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Abstract 

Double-layer spatial domes are one of the most common spatial structures, the stability and progressive collapse of which 

are of great importance in design, construction and maintenance of such special structures. In this paper considering three 

loading cases and two types of support conditions, the collapse behaviour of double layer Diamatic dome has been 

investigated utilizing non-linear static analysis and alternate path method usage. In order to modelling compressive member 

behaviour, effective buckling modes have been obtained by eigenvalue buckling analysis for all of the members. Behaviour 

of compressive members has been obtained via definition of initial imperfection and non-linear static analysis. Riks arc-

length method has been utilized for non-linear static analysis. The numerical results have indicated that reducing the 

number of the supports and focusing  of load in a local area of the dome extremely impact on its vulnerability to failure, 

as in similar loading condition, decreasing the number of the supports reduces the capacity of damage resistance in spatial 

domes up to 50 percent. Investigating some models has shown that removing the critical members of the top layer has little 

effect on load-bearing capacity of the dome and it causes a slight failure in the structure. In this condition, structural 

redundancy can be considered equal to static indeterminacy. Load bearing capacity of the structure decreased up to 39 

percent when compressive members of the web and bottom layers were removed. In this condition, the structure failure is 

considered moderate. 
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1. Introduction 

One of the oldest impressive structural systems, domes which are formed from single or multi-layer bar elements, 

have geometrical curvature in longitudinal direction and ordinate. This structures are utilized to cover the large span like 

exhibitions, worships, stadiums and large halls. These specific structures create an unobstructed inner space and are so 

economical in material usage [1]. Being lighter compared to more conventional structural forms, high degree of 

redundancy, suitable and adequate stiff and consistent performance in load bearing made spatial domes particular and 

strategic structures that present very ideal utility in essential situations like destructive earthquakes or when it is needed 

to find a vast and safe shelter in urgent conditions. Research on progressive collapse began in 1968 after Ronan Point 

apartment destruction but incident of world trade towers in 2001 actuated researchers to evaluate of important buildings 

performance to abnormal loads and progressive collapse. These magnificent structures have always attracted engineers 

and designers because of their low weight, appropriate stiffness, ideal seismic performance, amazing beauty, covering 
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of vast spaces without utilizing interior supports and etc. In recent years, many researchers have studied the collapse of 

spatial structures specially reticulated domes. It was believed that multilayer spatial structures do not cause concern 

about progressive collapse due to multiplicity of members and the high degree of redundancy .as a result, most researches 

have been conducted on single-layer domes. Comparing presented methods by GSA and UCF, the alternate path method 

is a more capable and more realistic method among researchers. This method evaluates the resistance and stability of 

the structure against progressive collapse by removing a member which informs the designer about resistance potential 

of structure against collapse. The alternate path method has been formed redundancy of structure. Availability of the 

alternate load-bearing elements and also alternate paths for load transition from applied position to a resistance point, 

describe concept of redundancy. Numerous studies about progressive collapse of building structures against the absence 

of enough research about spatial structures in spite of their vast functions is obvious. Researchers call large spatial 

structures symbolic buildings carrying high social and economic importance which offer various grounds to research 

and studying encounter by abnormal loads [2].  

Sun and et al. in 2012 evaluated structure progressive collapse process with static and dynamic behaviour modelling 

involving fire condition in steel structures [3]. Feng in 2009 presented his studying on a 20 story building by applying 

both material and geometric nonlinear behaviours [4]. Low and et al. in 2013 did numerical modelling to predict collapse 

process in tall reinforced concrete buildings in strong earthquakes based on FEM*. Using IDA† and with concentrate on 

their near-collapse behaviour [5]. Shen and et al. (2015) [6] applied collapse seismic analysis in ordinary buildings that 

their lateral loading system had been elected non-ductile concentric braced frame‡. With progressive collapse dynamic 

modelling, Iriban and et al. (2011) [7] evaluated impact of both material and time of column elimination parameters in 

progressive collapse of a multi-storey reinforced concrete frame. Pertained to bridges, Jen and et al. (2013) [8], Kiyaminf 

and et al. (2015) [9], and Miyachi and et al. (2009) [10] studied progressive collapse in a stone arcing bridge, multi span 

bridge in Jozho city of China and two truss bridge with the span length of 200 meters; respectively.  

In distinct types of buildings and bridges, progressive collapse issue has been evaluated widely with various methods 

and appliances by considering widespread and effective parameters in structure performance. But studying this topic in 

spatial structures which deals with increasing development in these structures has become more serious and significant 

recently. First serious investigation in this way and consequently presenting the most prevalent use of progressive 

collapse potential evaluation method namely Load Alternate Path Method§, was conducted by Smith in 1988 for first 

time in evaluation of double layer grids. While this method has been utilized for framed structures already [11]. Diverse 

studies and researches in progressive collapse of spatial structures have been performed by various researchers 

afterward. [12-16]. 

Recently in 2019, Li-min Tian et al. [17] tested a commonly used reinforcing technology on four substructures that 

were abstracted from a single layer spatial grid structure. They proposed a modified optimization method for two typical 

failure mechanisms. Before it, Rezania and Torkzadeh (2015) [18] have been described usage of collapse constraints in 

the context of progressive failure. Li-Min Tian et al. (2018) [19] evaluated an experimental study on the anti-collapse 

mechanisms of long-span single-layer spatial grid structures. Their experimental results, including the load–

displacement responses, sequences and modes of failure, and strain measurements were analysed, and the anti-collapse 

mechanism was examined. In addition, they conducted a numerical simulation for a single member derived from the test 

specimens. Four substructure experiments were conducted for a single layer spatial grid structure to investigate the 

typical failure mechanisms [20]. Based on their experimental results, a numerical simulation using multi-scale 

technology was calibrated. In order to prevent typical failures, they proposed a novel method including kinked steel pipe 

reinforcement and extra member reinforcement. It validated by a numerical simulation. Vitaliy et al. (2017) [21] 

calibrated three finite element deletion strategies for use in modeling fracture and material separation in spatial steel 

structures. They compared these methods for their capability to predict the location of fracture initiation and the direction 

of fracture propagation. Each strategy is based on micromechanical fracture behavior of the material and is independent 

of the overall structure type. Ye and Qi (2017) [22] simulate the complicated mechanical behaviour that occur in the 

collapse process of structures, extended DEM to study the continuum structures. Their proposed method is applied to 

the collapse simulation process of single-layer reticulated dome models. Compared with the shaking table test, it is 

observed that the simulation results including the collapse process and the fracture location of joints, agree well with the 

experimental phenomenon. 

1.1. Progressive Collapse Concept 

Collapse, an ultimate limit state when structure is subjected to abnormal loads which one of the most famous of them 

is progressive collapse. "Disproportionate" phrase is next to "progressive" term. In general, progressive collapse means 

diffusion of a wide and chain collapse that is caused by damage to fairly small part of structure. Domino collapse, the 
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most prevalent type of progressive collapse which its progress causes ultimate overturning in the structure and Gaussian 

curvature change in the spatial domes. In other hand, disproportionate failure is a structural collapse which its intensity 

or magnitude doesn't have any proportion with intensity or magnitude the cause of collapse. Disproportionate collapse 

can be progressive or non-progressive (immediate).  

In spite of different meanings, progressive and disproportionate collapse terminologies often used in place of each 

other because disproportionate collapse mostly occurs in progressive manner. In addition, if a disproportionate collapse 

triggers successive failures in a big part of the structure, this event eventually leads to progressive collapse [18]. 

1.2. Alternate Path Method (APM) Concept 

The A.P. method is utilized to reach to adequate resistance against progressive collapse in structural system. The 

threat independent methodology, type of excitant event doesn’t have significance in functional process of A.P method 

since this method considers response of structural system when excitant event destroyed structure critical members. In 

this condition, alternate paths exist for load bearing if one of the structure members is removed from functioning. In 

general, this method is used to evaluate progressive collapse potential and controls the conditions which a structure can 

or can't compensate the eliminated member effect. This technique can be used for new structures design and capacity 

controls of available structures. [4]. 

2. Theoretical approach  

The equilibrium equation of a finite element system for a nonlinear general problem is as follows: 

Ri − Fi = 0                                                                                                                                                                                       (1) 

That in which, 𝑅𝑖 is consequence of external forces in step i and 𝐹𝑖   is the vector corresponding to the internal forces. 

When an analysis involves nonlinear conditions dependent on the path or time-dependent phenomena, the appropriate 

response is obtained through incremental step-by-step approach. In this approach, it is assumed that the answer is known 

in step i and it is unknown in the step of 1i  . i   is an increment that is chosen appropriately. Will have:  

Ri+1 − Fi+1 = 0                                                                                                                                                                    (2) 

Fi+1 = Fi +  ∆Fi+1                                                                                                                                                              (3) 

In that, ∆Fi+1 is the increment of internal forces and is defined in terms of the Tangential stiffness matrix 𝐾𝑢𝑖
𝑡  as follows: 

∆Fi+1 = Kui
t . ∆ Ui+1                                                                                                                                                                              (4) 

In which ∆Ui+1 is nodal displacement increment vector.  

The tangential stiffness matrix is the same as the stiffness parameter in linear analysis, except that it depends on 

forces and partial displacements. This matrix should be formulated based on the latest information of updated structure, 

the work done by the incremental changes in the displacement, both of the first and upper order sentences, and the initial 

forces of the members. We will have the following equations:  

Kui
t . ∆ Ui+1 = Ri+1 − Fi+1                                                                                                                    (5) 

Ui+1 = Ui + ∆ Ui+1                                                                                                                                                                               (6) 

During the analytical process, we follow all the partial of the structure from the initial mood to the final mood. This 

means that a Lagrangian formulation is chosen for the problem. In the Lagrangian incremental method, the equilibrium 

of the structure in step i is expressed using the principle of virtual displacements. In an elastic analysis, the material 

characteristic matrix, is constant and the total stress is calculated from the total strain. But in the inelastic analysis, total 

stress at time t, is dependent to stress and strain history. To overcome the divergence problem at the ultimate point and 

follow the paths of equilibrium and passing from critical to post-critical points, the arc-length method is the most 

effective method for tracking the equilibrium path. The main idea of this method is the introduction of a load factor that 

increases or decreases the amount of applied loads. The equation governing the nonlinear problem in this strategy in 

increment i+1 is as follows: 

λi+1. R − F+1i = 0                                                                                                                                                                                (7) 

In which the λi+1is an indeterminate load factor (scalar) and R is the load vector on the structure. This vector can include 

any kind of loading, but it is constant throughout the calculation of the response. The basic assumption in the analysis 

is that the load vector changes proportionally at the time of the computation of the response and its value is controlled 

by the coefficient of load. One of the most commonly used methods for arc-length process is the Riks method. In this 

method, load increment is controlled by a constraint equation to cause the repeat path follow a page that is perpendicular 

to the tangent to the repeat initiation point.   
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3. Collapse Modeling and Analysis 

Double layer spatial domes have more rigidity compared to single layer domes. This issue has caused the assumption 

that double layer structures are resistant to applied damages and don't need special investigation. This is while that this 

spatial structures are at risk of progressive collapse due to production and design errors, over loading, extreme local 

loads, inappropriate maintenance, length of thin members, unfit connections and etc. In this paper, collapse behavior 

studying of double layer spatial domes in special load and support conditions have been conducted based on similar 

idea. In dome structures to discover snap-throw event conditions, researchers have presented diverse types of loadings 

[23] which among them three critical loading cases that can simulate real conditions for progressive collapse occurrence 

have been selected in evaluation of structure collapse performance. Design of structure has been performed for these 

loads and two perimeteral and meridional support conditions. Static analysis of collapse has been done utilizing alternate 

path (AP) method and with considering both material and geometrical nonlinear behaviour for a double layer Diamatic 

dome using finite element software  ABAQUS. For nonlinear equilibrium equations solving, Arc-length Riks method 

has been utilized. For collapse analysis, the process of below has been done by ABAQUS software in a step by step 

manner: 

 For each member effective modes of buckling have been obtained from Eigenvalues buckling analysis. Initial 

imperfection modeling equal to 0.001 times the length of the member has been extracted from linear combination 

of these modes.  

 After applying the imperfection and by considering large deformations, behavior of compressive members has 

been taken from nonlinear analysis and so ideal stress-strain diagram of the members has been traced. Full Elastic-

Plastic bilinear behavior of steel has been used for tensile members behavior modeling (Figure 4).  

 Critical members of the structure have been specified by linear static analysis and based on maximum compressive 

force in each model. Three critical members have been determined for each model (Figure 8). 

 Geometrical and material nonlinear static analysis have been conducted on every six intact models .The 

undamaged model is the structure without critical member elimination. 

 By elimination of each critical member, nonlinear static analysis with AP method has been performed in every 

model (Figures 9 to 14). 

To overcome divergence problem in limited point in nonlinear static analysis, the Riks Arc-Length method has been 

used to follow the equilibrium paths and pass critical points to post-critical points. In this method a constraint equation 

controls the load increments. 

4. Experimental Study 

A double layer Diamatic spatial dome with external span of 20 m and height of 5 m has been studied (Figure 1) and 

its configuration has been conducted using FORMIAN software (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Section of the dome 
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This structure has been evaluated in both perimeter and meridional support conditions which each of them is under 

three critical-load conditions (Figure 3). Diverse models properties of the structure has been presented in Table 1. To 

equate the conditions, one type of hollow tubular section in five different lengths adaptable with British Standard (B.S) 

has been utilized in every six models according to Table 2. Supports have been located, in perimeter support conditions 

at every nodes of last ring of bottom layer of the dome and in meridional support conditions, at two nodes of last ring of 

bottom layer in two sides of top layer meridian lines. In meridional support conditions compared to perimeter support 

conditions 10 supports are eliminated. The models with perimeter or peripheral supports and the models with meridional 

supports are identified by DP* and DM† phrases respectively.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2. Configuration of the dome: a-Assembled dome; b-Bot layer; c- Web layer; d- Top layer 

Three critical-load conditions that have used which consist of:  

 A vertical concentrated load on crown node that applied to structure increasingly (sum of the dead and snow loads). 

 Constant concentrated loads on all the nodes of dome (dead load "D") and increasing concentrated load on the 

crown node (snow load "S"). 

 Constant concentrated loads on all the nodes of dome (dead load) and increasing concentrated load on the middle 

node of a sector of the top layer of the dome (snow load). 

All the loads are applied to structure at the same time.  

Table 1. Analysis models properties 

Title of the model The support conditions The Loading conditions 

DPC Perimeter D*&S** at crown node 

DMC Meridional D&S at crown node 

DPUC Perimeter D at whole nodes & S at crown node 

DMUC Meridional D at whole nodes & S at crown node 

DPUN Perimeter D at whole nodes & S at mid node 

DMUN Meridional D at whole nodes & S at mid node 

                                  D*: Dead load; S**: Snow load 

                                                           
* Dome with Perimeter Supports 
† Dome with Meridional Supports 

(a) 

(b) 

(d) 

(c) 
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Section sufficiency control for all cases have been conducted in SAP 2000 software according to limited design 

LRFD criteria of AISC-360-10 code while considering the reduce resistance factor φ=0.9 for both compressive and 

tension modes.  
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(c) (d)
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Figure 3.  Support and Loading conditions of the dome: (a) Bot layer plan in DP mode; (b) The dome plan in DP mode; (c) 

Bot layer plan in DM mode; (d) The dome plan in DM mode; (e) Concentrated loading at the crown node; (f) Uniform dead 

load at whole & dead and live concentrated load at the crown node; (g) Uniform dead load at whole & dead and live 

concentrated load at the mid node. 

The gravity load combinations of ASCE-07 code are used for load cases. Gravity acceleration is equal to 9.81 m/𝑠2 

and St-37 with presented properties in Table 3 is used for material. 

Dead and snow loads are equal to 50 kgr/m2 and 200 kgr/m2 respectively and gravity load combinations are: (1.4D, 

1.2 D + 1.6 S) 

Table 2. Properties of the structure members 

Type Profile (mm) The dome layer Section area (mm2) Slender factor (L/r) 

I CHHF 273 × 16 
Top 

12918.23 32.95 

II CHHF 273 × 16 12918.23 38.45 

III CHHF 273 × 16 

Web 

12918.23 21.97 

IV CHHF 273 × 16 12918.23 16.48 

V CHHF 273 × 16 12918.23 27.46 

III CHHF 273 × 16 
Bot 

12918.23 21.97 

IV CHHF 273 × 16 12918.23 16.48 

Table 3. Steel material properties 

Young’s modulus 

E 

(Kgr/m2) 

Mass density 

ρ 

(Kgr/m3) 

Yield stress 

Fy 

(Kgr/m2) 

Ultimate stress 

Fu 

(Kgr/m2) 

2.1×1010 7850 2.4×107 3.6×107 

5. Collapse nonlinear static analysis 

The Stress-strain behavior of the members presented in Figure 4.  

 

Figure 4. Stress-strain behaviour modelling of the structure members 

(e) (g) 
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A linear analysis has been conducted in each load condition and a critical member has been chosen in every layer of 

the dome based on maximum compressive stress. The results presented in Figures 5 to 8.  
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Figure 5.  Linear static analysis for bot layer under different loading in Table 1: a. DPC- b. DPUC- c. DPUS- d. DSC- e. 

DSUC- f. DSUS   
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 d                           e           f 

Figure 6.  Linear static analysis for web layer under different loading in Table 1: a. DPC- b. DPUC- c. DPUS- d. DSC- e. 

DSUC- f. DSUS   
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Figure 7.  Linear static analysis for top layer under different loading in Table 1: a. DPC- b. DPUC- c. DPUS- d. DSC- e. 

DSUC- f. DSUS   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The critical members of each model: a-Bot layer; b-Web layer; c-Top layer 

(a)

 

(b)

 

(c)
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After elimination of each critical member, nonlinear static analysis with AP method has been performed in every 

model (Figures 9 to 14). Behavior of each model has been presented in continue: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outcomes of computations of collapse analysis have been mentioned in Table 4. Parameters that presented in this 

table are: 

Δ1: Deformation of the intact structure in first collapse level; 

Δ2: Deformation of the intact structure in ultimate collapse level; 

P1: Collapse load of the intact structure in first collapse level; 

PTOP: Collapse load of the damaged structure with elimination of the critical member in the top layer; 
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Figure 9. Load-displacement behaviour of DPC model Figure 10. Load-displacement behaviour of DMC model 

Figure 11. Load-displacement behaviour of DPUC model Figure 12. Load-displacement behaviour of DMUC model 

Figure 13. Load-displacement behaviour of DPUN model Figure 14. Load-displacement behaviour of DMUN model 
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PWEB: Collapse load of the damaged structure with elimination of the critical member in the web layer; 

PBOT: Collapse load of the damaged structure with elimination of the critical member in bot layer; 

µ: Ductility;  

α: Residual redundant factor; 

µ =
Δ2

Δ1

 (8) 

α =
p

i

p
1

  ;     i: TOP;  WEB;  BOT (9) 

First collapse level is the beginning point of buckling of the first compressive set and ultimate collapse level is defined 

by beginning point of progressive collapse which causes general collapse in the structure. 

Residual redundant factor defines redundancy effect in the structure and present remained loading capacity in the 

damaged structure [24]. 

A redundant structure has been defined as the structure that its additional structural capacity or reserve resistance of 

it  allow to carry loads more than the expected design loads because of considering  singular capacity of its members. 

Redundancy is the function of singular properties of load bearing members while these properties themselves are 

function of topology, continuity and ductility of the structure. Also redundancy is a structural attribute in the global 

system of the structure. It must be mentioned that redundancy isn’t just obtaining resistance. Structural redundancy topic 

is usually investigated in related to the fail-safe systems.  

Table 4. Final result of collapse nonlinear analysis 

Model 

Nonlinear analysis results  of 

intact structure 

Nonlinear analysis results  of 

damaged structure 

Residual redundant factor 

(𝛂) Ductility 

(µ) 
Δ𝟏 (m) Δ𝟐 (m) P1 (kgr) 𝐏𝐓𝐎𝐏 (kgr) 𝐏𝐖𝐄𝐁 (kgr) 𝐏𝐁𝐎𝐓 (kgr) TOP WEB BOT 

DPC 0.0142 0.0430 895437 428628 393529 393529 0.480 0.440 0.440 3.020 

DMC 0.0017 0.0147 27454.5 27342.7 26274.3 26101.8 0.995 0.960 0.950 8.730 

DPUC 0.0029 0.0115 48932.8 36283.4 22087.5 22087.5 0.740 0.450 0.450 4.040 

DMUC 0.0016 0.0144 22080.6 21987.3 21102.9 20991.4 0.995 0.960 0.950 8.910 

DPUN 0.0193 0.0394 2177.55 2110.35 1546.57 1574.58 0.970 0.710 0.720 2.040 

DMUN 0.0014 0.0090 107.203 107.034 90.9189 101.614 0.998 0.850 0.950 6.550 

6. Conclusion 

In this research, buckling and stability of compressive members were computed to evaluate double layer spatial dome 

performance in progressive collapse and the structure’s behavior was investigated based on redundancy criterion. Force 

absorption potential and pass from progressive collapse has been studied by presentation an evaluation factor called 

Residual redundant factor. Investigation has indicated that redundancy factor is an appropriate criterion to survey 

resistance of multilayer structures with numerous of members. This factor can be used in primary calculation of the 

structure in which there is assurance from non-progression of collapse apparently.  

Proportional to geometric and loading conditions, behavior modeling in compressive members has been formed and 

it was abstained from usage a unique behavior for all of members. This issue increase accuracy of modeling and validity 

of results. The proposed method is applied to the collapse simulation process of double-layer dome models. 

The special support and loading conditions which were applied to the dome can utilize for obtain most critical mode 

of design.  

By linear static analysis of the dome, the critical members were identified after modeling the compressive members’ 

behavior and the bilinear ideal behavior of the steel was utilized for tensile members. Using non-linear static analysis, 

the structure’s behavior was evaluated in six cases of the load and support after critical members eliminated from the 

structure. With comparing in the models’ behavior and regarding presented results of the calculations in Table 4 it can 

be stated that despite high degrees of redundancy and enough rigidity, progressive collapse may occur in double layer 

spatial domes due to buckling of some members under abnormal local loading. Even in lateral support conditions 

ductility and load bearing therefore resistance to collapse had been decreased over 50%. Collapse of the first member 

did not cause to collapse of whole the structure in any of models. In same support conditions, Diamatic double layer 

domes are more sensitive to local loading in crown that given the importance of this issue when we attend to snow area 

of the dome in the upper ring. In same concentrated loading conditions, decline in number of the supports resulted in 
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decrease ductility and damage bearing capacity in spatial dome so massively that amount of this reduce may be quadrant. 

Although in same support conditions, applying a uniform load at all of the top layer nodes of the dome do not have any 

effect on the dome collapse parameters. Comparing the ductility and residual redundant factor, it can be observed that 

the layers of double layer spatial dome are more vulnerable in perimeter support conditions in comparing to meridian 

support conditions. Investigating the collapse paths in Diamatic domes, it has been specified that beginning of collapse 

is at the applied load position in perimeter support conditions and damage spread through meridian lines in whole the 

structure. So in constant with loading conditions, decrease number of supports caused the collapse of the path begins 

from remained supports and moves to upward and crown node. 

This study is the way for further refining investigation of the collapse process and entire-process design of the collapse 

of the dome and also for providing a new numerical analysis process. 
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