Figure 3. 
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Figure 3. ANN-B Architecture with One Hidden Layer 

The second stage of training, testing, and validation in the ANN model ANN-B architecture involves one input layer 

with two parameters: namely nanosilica and CNCs, two hidden layers comprising 10-30 neurons, and one output layer 

representing the prediction results. This stage differs slightly from the first stage, particularly in the configuration of the 

hidden layers. In the second stage, the hidden layers one and two consist of neurons as follows: 10; 10, 10; 20, and 20; 

30 in the LearnGDM learning function (Gradient descent with momentum weight and bias learning function). The 

architecture of the second stage of ANN-B is illustrated in Figure 4. 

 

Figure 4. ANN-B Architecture with Two Hidden Layers 

The algorithm used to obtain the modelling of the predicted compressive strength (MPa) with Nanosilica (%) and 

Cellulose Nanocrystals (%) as input data can be described in the simulation of Artificial Neural Network 

Backpropagation (ANN-B) as follows: 

1. Prepare the Nanosilica vector data (%), Cellulose Nanocrystals (%) or (x1-x2), and the output compressive strength 

(MPa) or (Y), and determine the values of the weight, bias, learning rate, learning threshold, epoch, and activation 

function. 

2. For each input unit to the hidden layer, 𝑧𝑗 sums the weight of the input signal: 

𝑧_𝑖𝑛𝑗 = 𝑏1𝑗 + ∑ 𝑥𝑖𝑣𝑖𝑗
𝑛
𝑖=1   (2) 

Use the activation function to calculate the output signal 𝑧𝑗  =  𝑓(𝑧_𝑖𝑛𝑗) and then send the signal to all units in its 

upper layer (output layer). Utilize the activation function to compute the output signal 𝑧𝑗  =  𝑓(𝑧_𝑖𝑛𝑗) and subsequently 

transmit it to all units in its upper layer (output layer), 𝑧_𝑖𝑛𝑗 represents the initial process from the input layer to the 
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hidden layer, where 𝑏1𝑗 denotes the bias generated after the process from the input layer to the hidden layer to ascertain 

the error during the learning process. 𝑥𝑖 denotes the input value, while 𝑣𝑖𝑗  signifies the weights in the hidden layer 

multiplied by each input value. 

3. Each output unit (Yk, k=1, 2, ..., m) is obtained by summing up the weighted of the input signals: 

𝑦_𝑖𝑛𝑘 = 𝑏2𝑘 + ∑ 𝑧𝑖𝑤𝑗𝑘
𝑝
𝑖−1   (3) 

Then use the activation function to calculate the output signal: 𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘) and send those signals to all the units 

in the upper layer (output layer). 𝑦𝑖𝑛𝑘
represents the output generated from the process of the hidden layer to the output 

layer, where 𝑏2𝑘 denotes the bias from the hidden layer to the output layer to determine the error during the learning 

process after passing through the process from the hidden layer to the output layer. 𝑧𝑖 represents the value obtained in 

step 3, while 𝑤𝑗𝑘  signifies the weights in the hidden layer multiplied by each input value, thereby resulting in an output. 

4. Each output unit (Yk) receives a target pattern associated with the learning input pattern, and then the error 

information is calculated: 

k=(tk-yk) f’(y_ink) (4) 

Then measure the weight correction (which will later be used to correct the wjk value): 

wjk = kzj (5) 

b2k = k  (6) 

wjk(new)=wjk(past) + wjk (7) 

b2k(new)=b2k(past) + b2k (8) 

where k functions to distribute errors from the output back to the previous layer, (tk-yk) f’(y_ink) is the subtraction of 

the target with the production, k is used to update weights between hidden layer and input layer, wjk is weight 

correction, kzj is the learning rate (α), b2k is bias, wjk(new) is the latest weight, b2k(new) is the new bias, step 4 is 

performed for each hidden layer. 

5. Each of hidden unit (zj, j = 1,2,..p) sums up the input deltas (of the units in the upper layer): 

𝛿_𝑖𝑛𝑗 = ∑ 𝛿𝑘𝑤𝑗𝑘
𝑚
𝑘=1   (9) 

Multiply this value by the derivative of the activation function to calculate the error information: 

j =  _inj f’(z_inj) (10) 

Then calculate the weight correction: 

vij =   j xi  (11) 

And bias correction: 

b1j =   j  (12) 

vij(new) = vij(past) + vij (13) 

b1j(new) = b1j +  b1j (14) 

6. Test the stop conditions (check the correlation, RMSE, and epoch). 

2.7. Prediction Evaluation 

After completing the training and testing stages, the output results will be compared with the target. For each input, 

it is necessary to calculate the correlation coefficient (R) and error. The correlation coefficient (R) compares the 

predicted results and the actual value. If the calculation result of the R-value is closer to 1, then the prediction result will 

be close to the exact value or used as a target. The error function commonly used is the Root Mean Square Error (RMSE) 

which is the value of the prediction results error rate, and the smaller (closer to 0) the RMSE value, the more accurate 

the prediction results will be. The correlation coefficient formula (R) and RMSE are as follows [39]. 
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𝑟𝑥𝑦 =
𝑛(∑ 𝑋𝑌)−(∑ 𝑋)(∑ 𝑌)

√[𝑛(∑ 𝑋2)−(∑ 𝑋)2] [𝑛(∑ 𝑌2)−(∑ 𝑌)2]
  (15) 

where, rxy = score correlation coefficient between variables, 𝑛  = number of samples, 𝑋 = first variable score, 𝑌 = the 

second correlated variable score. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑏𝑠⥂,𝑖−𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
  (16) 

where, 𝑋𝑜𝑏𝑠,𝑖 = actual data value, 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖= prediction result value, 𝑁 = the sum of the data, ∑ = the sum of the total 

value. 

3. Results and Discussion 

Training, testing, and validation have been carried out in each iteration to obtain the best ANN modelling results. 

The iteration process was carried out continuously until it produced the minimum RMSE value, the optimum value of 

training correlation, testing, and validation for each training function. The results of the ANN process are as shown in 

Table 1. 

Table 1. The comparison of modelling results based on ANN parameters 

Training 

Function 

Parameter Training Testing 

Validation RMSE 
Lr Epoch 

Activation 

Function 

Learning 

Function 
Neuron Layer R2 RMSE R2 RMSE 

CGB 0.1 350:1000 Purelin LGD 10 1 0.906 0.242 0.960 0.235 0.927 0.342 

CGB 0.1 410:1000 Purelin LGD 20 1 0.919 0.506 0.922 0.459 0.901 0.451 

CGB 0.1 431:1000 Purelin LGD 30 1 0.921 0.841 0.927 0.742 0.864 0.482 

CGB 0.01 450:1000 Purelin LGDM 10,10 1&2 0.913 0.501 0.907 0.221 0.912 0.411 

CGB 0.01 611:1000 Purelin LGDM 10,20 1&2 0.914 0.503 0.940 0.511 0.905 0.511 

CGB 0.01 425:1000 Purelin LGDM 20,30 1&2 0.910 0.499 0.906 0.326 0.876 0.612 

GD 0.1 528:1000 Purelin LGD 10 1 0.503 0.892 0.582 0.921 0.445 0.627 

GD 0.1 700:1000 Purelin LGD 20 1 -0.837 0.999 -0.745 0.952 0.844 0.895 

GD 0.1 650:1000 Purelin LGD 30 1 0.391 0.921 0.414 0.742 0.473 0.774 

GD 0.01 690:1000 Purelin LGDM 10,10 1&2 0.904 0.220 0.963 0.609 0.902 0.524 

GD 0.01 321:1000 Purelin LGDM 10,20 1&2 0.909 0.621 0.975 0.600 0.890 0.433 

GD 0.01 289:1000 Purelin LGDM 20,30 1&2 0.907 0.613 0.947 0.612 0.918 0.412 

GDX 0.1 2000:25000 Purelin LGD 10 1 0.906 0.522 0.932 0.214 0.942 0.112 

GDX 0.1 18828:25000 Purelin LGD 20 1 0.914 0.241 0.920 0.331 0.931 0.364 

GDX 0.1 3812:25000 Purelin LGD 30 1 0.920 0.332 0.941 0.192 0.959 0.110 

GDX 0.01 311:25000 Purelin LGDM 10,10 1&2 0.899 0.420 0.943 0.219 0.960 0.213 

GDX 0.01 1774:25000 Purelin LGDM 10,20 1&2 0.895 0.115 0.985 0.072 0.994 0.022 

GDX 0.01 287:25000 Purelin LGDM 20,30 1&2 0.892 0.741 0.962 0.131 0.964 0.200 

Based on Table 1, the results of the ANN process are shown in each iteration using several ANN parameters. 

The training function in this study consisted of the CGB, GD, and GDX trains. The learning parameters included 

learning rate (Lr) used at 0.1 and 0.01, maximum epoch 25000, purelin activation function, function Learning GD 

(LGD) and Learning GDM (LGDM), and the number of neurons in the hidden layer 10, 20, and 30. The number of 

hidden layers was divided into two; the first ANN process used one hidden layer and the second ANN process used 

two hidden layers.  

From Table 1, it can be observed that the best ANN process was the GDX training function, purelin activation 

function, LGD, and LGDM learning functions, Lr 0.1 and 0.01, at the number of epochs 3812 from 25000 and 1774 

from 25000, which produced the best correlation and lowest RMSE value. The results are described in the graphic plot 

in Figure 5. 
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(a) T1: Learning rate 0.1, epoch 350 of 1000 

 
(b) T2: Learning rate 0.01, epoch 

 

(c) T3: Learning rate 0.1, epoch 528 of 1000 
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(d) T4: Learning rate 0.01, epoch 321 of 1000 

 

(e) T5: Learning rate 0.1, epoch 3812 of 25000 

 
(f) T6: Learning rate 0.01, epoch 1774 of 25000 

Figure 5. The comparison of actual vs. predicted value 

Figure 5 shows a comparison plot of the actual data with the predicted results. The graph was chosen after checking 

all training functions and parameter combinations in the ANN process. From the six graphs above, it can be concluded 

that the learning rate of 0.1, epoch 3812 of 25000 and learning rate of 0.01, epoch 1774 of 25000 were the best prediction 

results and the lowest RMSE because the prediction results are close to the actual compressive strength (MPa) data. 

Figure 6. shows the average of the actual data and the predicted results with the training function and the combination 

of ANN parameters. 

Figure 6 shows that the ANN models GXD-LGD30n and GDX-LGDM20n have excellent predictions and are close 

to the actual compressive strength (MPa) data. Figure 7 indicates the correlation values of the six training functions and 

the combination of ANN parameters. 
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Figure 6. Overall average of actual data vs. predicted results 

 

Figure 7. Actual vs Predicted Data Correlation 

Figure 7 shows that the ANN model was inferior in the GD-LGD10n training function. In contrast, the GXD-LGD30n 

and GDX-LGDM20n ANN models at the training, testing, and validation stages have firm correlation values, and this 

is the recommended model for prediction. The R2 values consistently exceed 0.9 at the training, testing, and validation 

stages, showing the model's high accuracy and robustness created using ANN. Specifically, the maximum R obtained 

in the testing sample is 0.941, while the minimum R2 in the training sample is 0.920, with the validation R yielding even 

higher results than both. These results align with previous studies, where maximum and minimum R values exceeded 

0.9 [31]. The RMSE value for each ANN model is shown in Figure 8. 

 

Figure 8. The RMSE value for the ANN model 

Figure 8 shows the RMSE value in each ANN model. The best ANN model is when it has the lowest RMSE value. 

From the six ANN models for comparison, the GXD-LGD30n and GDX-LGDM20n ANN training models obtained the 

1
9

.9
3

1
9

.9
7

1
9

.8
9

2
2

.7
6

1
9

.9
5

1
9

.9
4

1
9

.9
3

18.00

18.50

19.00

19.50

20.00

20.50

21.00

21.50

22.00

22.50

23.00

C
o
m

p
re

ss
iv

e 
st

re
n
gt

h
 (

M
P

a)

ANN Models

CGB-

LGD10n

CGB-

LGDM10

n

GD-

LGD10n

GD-

LGDM20

n

GDX-

LGD30n

GDX-

LGDM20

n

training 0.906 0.913 0.503 0.909 0.920 0.895

testing 0.960 0.907 0.582 0.975 0.941 0.985

validation 0.927 0.912 0.445 0.89 0.959 0.994

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

u
e 

Axis Title

CGB-LGD10n
CGB-

LGDM10n
GD-LGD10n

GD-

LGDM20n
GDX-LGD30n

GDX-

LGDM20n

Training 0.242 0.501 0.503 0.621 0.332 0.115

Tetsing 0.235 0.221 0.921 0.600 0.192 0.072

Validation 0.342 0.411 0.627 0.433 0.110 0.022

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V
A

L
U

E

AXIS TITLE



Civil Engineering Journal         Vol. 10, Special Issue, 2024 

47 

 

 

lowest RMSE values in each ANN training, testing, and validation when compared to other models, which were higher 

than the two models. Thus, the GXD-LGD30n and GDX-LGDM20n ANN models are excellent at predicting 

compressive strength (MPa). The error calculation results showed that it the ANN model exhibits the lowest RMSE, 

thus displaying the highest prediction accuracy according to the statistical performance conducted. This outcome is 

consistent with the results reported in a previous study [32]. 

Figure 9 shows the result of the GDX-LGD30n and GDX-LGDM20n ANN model processing with MATLAB at each 

training, testing, and validation epoch. The training and validation processes of the two models have a linear relationship 

and are strengthened by the prediction results in Figure 9. 

  

Training Process of GDX-LGD30n Best Validation GDX-LGD30n 

  

Training Process of GDX-LGDM20n Best validation GDX-LGDM20n 

Figure 9. ANN Model Validation and Training Status 

The research findings obtained with the ANN model in this study are corroborated by previous studies, indicating 

that ANN demonstrates the predictive equation's adaptability to all types of modified geopolymer concrete mixtures 

in the future, thereby offering enhanced accuracy. The ANN model accurately predicts absorption rate as a function 

of binder content, basal fiber content, compressive strength, and changes in concrete mass [40]. Furthermore, other 

studies reveal that fly ash-based geopolymers utilizing a developed Neural Network model algorithm are potent tools 

for predicting geopolymer compressive strength [41]. Machine learning techniques applied to predict concrete 

compressive strength based on cellulose nanofibers yield R2 >0.72, MAPE ≤ 0.1, and MAE ≤ 5, aligning with the 

standard of R2 values exceeding 0.60 [42]. Despite proving superior performance, ANN necessitates substantial 

experience and computational resources [43]. The results of this study indicate that geopolymers utilizing nanosilica 

and CNCs, modeled using ANN methodology, exhibit the influence of nanosilica and CNCs on geopolymer 

compressive strength when applied at concentrations of 2%-4% and 1%-3%, respectively. The optimal ANN 

configuration entails utilizing the GDX training function, purelin activation function, LGD and LGDM learning 
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functions, with learning rates of 0.1 and 0.01, reaching 3812 epochs out of 25000 and 1774 epochs out of 25000, 

yielding the highest correlation values of 0.994 and 0.959, and the lowest RMSE values of 0.022 and 0.110. The 

results of the ANN model constructed based on actual data demonstrate its potential and utility for accurately 

simulating and predicting geopolymer cement compressive strength. 

4. Conclusion 

This study has successfully predicted the mixture of nanosilica and CNCs on the compressive strength of geopolymer 

cement with an ANN model. 70% data division for training, 15% for validation, 15% for testing the model, and a 

maximum of 25000 epochs used by combining ANN training function parameters obtained that, in general, the GDX 

training function produces optimal prediction results. Nanosilica is given with a concentration of 2%–4% and CNCs 

1%–3% compressive strength prediction results obtained that the best ANN process is GDX training function, purelin 

activation function, LGD and LGDM learning functions, Lr 0.1 and 0.01 at the number of epochs 3812 of 25000 and 

1774 of 25000 produces the best correlation coefficient of 0.994 and 0.959, the lowest RMSE values are 0.022 and 

0.110. The ANN model developed based on actual data proved that the model has potential and is practical for accurate 

simulation to predict the compressive strength of geopolymer cement. The optimum compressive strength of 22.20 MPa 

was obtained by adding nanosilica and CNCs concentrations of 3.98 and 1%, respectively. There is an interaction 

between nanosilica and CNCs on the compressive strength of geopolymer cement. The addition of nanosilica has 

facilitated the formation of additional calcium silicate hydrate (C-S-H) gel, which is responsible for enhancing the 

compressive strength and durability of concrete. At the same time, CNCs have acted as nano-reinforcements within the 

geopolymer matrix, improving its tensile strength and crack resistance. Additionally, they might have contributed to the 

densification of the microstructure, resulting in enhanced compressive strength. 
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