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Abstract 

Tuff stones are volcanic sedimentary rocks formed by the consolidation of volcanic ash. They possess unique geological 

properties that make them attractive for a variety of construction and architectural applications. Considerable amounts and 

various types of Tuff stones exist in the eastern part of Jordan. However, the use of Tuff stones often requires experimental 

investigations that can significantly impact the accuracy of their physical and mechanical characteristics. To ensure 

consistent and predictable properties in their mix design, it is essential to minimize the effects of these experimental 

procedures. Artificial neural networks (ANNs) have emerged as a promising tool to address such challenges, leveraging 

their ability to analyze complex data and optimize concrete mix design. In this research, ANNs have been used to predict 

the optimum content of Tuff fine aggregate to produce structural lightweight concrete with a wide range (20 to 50 MPa) 

of compressive strength. Three different types of Tuff aggregates, namely gray, brown, and yellow Tuff, were 

experimentally investigated. A set of 68 mixes was produced by varying the fine-tuff aggregate content from 0 to 50%. 

Concrete cubes were cast and tested for their compressive strength. These samples were then used to form the input dataset 

and targets for ANN. ANN was created by incorporating the recent advancements in deep learning algorithms, and then it 

was trained, validated using data collected from the literature, and tested. Both experimental and ANN results showed that 

the optimum content of the various types of used Tuff fine aggregate ranges between 20 to 25%. The results revealed that 

there is a clear agreement between the predicted values using ANN and the experimental ones. The use of ANNs may help 

to cut costs, save time, and expand the applications of Tuff aggregate in lightweight concrete production. 
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1. Introduction 

Lightweight concrete is a creative solution to reduce the self-weight of constructions, which can reduce the required 

size or reinforcement of structural elements, including slabs, beams, columns, and footings. This may lead to 

considerable savings in terms of cost and environmental impacts, especially for high-rise construction. Other advantages 

may include enhanced earthquake response, formwork savings, enhanced insulation properties, improved fire resistance, 

and improved freezing and thawing resistance, to name a few [1, 2]. Considering that aggregate occupies about 70–75% 

of the concrete’s volume [3], lightweight concrete can be produced by using lightweight coarse and/or fine aggregates. 

Such aggregate can be obtained by naturally occurring porous stones like Tuff and pumice or produced artificially 

(production of porous aggregate like expanded clay and shale by heat treatment) [4]. Moreover, several agricultural 
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wastes, such as palm oil clinker [5], palm oil shells [6], and rice husk ash [7], can be used to produce structurally 

lightweight concrete. 

Tuff stones can be considered one of the naturally occurring lightweight aggregates. Tuff stones are volcanic 

sedimentary rocks formed from consolidated volcanic ash; they possess unique geological properties that make them 

characterized by their porous structure [8]. Tuff lightweight aggregate has been successfully used for the production of 

masonry concrete [9], insulating purposes [2], structural elements [10], and cement replacement material [11]. The 

production of structural lightweight concrete using Tuff aggregate requires a good mix design that guarantees high-

quality paste and good aggregate proportioning. These variables are not only affecting the properties of the produced 

concrete but also its cost. On the other hand, the brittleness and porous nature of Tuff aggregate require the investigation 

of how to produce high-performance lightweight concrete using such aggregate [2]. Accordingly, many trial mixes 

should be investigated to optimize the produced concrete. The number of required trial mixes may quite increase since 

a standard procedure is not yet available for each type of lightweight aggregate used. This is attributed to the complex 

nature of lightweight aggregates, especially the naturally occurring types existing in different parts of the globe. 

Lightweight aggregate properties may change depending on its origin, mineral composition, and formation mechanism 

[12]. This may limit the use of such aggregate for massive lightweight concrete manufacturing, especially with the 

absence of accurate models to predict its mechanical properties. The experimental investigations of the mechanical 

properties of such concrete may require huge amounts of effort, time, and cost, which should be minimized as much as 

possible. Additionally, the development of prediction models based on laboratory experiments is usually based on 

regression analysis and does not always provide accurate results [13]. These reasons increase the potential of using 

machine learning methods to predict the properties of lightweight concrete [12]. 

Artificial neural networks (ANNs) have emerged as a promising tool to address such challenges, leveraging their 

ability to analyze complex data. ANNs can provide both linear and nonlinear modeling capabilities, all without 

necessitating prior knowledge of the connections between input and output variables [13]. ANNs have been used for 

several applications in civil engineering, including the prediction of mechanical properties [14, 15], carbonation depth 

estimations [16], crack detection [17], the prediction of stress-strain behavior [18], deterioration prediction [19], and 

many other applications. 

The mix design of lightweight concrete using Tuff has traditionally relied on empirical knowledge and trial-and-

error approaches. These methods, while valuable in some cases, often lack precision and reproducibility, resulting in 

variations in mix-design outcomes. In recent years, researchers have explored the use of ANNs to optimize the mix 

design of conventional concrete and provide a more systematic and data-driven approach [20, 21]. Recent developments 

in deep learning algorithms, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 

present opportunities to enhance the modeling capabilities and prediction accuracy for concrete mix-design outcomes 

[21, 22]. 

Few studies can be found in the literature regarding the application of ANNs in the prediction of the mechanical 

properties of concrete produced using Tuff aggregate. An investigation on the prediction of the compressive strength of 

concrete using ANN was conducted by Ceylan [23]. In this research, Tuff aggregate was used as a mineral additive in 

the form of powder as a cement supplementary material. The results of both ANN and experimental work provided that 

the highest compressive strength could be achieved by adding 20% of the Tuff powder. A similar investigation on the 

use of volcanic ash was conducted by Amin et al. [12], but on mortar specimens. ANN and adaptive neuro-fuzzy 

interface systems were used. The results provided that the optimum volcanic ash content was 22%, and it shows the 

least effect on the compressive strength as compared with other variables including age, curing temperature, and water-

to-cement ratio. Many of the other available ANN studies have considered the use of natural pozzolans like natural 

zeolite [24, 25], fly ash [26], and volcanic Scoria [27], to mention a few. The available existing studies have considered 

the use of ANN to predict the properties of Tuff ash as a cement replacement material, but none of them considered the 

use of Tuff as a fine or coarse aggregate replacement. There are still avenues for further research. 

The investigations and applications of high-strength lightweight concrete are attracting a lot of interest due to the 

accelerated demands of urban development. There is an indispensable necessity to create accurate and fast techniques 

to predict the compressive strength of lightweight concrete. This study aims to minimize the work required to produce 

lightweight concrete using different types of naturally occurring Tuff stone as fine aggregate. To achieve this goal, an 

advanced ANN model was created based on experimental data and by incorporating recent advancements in deep 

learning algorithms to accurately predict the compressive strength, determine the optimum Tuff content, and produce 

high-strength concrete. A dataset of the measured compressive strength based on the results of 68 concrete mixtures was 

generated and used for the model creation. These mixtures were produced by varying the content and type of Tuff fine 

aggregate. The model was further validated using experimental values drawn from the available published research. The 

findings of this research will contribute to the growing body of knowledge on using the Tuff Stone by means of ANN 

and initiate a dataset that can be used for future research. 
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2. Materials and Methods 

2.1. Experimental 

The concrete mixtures were manufactured using ordinary Portland cement (Type 1), crushed gray Tuff coarse 

aggregate, a mix of silica sand and crushed tuff for the fine aggregate, superplasticizer, and water. The maximum 

aggregate size, bulk specific gravity, and absorption of the coarse aggregate were 16mm, 1.61, and 12.82%, respectively. 

The fine aggregate comprises a mix of silica sand and crushed Tuff at ratios starting from 0% of Tuff and increasing up 

to 50% tuff at increments of 10%. Three types of crushed fine Tuff aggregate were investigated in this study. These 

Tuffs can be classified based on their colors into gray, brown, and yellow. The bulk specific gravity and absorption of 

the gray, brown, and yellow Tuffs were 2.21 and 11.06%, 2.05 and 25.09%, and 2.16 and 17.65%, respectively. Tuff 

aggregates were acquired from quarries located in the eastern north of Jordan. Both fine and coarse aggregates satisfy 

the grading requirements of ASTM C330 standards [28]. The specific gravity and absorption tests were conducted in 

accordance with ASTM C127 [29]. The superplasticizer was added at a ratio of 1.5% of the cement weight. The cement 

content was increased from 300 to 450 kg/m3 at increments of 50 kg to produce concrete with a targeted compressive 

strength of 20, 30, 40, and 50 MPa. A total of 68 concrete mixes were produced, and the cubic compressive strength for 

each mix was estimated as an average of at least three cubes at 28 days in accordance with ASTM C39 test procedures 

[30]. 

2.2. Artificial Neural Network (ANN) 

ANN is a powerful mathematical model that can be easily used to predict the targets of any experimental set, 

including volcanic tuff testing [21]. ANN consists of a set of fully connected neurons; each connection has a weight, 

and the neurons are arranged in a selected number of layers, as shown in Figure 1-a. Each neuron in ANN performs two 

operations, as shown in Figure 1-b. The first includes the summation of the products of each input with the associated 

weight. The second is to apply the activation function used for the ANN layer to generate the output. The activation 

function can be linear, logsig, or tansig. In the case of the linear activation function, the output will equal the summation, 

while in the case of logsig and tansig activation functions, the output can be calculated by the functions shown in Figure 

2 [31, 32]. 

 

 

(a) (b) 

Figure 1. (a) ANN architecture, and (b) ANN neuron operations [32] 

 

Figure 2. Activation functions of Logsig (left), and Tansig (right) [32] 
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ANNs are used in many applications, including output prediction, which means predicting the required output using 

a selected experimental input dataset. ANN can be treated as a black box with a set of data inputs and a set of calculated 

targets (outputs). The outputs of ANN are to be calculated from the input layer toward the output layer (forward 

calculations). The calculated outputs will be compared with the selected target; if the mean square error between the 

outputs and the target satisfies the requirements, the training will be stopped. Otherwise, the error will be calculated, 

and the weights will be updated starting from the output layer and ending with the input layer (backward calculations). 

Figure 3 shows one ANN training cycle [31, 32]: 

 
(a) 

 
(b) 

Figure 3. Calculation of neuron outputs, and (b) calculation of errors and updating of weights [32] 

2.3. Building a Prediction Tool 

Figure 4 illustrates the required procedures to build an ANN model to be used as a prediction tool. The first step 

is to collect the required experimental data. These data should be arranged in a 2D matrix; a column should be created 

for the value of each experimental sample, and the number of rows will point to the number of samples. Another 

matrix with an m column will be required, in which m represents the number of targets. The second step is to normalize 

the data to make the values of the input data small within the 0 to 1 range. This will be conducted by dividing the 

input data by the maximum value. The third step is to create the ANN architecture. This step requires the selection of 

the number of layers, the number of neurons in each layer, and the suitable activation function for each layer. The 

fourth step is to determine the required ANN parameters, especially the Mean Squared Error (MSE) and the number 

of training cycles. The fifth step is to train the ANN model. If the MSE is acceptable, then this ANN will be saved to 

be used later as a prediction tool; otherwise, it is required for the next step, in which another training cycle will be 

executed, and the results will be returned as inputs to the previous step (step 5). The last step is to check if the MES 

requirements are satisfied; if so, then the model is ready. Otherwise, the ANN architecture should be changed by 

modifying the number of layers, changing the activation functions, or increasing the number of selected training cycles 

and then repeating the training process. 
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Figure 4. Flowchart of ANN predictor building and training 

2.4. Implementation of the ANN Model Using MATLAB Software 

The results of the 68 concrete mixes were obtained. The details of the concrete mixes including the Tuff fine 

aggregate content were used as input dataset. The measured compressive strength and the estimated percentage change 

in compressive strength with reference to the control specimen (0% Tuff) were used as the output dataset. These values 

are given in Tables 1 and 2. These datasets were used to form the inputs and the outputs of ANN using two ANN 

methods: Feed Forward (FF) and Cascade Forward (CF). ANN was trained, validated, and tested using the experimental 

dataset and new data obtained from available literature. The following MATLAB code was used to create, train, and test 

ANN: 

 

Table 1. Experimental and Simulated ANN (FF and CF) output of compressive strength results 

Concrete Grade 

MPa 
Tuff % 

Brown Tuff Compressive 

Strength (MPa) 

Gray Tuff Compressive 

Strength (MPa) 

Yellow Tuff Compressive 

Strength (MPa) 

Experimental ANN Experimental ANN Experimental ANN 

20 

0 20.6 20.6 20.6 20.6 20.6 20.6 

10 24.0 24.0 21.9 21.9 21.2 21.2 

20 24.3 24.3 24.0 24.0 24.7 24.7 

30 20.1 20.1 20.1 20.1 20.7 20.7 

40 17.7 17.7 18.7 18.7 19.1 19.1 

 50 - - 17.8 17.8 17.1 17.1 
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30 

0 33.8 33.8 33.8 33.8 33.8 33.8 

10 36.2 36.2 32.5 32.5 33.3 33.3 

20 37.9 37.9 38.1 38.1 38.7 38.7 

30 33.3 33.3 35.8 35.8 36.7 36.7 

40 27.2 27.2 34.7 34.7 33.6 33.6 

 50 - - 32.5 32.5 28.9 28.9 

40 

0 43.6 43.6 43.6 43.6 43.6 43.6 

10 33.8 33.8 32.8 32.8 33.2 33.2 

20 45.0 45.0 44.2 44.2 45.1 45.1 

30 42.5 42.5 42.9 42.9 42.6 42.6 

40 28.6 28.6 38.9 38.9 39.8 39.8 

 50 - - 37.4 37.4 34.7 34.7 

50 

0 50.1 50.1 50.1 50.1 50.1 50.1 

10 52.3 52.3 48.0 48.0 48.9 48.9 

20 56.4 56.4 54.4 54.4 55.9 55.9 

30 50.7 50.7 50.7 50.7 52.8 52.8 

40 36.3 36.3 48.6 48.6 51.5 51.5 

 50 - - 39.8 39.8 47.2 47.2 

Table 2. Experimental and Simulated ANN output results of % change in strength 

Concrete Grade 

MPa 
Tuff % 

Brown Tuff % Change in 

Strength 

Gray Tuff % Change in 

Strength 

Yellow Tuff % Change in 

Strength 

Experimental ANN Experimental ANN Experimental ANN 

20 

0 0 0 0 0 0 0 

10 14 14.0000 6.31 6.3100 2.91 2.91 

20 15.2 15.2000 16.5 16.5000 19.9 19.9 

30 -2.4 -2.4000 -2.43 -2.4300 0.48 0.48 

40 -14 -14.0000 -9.22 -9.2200 -7.28 -7.28 

 50 - - -13 -13.0000 -16.99 -16.99 

30 

0 0 0 0 0 0 0 

10 6.62 6.6200 -3.84 -3.8400 -1.48 -1.48 

20 10.08 10.0800 12.72 12.7200 15 15 

30 -1.5 -1.5000 5.92 5.9200 8.58 8.58 

40 -2.4 -2.4000 2.66 2.6600 -.59 -.59 

 50 - - -3.84 -3.8400 -14.5 -14.5 

40 

0 0 0 0 0 0 0 

10 -14.2 -14.2000 -24.77 -24.7700 -23.85 -23.8500 

20 3.21 3.2100 1.38 1.3800 3.44 3.4400 

30 -2.52 -2.5200 -1.6 -1.6000 -2.29 -2.2900 

40 -52.4 -52.4000 -10.78 -10.7800 -8.72 -8.7200 

 50 - - -14.22 -14.2200 -20.41 -20.4100 

50 

0 0 0 0 0 0 0 

10 4.2 4.2000 -4.19 -4.19000 -2.39 -2.3900 

20 11.1 11.1000 8.58 8.5000 11.58 11.5800 

30 1.18 1.1800 1.2 1.2000 5.39 5.3900 

40 -38 -38.0000 -2.99 -2.9900 2.79 2.7900 

 50 - - -20.56 -20.5600 -5.79 -5.7900 

The used ANN comprises two layers as shown in Figure 5; the hidden layer with 6 neurons, and the output layer 

with two neurons, Logsig was used as an activation function for the hidden layer, and the linear activation function was 

used for the output layer. 
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Figure 5. Used ANN 

3. Results and Discussion 

The ANN was trained using the selected data sets as given in Tables 1 and 2. The ANN model provided an acceptable 

result by minimizing the MSE between the calculated (predicted) and the target values, the error as shown in Figure 6 

was equal to 0.000093562, which means that the predicted outputs were always close to the target. The ANN simulation 

provided acceptable results as both training and validation MSE curves have decreased to a stability point as can be seen 

from Figure 6 and the gap between the curves is small. The curves show no signs of overfitting and the number of 

training and validation specimens were appropriate to predict the response. The gap between the training and validation 

curves can be reduced by increasing the number of validation specimens. However, few specimens were found in the 

literature using the fine Tuff aggregate. Tables 1 and 2 show that the predicted output is very close to the target output 

and the MSE between them is always close to zero. 

 

Figure 6. ANN performance indicator 

4. Verification of the Developed ANN Model 

To verify the developed ANN model, it was used to predict a new dataset that was collected from available 

published literature. The collected data included three sets: two for tuff fine aggregate used in all lightweight concrete 

(LWC) [33, 34], and the third one was for fine tuff aggregate used to replace fine aggregate in normal wight concrete 

(NWC) [34]. The results of the validation data are given in Table 3. The results provided acceptable predictions of 

the compressive strength. The use of the ANN-CF method provided lower accuracy than the ANN-FF method, where 

the error percentage was 0 for all the predicted values using the ANN-FF method, while it ranged from 0.34% to 

22.8% when the ANN-CF method was used. These high error values were obtained for the specimen having a Tuff 

percentage of more than 50%. This was expected since the model was trained on values up to 50% Tuff. Additionally, 

the number of data points used for the validation processes is low due to the scarcity of available literature. 

Nevertheless, the ANN-FF method provided high-accuracy predictions, which indicates that the developed model 

could be used even to predict new data ranges. Figure 7 shows the experimental results, the ANN-predicted results 

using the ANN-CF method, and the absolute error value. 
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Table 3. Validation results of the developed ANN model using FF and CF methods 

Reference Tuff % 
Compressive Strength (MPa) 

Experimental ANN-CF ANN-FF 

Al-Zboon & Zou’by 

(2017) [33] 

0 34 33.8829 34.0000 

25 38 36.4925 38.0000 

50 25 22.6242 25.0000 

75 18 16.0482 18.0000 

100 13 10.9840 13.0000 

Tuff used in NWC [34] 

0 40.33 40.1307 40.3300 

25 37 36.1015 37.0000 

50 36.22 32.7484 36.2200 

75 32.66 25.1959 32.6600 

Tuff used in LWC [34] 

0 27 26.8659 27.0000 

25 41.88 40.9223 41.8800 

50 39.7 36.5418 39.7000 

75 34 27.6386 34.0000 

 

Figure 7. Validation results using ANN-CF method 

ANN was trained using the selected verification data sets, and it gave an acceptable result by minimizing the MSE 
between the calculated (predicted) and the target values, as illustrated in Figure 8. The obtained ANN can be used easily 

as a prediction tool to predict the compressive strength with a significant small error. This tool can be used to minimize 
the number of required experimental samples and minimize the effort and time of sample collecting. A small number of 
samples will be sufficient to build and train ANN which will give excellent predicted outputs. 

 

Figure 8. ANN Performance for the Verification Data Sets 
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5. Conclusion 

In this study, the use of ANNs was evaluated to predict the compressive strength of structural lightweight concrete 

produced using Tuff fine aggregate at various percentages. The experimental dataset was used to train and test the ANN 

model, and an additional three sets extracted from the literature were used for the validation model. The results revealed 

that by using the developed ANN model, the optimum Tuff fine aggregate content can be found when the replacement 

percentages are in the range of 20 to 25% of the fine aggregate, and this applies for all the used three types of Tuff 

aggregate. The results show that high-strength lightweight concrete can also be produced based on Tuff aggregate. 

The developed ANN model can also be used effectively to predict the compressive strength of structural lightweight 

concrete based on Tuff aggregate. Based on this model, the predicted outputs are very close to the experimentally 

measured ones. A zero-error prediction is obtained using the ANN-FF method, while the percentage error does exceed 

22% using the ANN-CF method. Based on the validation results, the developed model can be generalized to predict new 

data with good accuracy. 

Human efforts and time are required to get experimental values of the compressive strength of concrete based on 

Tuff aggregate. The required effort and time will increase, especially when high-strength lightweight concrete is 

required. The developed ANN prediction model can minimize these efforts and save time by providing accurate 

predictions. The findings of this research will contribute to expanding the use of natural Tuff aggregate in construction 

projects; they will also contribute to the growing body of knowledge on using the Tuff stone utilizing ANN and initiate 

a dataset that can be used for future research. 
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