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Abstract 

A Sudden speed drop in the leader vehicle of vehicle platoon results in propagating the deceleration wave from downstream 

towards the upstream flow. Points of wave propagation of the leader vehicle towards the follower vehicle identification 

are done based on Newell’s theory in trajectory data. Deceleration wave propagates based on two parameters, time and 

space, τ- δ. A follower driver performs different behavioural reactions that they result in deviating follower driver from 

Newell’s trajectory. In this paper, follower driver behaviour was identified based on two theories. The asymmetric 

microscopic driving behaviour theory and traffic hysteresis were used during the deceleration and acceleration phases, 

respectively. The data trajectories were classified into different traffic phases. Driver’s parameters were identified at the 

microscopic level. Since the follower driver had the nonlinear behaviour, artificial neural networks were developed. They 

were able to analysis and identify effective parameters of dependent variable between deceleration phases leading to 

congestion phase, based on the behavioural patterns. Analysis results present effective parameters based on any behavioural 

patterns. Spacing difference of two phases, deceleration and congestion phases, was the most effective parameter of both 

two behavioural patterns, under reaction – timid and over reaction – timid. Increasing the spacing difference of two phases 

results in decreasing (increasing) time based on under reaction – timid (over reaction – timid). 

Keywords: Stop–Go Traffic; Behavioural Patterns; Time between Two Phases; Deceleration Phase; Congestion Phase; Artificial Neural 

Networks. 

 

1. Introduction 

Stop and go traffic is frequently observed in congested freeway, unfortunately our understanding of traffic oscillation 

is not enough. When vehicle platoon enters the traffic oscillation, a follower driver presents different reactions in F 

service. When a leader vehicle develops sudden speed drop, it results in propagating deceleration wave in vehicle 

platoon. Stop – go traffic develops negative effects such as: travel delay, wasted energy and safety risks. Different 

reasons, lane change maneuvers and traffic moving bottleneck, leads to form and propagate an oscillation wave in traffic 

[1-10]. Stop – go waves grow or disappear in vehicle platoon based on vehicle models or lane change maneuvers [11] 

and [12]. Various behavioral characteristics of stop – go traffic result in the necessity of identifying and understanding 

congestion traffic. There is a need to the trajectory data in order to estimate different effects of traffic. Newell proposed 

the first theory of follower different behavior based on separating speed – spacing of deceleration and acceleration 

phases. Based on Newell’s theory, spacing of acceleration phase is more than deceleration phase [13]. Also, Newell 
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described stop-and-go traffic waves considering the parallel trajectories of leader and follower vehicles. Based on his 

theory, he used the same wave speeds of stop-and-go traffic for both deceleration and acceleration phases.  

Because a leader vehicle changes its speed from 𝑉 to 𝑉′, wave speed propagates from downstream to the upstream. 

The wave speed is calculated by  𝑑𝑖/𝜏𝑖 , based on Newell’s theory [14]. Castillo analyzed the life cycle of stop and go 

traffic in congestion based on the same vehicle trajectory and stop – go wave speed. His researches present traffic 

oscillation based on growth and disappearing congestion in vehicle platoon [15]. Kim and Zhang calculated waves based 

on unequal speeds for acceleration and deceleration phases. Data trajectories were considered unparalleled. Also, time 

gap was considered completely stochastic for any driver [16]. Yeo and Skabardonis offered a microscopic asymmetric 

theory based on the speed- spacing relationship. In this theory, acceleration and deceleration curves were obtained by 

joining their starting points. Traffic condition is divided into 5 states: free-flow, acceleration, deceleration, coasting and 

stationary [17].  

Behavioral asymmetric theory is able to describe different phase transitions of deceleration and acceleration phases. 

Also, this theory can explain traffic phenomena, vehicle maneuvering error, anticipation, life cycle of stop and go traffic 

cases, generation, growth and dissipation based on driver behavior characteristics. Laval and Leclercq classified 

behavioral pattern based on aggressive or timid driver. Research results identified traffic oscillation properties. They 

simulate properties such as, period and amplitude, based on the driver behavior and Newell’s car following model [18]. 

Comparing vehicle platoon behavior before and after oscillation leads to identify delays in recovering the speed of the 

vehicle. This condition of delay results in the occurrence of the hysteresis phenomenon in stop and go traffic and 

asymmetric spacing in deceleration and acceleration phases [19, 20]. Asymmetric behavioral theory cannot completely 

analyze the hysteresis phenomena during acceleration and deceleration phases [21-24]. Treiterer and Myer studied 

vehicle platoon behavior for entering and exiting oscillation. They used the trajectory data from aerial photographs. Their 

research led to a quantitative relationship between speed average, density and flow rate and density. When a vehicle 

platoon enters traffic oscillation, conditions of before and after traffic oscillation did not restore immediately. This 

situation results in forming hysteresis loops [25].  

Zhang formulated the hysteresis in traffic flow as a mathematical model to explain the transition between different 

traffic flows based on the driver behavior. According to Figure 2, the speed-density curve was divided into three traffic 

phases; namely, relaxation phase in acceleration pattern, prediction phase in deceleration pattern, prediction- relaxation 

balanced phase in strong equilibrium. Figure 2. demonstrates an increase in driver concentration on acceleration pattern, 

and also a reduction in driver concentration in the deceleration phase [20]. Zhang and Kim (2005) proposed a new car-

following theory. In this theory, they presented a new value of headway that it was as a function of gap distance, and 

traffic phase, including acceleration, deceleration and coasting condition [26]. Laval findings show that hysteresis 

magnitude estimation bases Edie’s observations. In invariable density, He classified hysteresis phenomena into four 

levels: Strong, Weak, Negligible, and Negative level. Also, his research presents that different driver behaviors result in 

forming different loops of flow – density diagram during deceleration and acceleration phases. Two patterns, timid and 

aggressive maneuver, were presented. Timid maneuver is formed by a clockwise loop of speed – spacing plot and 

aggressive maneuver is developed by a counter-clockwise loop of speed – spacing plot [27].  

Ahan considered the kinematic wave model with variable wave speed. This condition results in analyzing the 

evolution of speed-spacing relationships as vehicles exit from stop-and-go oscillations. Their results presented that 

hysteresis magnitude takes place less frequently and in smaller amplitude than previously thought [28]. Chen presented 

the behavioral asymmetric theory. This model is able to reproduce the spontaneous formation and ensuing propagation 

of stop and go waves in traffic oscillation. The statistical results of their model revealed that traffic oscillation depends 

on driver behavior. Also, a correlation between driver behavior before and during oscillation is considered [3]. Chen 

analyzed traffic hysteresis based on a behavioral car-following model. The results presented that type of traffic hysteresis 

is dependent on driver behavior. They found that type of traffic hysteresis is dependent on driver behavior when 

experiencing traffic oscillations, but driver behavior is independent of its position along the oscillation. Also, their 

investigations revealed development in different stages of oscillation, grown and fully-developed, depending on the 

different patterns of hysteresis and driver behavior characteristics [29].  

Orfanou developed artificial neural network models to identify, analyze hysteresis characteristics based on classifying 

phenomena behavioral perspectives, aggressive and timid, at the microscopic level. They founded that changes in the 

two parameters, spacing and acceleration at the end of the phenomenon, are the most critical determinants [30]. Abdi 

and Salehikalam analyzed the time between two phases, entering the stop and congestion phases. Driver behavior is 

studied based on different phases of follower driver at the microscopic level. They founded that increasing deceleration 

wave leading to congestion results in decreasing the time between two phases based on timid-over reaction pattern. Also, 

increasing deceleration wave caused to increase the time between two phases based on timid – under reaction and 

constant over reaction – timid [31]. Han Peng et al., proposed a new car following model in order to calculate the delay 

time of car motion and kinematic wave speed in traffic congestion based on the driver behavior, aggressive and timid. 

His numerical simulation indicated that aggressive follower behavior resulted in improving traffic flow because of 

making rapid response to the velocity variation of leader driver [32]. Han Peng et al., presented a new anticipation 
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optimal velocity model by considering the anticipation effect and starting and stopping follower movement in a single 

line for car following theory. Numerical simulation showed that negative speed and headway may disappear owing to 

anticipation effects [33].  

Zheng et al., developed a neural network model in order to investigate the relation between the relative speed and 

acceleration. Their simulation results presented that model performance of instantaneous delay is better than fixed 

reaction delay. Also, considering the instantaneous delay in vehicles platoon resulted in occurring more collisions with 

fixed reaction delay. This illustration showed the necessity of considering the instantaneous delay in order to avoid 

collision between the follower and leader vehicles [34]. Mohsen Poor Arab Moghadam et al., presented a car-following 

model that developed a combination of an Adaptive Nero-Fuzzy Inference System (ANFIS) and a Classification And 

Regression Tree (CART). It simulated the reaction time of follower behavior of each driver-vehicle-unit (DVU). Their 

results were compared with Ozaki’s reaction time [35].  

Han et al., presented a stochastic traffic breakdown model in order to study the microscopic mechanisms to 

macroscopic features of stochastic breakdown. They followed Newell theory and their results resulted in introducing 

two elements of breakdown, trigger and propagation upstream. Their results of probability model showed that the 

breakdown probability: (i) because of increasing the flow and merging spacing, (ii) owing to decreasing merging speed, 

and most importantly, (iii) due to increasing the deviation in headway distribution [36]. In this paper, behavioral patterns 

of follower are identified based on two theories, asymmetric behavior theory and hysteresis phenomena. Then, the time 

between two phases, deceleration wave reception and congestion, analyzed based on behavioral patterns in deceleration 

and acceleration phases at the microscopic level. Traffic phases are identified in traffic oscillation based on asymmetric 

theory. Microscopic parameters are determined at the microscopic level. Then, in order to distinguish effective 

parameters of time between two phases, the artificial neural network develops because of the follower complex behavior. 

2. Research Methodology 

Based on behavioral car following models, driver behavior in traffic oscillation was classified based on two theories, 

asymmetric theory and hysteresis phenomena. Trajectory data was divided into phases, deceleration, stop, congestion, 

and acceleration. When follower acceleration was continually less than -1and leaded to congestion, deceleration phase 

start determined for two follower and leader vehicles based on behavioral asymmetric theory. Propagation and receive 

points of deceleration waves are determined based on Newell theory. It resulted in determining space parameter, d. 

Newell trajectory identified using space parameter in starting deceleration phase leading to congestion. Determining 

follower behavioral from observed data to Newell resulted in four different behavioral patterns in deceleration phase, 

over reaction, under reaction, over constant reaction, and under constant reaction. Also, in acceleration phase, there were 

two behavioral patterns, aggressive and timid, using hysteresis phenomena. An overview of the research was presented 

in Figure 1. to provide better and more straightforward understanding of the methodology. Then, any part was explained 

and calculated separately. 
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Figure 1. Flowchart of research methodology   

2.1. Phasing Trajectory 

According to Figure 2, follower trajectory is classified into three phases: deceleration wave diffusion, entering stop 

phase and congestion phase. Deceleration phase start leading to congestion is identified based on deceleration value. If 

follower and leader deceleration value are smaller than -1, it results in exiting coasting phase and vehicle speed starts 

speed drop owing to zero speed. According to Figure 3, vehicle acceleration may increase, but increasing acceleration 

is in deceleration phase, deceleration value always is smaller -1 value. In other hand, safe spacing isn’t enough in 

deceleration phase and follower vehicle can’t exit from deceleration phase and leading to zero speed in this methodology. 

𝑊1: Deceleration wave leading to congestion 

𝑊2: Stop wave  

𝑊3: Congestion wave 
𝑇:    Time between two phases, deceleration and congestion phases 

 

 

 

 

 

 

 

 

 

 

Filtering raw NGSIM data and Input data  

 

Use asymmetric theory in Deceleration phase 

Identifying Traffic phases: Acceleration, Deceleration, Coasting phases 

 

Use Newell’s car following model for identifying critical points 

 

Calculating deceleration wave for any behavioural pattern based Skabardonis’s theory 

 

Identifying independent parameters at the microscopic level 

 

Developing artificial neural networks between time two phases and other parameters 

Use hysteresis phenomena in acceleration phase  

Classifying driver behaviour 

Analysis Results based on behavioural patterns 
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Figure 2. Phasing trajectory of follower and leader vehicle  

 

Figure 3. Acceleration – time diagram of follower vehicle (propagating deceleration wave to exit from stop phase) based on 

NGSIM data 

2.2. Newell’s Car Following Model 

The purpose of each car following model explains depends of follower trajectory and position in time to leader 

vehicle. If leader vehicle moves with constant speed, follower vehicle behaves from leader vehicle, constant speed, v, 

According to Figure 4 [14]. Spacing of follower and leader vehicles can change in time. But, if freeways are considered 

homogeneous and traffic is one type, spacing is constant in value, Sn. In Newell’s model, when leader vehicle changes 

speed from 𝑉 to 𝑉′, deceleration wave transfers speed , 𝑑i/τi , from downstream to upstream that results in acceleration 

and deceleration according Figure 5. In this model, space and time parameters, 𝜏i and 𝑑𝑖, are constant from independent 

speed. This result develops linear relation between speed and spacing, 𝑠i=𝑑𝑖+𝜏𝑖v . The first, behavior change points are 

identified based on Newell’s theory. Then, two parameters, 𝝉  – d, are calculated. While following conditions are 

established, wave speed is calculated based on Skabardonis’s theory according to one and two equations [37].  

𝑡𝑘 𝑝𝑜𝑖𝑛𝑡 
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 

 > 𝑡𝑘 𝑝𝑜𝑖𝑛𝑡
𝐿𝑒𝑎𝑑𝑒𝑟  (1) 

𝑌𝑘 point
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

< 𝑌𝑘 point
𝑙𝑒𝑎𝑑𝑒𝑟  (2) 

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

2720.00 2740.00 2760.002780.00 2800.00 2820.00 2840.00 2860.002880.00

A
cc

el
er

at
io

n
 (

ft
/s

2
)

Frame (*0.1 , S)

Follower

Leader

Start point of 

congestion  
T 

S
p

ac
e 

, 
ft

 

Time (s) 

Deceleration 

wave  

Leader vehicle 

Follower Vehicle 

Deceleration 

phase , i 

Congestion  

phase , i+1 

Acceleration 

phase 

Stop 

phase 

Stop 

wave 



Civil Engineering Journal         Vol. 3, No. 7, July, 2017 

513 

 

 

Figure 4. Vehicle trajectory with constant speed [14] 

 

Figure 5. Linear relation of spacing – speed [14] 

2.3. Driver’s Behavioral Patterns in Traffic Oscillation 

Driver’s behavioral analysis was done by extensive analysis of vehicle trajectories at the level microscopic. Drivers 

present that driver’s complex behavioral results in driver’s different responses in traffic, maneuvering errors, and driver 

different behavior. Start point of deceleration phase leading to congestion for a follower and leader vehicle is determined 

based on Newell’s theory. When the leader vehicle change his speed, the follower vehicle follow his leader and drop his 

speed. Follower and leader trajectory are followed in acceleration – time diagram. According to Figure 6, when the 

follower vehicle receives deceleration wave, the follower deviates from Newell trajectory. Based on the behavioral 

asymmetric theory, this behavioral change was resulted in developing four behavioral patterns were determined in 

deceleration phase, under reaction, over reaction, under reaction / overreaction constant up, according to Figure 7. 

According to Figure 7a, a follower driver follows under reaction pattern if the follower driver has done lower speed drop 

in the deceleration phase based on the behavioral asymmetric theory. If follower driver has more speed drop in the 

deceleration phase, behavioral pattern of driver results in over reaction, according to Figure 7b. Both other patterns, over 

constant reaction, and under constant reaction are similar to over-reaction and under-reaction. But, there is a difference. 

When the follower driver receives deceleration wave leading to congestion to a leaving wave of stop, the follower has 

constant reaction and does not tend to Newell’s driver [17].  
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                             Figure 6b. Aggressive driver                                               Figure 6a. Timid driver   

 Figure 6. Driver behavioural patterns of acceleration phase at the microscopic level [19] 

 
 

 

                                 Figure 7a. Under reaction                                               Figure 7b. Over reaction 

Figure 7. Under and Over reaction behavioural pattern of deceleration phase [17] 

When the follower exits from traffic oscillation, the driver presents timid (aggressive) patterns, based on phenomena 

hysteresis. If the follower do later (faster) reaction to leader and follower trajectory put in under (above) Newell’s 

trajectory in space – time diagram, timid (aggressive) pattern is presented according to Figure 8a and 8b respectively. 

On the other words, if wave propagates with more (fewer) speed and sooner (later) reaction during acceleration phase, 

driver follows behavioural results in aggressive (timid) at the level microscopic developing counter clockwise 

(clockwise) circles in spacing – speed [19].  
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Figure 8b. Timid driver                                            Figure 8a. Aggressive driver   

Figure 8. Driver behavioural patterns of acceleration phases at the microscopic level based on hysteresis [19] 

2.4. Introducing the Parameters 

When the follower receives deceleration wave, follower driver reacts different responses that results in different 

properties of behavioural change point. In this paper, artificial neural networks were developed for determining effects 

the effect of independent variables on the dependent variable, the time between two phases, based on the follower 

behavioural patterns in deceleration and acceleration phases. Eight parameters at the microscopic level are considered 

including of  SL1, SF1, S𝐿2, SF2 , 𝛥𝑆(𝐿) = 𝑆(𝐿2) − 𝑆(𝐿1), 𝛥𝑆(𝐹) = 𝑆(𝐹2) − 𝑆(𝐹1), 𝛥𝑆(𝐹2: 𝑖, 𝑖 + 1) = 𝑆(𝐹2, 𝑖 + 1) −
𝑆(𝐹2, 𝑖), 𝛥𝑉(𝐹2: 𝑖, 𝑖 + 1) = 𝑉(𝐹2, 𝑖) − 𝑉(𝐹2, 𝑖 + 1). The mentioned parameters were defined as follows: 

 The leader vehicle spacing at the wave propagation point, Sl1 

 The leader vehicle spacing at the wave reception point, Sl2 

 The follower vehicle spacing at the wave propagation point, Sf1 

 The follower vehicle spacing at the wave reception point, Sf2 

 The spacing difference of leader vehicle between wave propagation and receive points, ∆S𝑙 = Sl2 − Sl1 

 The difference of the follower vehicle between wave propagation and reception points, ∆𝑆 = 𝑆𝑓2 − 𝑆𝑓1 

 The difference of follower vehicle between two phases, deceleration and congestion phases, 𝛥𝑆(𝐹2: 𝑖, 𝑖 + 1) =

𝑆(𝐹2, 𝑖 + 1) − 𝑆(𝐹2, 𝑖). 

 The speed difference of follower vehicle between two phases, deceleration and congestion phases, 𝛥𝑉(𝐹2: 𝑖, 𝑖 +

1) = 𝑉(𝐹2, 𝑖) − 𝑉(𝐹2, 𝑖 + 1). 

 

Figure 9. Introducing parameters at the microscopic level in oscillation 

Deceleration 

Acceleration  

Spacing (ft) 

Speed (ft/s) 

Deceleration 

Acceleration 

Speed (ft/s) 

 

Spacing (ft) 

i phase: 

deceleration 

phase 

Wi 

S
p

ac
e 

(f
t)

 

frame (*0.1 s) 
T 

Wi+1 

i+1 phase: 

congestion phase 

 



Civil Engineering Journal         Vol. 3, No. 7, July, 2017 

516 

 

2.5. The Artificial Neural Networks 

The car following models were classified into two categories: the first models were based on mathematical and the 

second models were based on inputs – outputs. In the mathematical models, follower vehicle behaviour was presented 

by mathematical equations. Inputs and outputs were calculated and measured based on the real data, in the artificial 

neural network models. The follower nonlinear behaviour was resulted using intelligent algorithms, artificial neural 

networks. Zheng et al., Khodayari et al., Xiaoliang, Hongefi and Panwai have used the neural network model to identify 

the delay instant reaction in the following vehicle models [38-42].  

2.6. Developing Artificial Neural Networks 

There are many parameters and errors of data and the raw trajectory data and not important to illustrate target 

function, that is why behavioural patterns were developed based on the neural networks (NNs) to identify and analyse 

effective parameters of stop and go traffic at a microscopic level, which affect the behaviour diversion. The different 

parameters effect was identified the time between two phases based on the behavioural patterns using artificial neural 

network. Neural networks were computational models consisting of large parameter space and adaptable structure. They 

were inspired by the structure and functional aspects of biological neural networks [43]. Neural networks were 

constructed based on learning the various functions with actual, discontinuous and vector values. They were created 

based on connecting several processors, which relate the input groups to the output through the artificial neurons. Using 

a connectionist approach to computation, a neural network is developed by an interconnected group of artificial neurons 

with activation functions and processes information. Neurons relate input and output groups. According to table 1, the 

Multi-Layer Perceptron (MLP) that was used belongs to the feed-forward neural networks, which were usually trained 

via the error back-propagation learning rule, in this paper [44]. Neural networks were modelled based on four layers, 

one output layer and two hidden layers. Each one of these layers was considered the inputs and forwarding them to the 

next layer. Some neurons of hidden layers adjust according to the error correction rule. Performing MLP as a universal 

approximate function will result in their advantage over the more complex structures of ANNs. When the activation 

function of MLP was correctly selected, it can be directly related to an equivalent statistical model [45]. In this paper, 

Tansig function is selected as an activation function of MLP. The training ANNs methodology is based on fixing the 

weights for all variables except for the weight of the variable (input vector). And also, the data are divided into three 

following parts: training (70%), Cross – validation (15 %), testing (15%) 

Table 1. Structural, learning specifications of the proposed MLP 

value Parameter 

The leader vehicle Spacing at the wave propagation point, Sl1 

 
Inputs 

 

The follower vehicle Spacing at the wave propagation point, Sf1 

The leader vehicle Spacing at the wave reception point, Sl2 

The follower vehicle Spacing at the wave reception point, Sf2 

The difference in the leader vehicle spacing between wave propagation and receive points,   ∆S𝑙 = Sl2 − Sl1 

The difference in the follower vehicle spacing between wave propagation and receive points, ∆S = Sf2 −  Sf1 

The difference in the follower vehicle spacing between two phases, deceleration and congestion phases, 

ΔS(F2: i,i+1)=S(F2,i+1)-S(F2,i) 

The difference in speed of follower vehicle between two phases, deceleration and congestion phases,  

ΔV(F2: i,i+1)=V(F2,i)-V(F2,i+1) 

Time between two phases Outputs 

Tansig Architecture 

Back - propagation Learning Structure 

2.7. Sensitivity Analysis of the Time between Two Phases  

This paper has used Crystal Ball software since it can define sensitivity analysis between dependent and independent 

variables. An artificial neural network of Matlab software was linked to the Crystal Ball software. Crystal Ball software 

used neural network model and determined parameter effects between independent and dependent variables. 

3. NGSIM Data 

Vehicle trajectory data for the present study are collected from two freeway sites, Interstate 80 (I-80) and US highway 

101 (US-101), that are part of the Next Generation Simulation (NGSIM) program. It consists of vehicle and frame of 

identification number, space, vehicle class, vehicle velocity and acceleration, lane identification, leader and following 

vehicle, spacing and headway every one-tenth of a second. I-80 (Us-101) freeway is 1650 (2100) ft long with six lanes, 

including a High Occupancy Vehicle (HOV) lane. The trajectories with more than 5000 vehicles of I-80 freeway were 

collected for a 45-min period (4:00–4:15 p.m. and 5:00–5:30 p.m.) and vehicle trajectories of US-101 freeway were 



Civil Engineering Journal         Vol. 3, No. 7, July, 2017 

517 

 

collected for a 45-min period (7:50–8:35 a.m.). Both freeways traffic conditions during the study period represent 

transient to congested states with frequent stop and-go oscillations. Using the Savitzky – Golay filter method makes 

smooth the raw trajectory data of NGSIM provided by camera for vehicle positions every 0.1 s. According to Table 2, 

results of classifying behavioral patterns are presented based on behavioral theories [46, 47].  
 

Table 2. Behavioural classified results of follower vehicle 

 The number of pairs of deceleration phase patterns Aggressive Timid 

Over reaction 295 63 232 

Under reaction 129 19 110 

Over constant reaction 90 6 84 

Under constant reaction 30 14 16 

4. Analysis Results 

4.1. Neural Network Performance Evaluation 

Performance evaluation of neural network perceptron was presented according Table 3. The results indicate that 

there is a correlation coefficient between the observed and anticipated data based on different behavioural patterns. 

Table 3. Statistical evaluation measures of the MLP of percent correct 

Over reaction - Timid Under reaction - Timid  

0.051 0.04 MSE 

0.13 0.11 MAE 

0.92 0.93 % Percent Correct 

 

4.2. Over Reaction–Timid  

Frequency chart was presented in Figure 10. Based on over reaction-timid behavioural pattern Results showed that 

time of between two phases were 50-80 frame (5-8s). In other words, when follower received deceleration wave, 

follower may drive 5-8 second in traffic oscillation then driver enter traffic congestion. According to Figure 11, the 

results of the sensitivity analysis of the time between two phases indicate that 𝑆𝐹2, ΔS(F i,i+1)= S(F2,i+1)-S(F2,i), 

Δ(V)=v(F2,i) parameters are the most effective at the microscopic level based on timid – over reaction.  

 

Figure 10. Frequency chart of time between two phases based on Over reaction – timid 
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Figure 11. Results of the Sensitivity Analysis of Artificial Neural Network for all Inputs based on Over Reaction-Timid 

Driver 

4.2.1. Spacing Difference of Follower Vehicle between Two Phases 

Increasing the spacing difference of the follower between two phases results in increasing the time between two 

phases according to Figure 12. When spacing is increased, the follower feels more safe spacing. In this condition, the 

follower driver is able to move with more maneuverability. This driving situation leads to increase the time between 

two phases. 

 

Figure 12. The artificial neural network diagram of the spacing difference between two phases 

4.2.2. Spacing Difference of the Follower Vehicle between Wave Propagation and Reception Points 

According to Figure 13, The spacing difference of follower divides time changes into two parts, ΔS(F)> < 0, based 

on the driver behavioural patterns. For condition of ΔS(F)>0, spacing of reception point is bigger than spacing of wave 

propagation point. The follower driver trend to drive with more safe spacing based on over reaction in deceleration 

wave. This act results in increasing the speed drop and decreasing the time between two phases. For the value of 

ΔS(F)<0, spacing of wave propagation point is larger than wave reception point. This condition leads to decrease the 

reaction time, faster the reaction, and increase more speed drop and safe spacing.  
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Figure 13. The artificial neural network diagram of the spacing difference between wave propagation and reception points 

4.2.3. The Follower Vehicle Spacing at the Wave Reception Point  

According to Figure 14, increasing the follower spacing at the reception point will result in decreasing the time 

between two phases. The follower driver with over - reaction pattern tend to drive in a safer spacing. This condition 

causes to keep enough safe spacing in traffic oscillation. In order to develop enough safe spacing, the follower driver 

reacts more severely. That results in decreasing the stop time between two phases. In other hand, the follower nature of 

the over- reaction pattern need to drive in a safer spacing that results in more severe reaction, decreasing the time between 

two phases. 

 

Figure 14. The artificial neural network diagram of the follower spacing at the wave receive point 

4.2.4. The Speed Difference of the Follower Vehicle between Two Phases 

The speed difference between two phases results in decreasing the time between two phases in Figure 15. It leads 

to flow traffic and increase safe spacing in traffic oscillation. Because of over - reaction follower nature, the follower 

vehicle drives in large spacing. That condition results in increasing the safe spacing.  
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Figure 15. The artificial neural network diagram of the speed difference between two phases 

4.3. Under Reaction-Timid  

Frequency of under reaction- timid behavioural pattern is presented in Figure 16. Results show that driver tend to 

drive in 30-50 frame (3-5 s) for entering traffic congestion. In order word, no considering enough safe spacing results 

in entering traffic congestion. According to Figure 17, the sensitivity analysis of the time between two phases is based 

on the behavioural pattern and parameters at the microscopic level. The effective parameters of the time between two 

phases are, ΔS(F)= SF2-SF1 ,and ΔS(F i,i+1)= S(F2,i+1)-S(F2,i).     

 

Figure 16. Frequency chart of time between two phases based on Under reaction- timid 
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Figure 17. The sensitivity analysis of parameters based on the under reaction-timid 

4.3.1. The Follower Spacing Difference Between Two Phases 

According to Figure 18, increasing the spacing will lead to decrease the time between two phases. Increasing safe 

spacing results in increasing maneuverability of follower based on under reaction behavioural pattern. Increasing 

maneuverability results in decreasing safe spacing in traffic oscillation and disregarding the received deceleration wave. 

In this condition, the follower has to severe reactions, decreasing the reaction time, for developing enough safe spacing 

in traffic oscillation.  

 

Figure 18 Artificial neural network diagram of follower spacing difference between two phases 

4.3.2. The Spacing Difference of the Follower Vehicle Between Wave Propagation and Receive Points 

Increasing the follower spacing difference between two points will result in increasing the time between two phases, 

according to Figure 19. The follower maneuverability increases between two phases based on under reaction pattern 

when spacing difference in platoon increases. Based on increasing maneuverability, follower vehicle is able to drive in 

not enough spacing of traffic oscillation. This situation develops trend to be later reaction, more time.  
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Figure 19. Artificial neural network diagram of follower spacing difference wave propagation and reception points 

4.3.3. The Follower Vehicle Spacing at the Wave Reception Point 

According to Figure 20, results in decreasing the time of two phases. Based on increasing spacing, the follower is 

able to be more maneuverability based on the behavioural pattern of receive wave reception point. This action results 

in disregarding follower for supplying safe spacing in traffic oscillation. The follower disinclination of speed drop results 

in faster response, decreasing time, to develop the safe spacing between two phases.  

 

Figure 20. The artificial neural network diagram of follower spacing at the reception points 

4.3.4 The Speed Difference of Follower Vehicle between Two Phases, Deceleration and Congestion Phases 

According to Figure 21, time parameter is classified into two parts. If the value of independent parameter, speed, is 

smaller than 25 (ft/s), time parameter is decreased and if speed is higher than 25 (ft/s), the time parameter is increased. 

The follower maneuverability is decreased when the speed difference of the follower vehicle is smaller than 25 (ft/s). 

This condition results in following Newell’s pattern. In other hand, faster reaction causes to decrease the time between 

two phases. When the speed difference of the follower vehicle is greater than 25 (ft /s), increasing the speed of two 

phases results in flowing traffic and increasing follower maneuverability based on under reaction behaviour. Increasing 

the maneuverability in traffic oscillation develops more ability for driving in small safe spacing, latter response of two 

phases.  
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Figure 21. The artificial neural network diagram of follower speed difference between two phases 

5. Conclusion  

Stop – go Traffic frequently is observed in freeway traffic flow, which results in traffic oscillation. The follower 

vehicle drivers react to stop – go wave propagation from downstream to the upstream. Driver’s different reactions result 

in developing different behavioural patterns and deviating to Newell’s driver. In this paper, the follower different 

behavioural patterns are identified based on the asymmetric theory and hysteresis phenomena, respectively, during the 

deceleration and acceleration phases by using NGSIM data. In order to determinate deceleration wave parameters, 

Newell’s car following model is used to identify diffusion and propagation wave points. Then, artificial neural networks 

are developed to analyse effective parameters at the microscopic level between two deceleration and congestion phases. 

Analytical results of two phases indicate that the spacing difference of the follower vehicle between two phases, 

deceleration and congestion, is an effective parameter of time based on any two behavioural patterns, under and over 

reaction pattern. Artificial neural networks results determine that increasing spacing difference of the follower vehicle 

between two phases will result in increasing the follower maneuverability based on under reaction pattern. Since, the 

follower driver has no considering propagated wave and no disregarding speed drop; this condition causes to reduce 

excessive safe spacing in traffic oscillation. The follower driver performs faster responses, reducing the time between 

the two phases, because of developing safe spacing. Based on over reaction - timid pattern, artificial neural network 

model presents that increasing spacing difference of the follower vehicle between two phase results in intensifying the 

time between two phases. The ability of the follower vehicle with over - reaction pattern to develop more 

maneuverability and enough safe spacing of two phases leads to increase the time and lower the speed drop. Table 4 

shows the independent parameters results in the dependent parameter. 

Table 4. Summary of the results 

Behavior reason Parameter behavior Effective value % Most effective parameter Behavioral pattern 

decreasing safe spacing 

 

Spacing difference of 

two phases 
74.4 % Decreasing time of two phases Under reaction - timid 

Increasing safe spacing 

 

Spacing difference of 

two phases 
45.1 % Increasing time of two phases Over reaction - timid 
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