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Abstract 

This article presents a solution using an artificial neural network and a neuro-fuzzy network to predict the rate of water 

evaporation and the size of the shrinkage of a self-compacting concrete mixture based on the concrete mixture parameters 

and the environment parameters. The concrete samples were mixed and measured at four different environmental 

conditions (i.e., humid, dry, hot with high humidity, and hot with low humidity), and two curing styles for the self-

compacting concrete were measured. Data were collected for each sample at the time of mixing and pouring and every 60 

minutes for the next ten hours to help create prediction models for the required parameters. A total of 528 samples were 

collected to create the training and testing data sets. The study proposed to use the classic Multi-Layer Perceptron and the 

modified Takaga-Sugeno-Kang neuro-fuzzy network to estimate the water evaporation rate and the shrinkage size of the 

concrete sample when using four inputs: the concrete water-to-binder ratio, environment temperature, relative humidity, 

and the time after pouring the concrete into the mold. Real-field experiments and numerical computations have shown that 

both of the models are good as parameter predictors, where low errors can be achieved. Both proposed networks achieved 

for testing results R2 bigger than 0.98, the mean of squared errors for water evaporation percentage was less than 1.43%, 

and the mean of squared errors for shrinkage sizes was less than 0.105 mm/m. The computation requirements of the two 

models in testing mode are also low, which can allow their easy use in practical applications. 

Keywords: Concrete Dehydration; Plastic Shrinkage; Neuro-Fuzzy Networks; Water Evaporation; Concrete Curing. 

 

1. Introduction 

Self-Compacting Concrete (SCC) is a type of concrete with the ability to self-flow and self-compact, filling 

formwork under its own weight while still ensuring uniformity, even in cases of dense reinforcement [1, 2]. The 

composition of the concrete mix has some differences compared to ordinary concrete, such as a higher level of fine filler 

content, a higher superplasticizer admixture, a larger cement paste volume, and a lower W/B (water-to-binder) ratio. 

Therefore, the behavior of concrete in the early curing stage, specifically water evaporation and plastic shrinkage, will 

be different from that of conventional concrete, leading to a different curing process. According to Loukili [3], because 

SCC has a larger fine binder ratio, a low W/B ratio, and a larger dosage of superplasticizers, surface water drainage is 

usually lower compared with conventional concrete. Simultaneously, cracks due to plastic shrinkage in SCC are more 

serious than in conventional concrete [4, 5]. The evaporation rate is an essential parameter that directly affects the 

                                                           
* Corresponding author: linh.tranhoai@hust.edu.vn 

 
http://dx.doi.org/10.28991/CEJ-2024-010-01-07 

 

© 2024 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms and 
conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://orcid.org/0009-0003-1157-8975
https://orcid.org/0000-0001-9757-8041
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 10, No. 01, January, 2024 

118 

 

concrete plastic shrinkage, causing long-lasting changes to the strength of concrete structures. Therefore, the estimation 

of the evaporation rate is important for any fresh concrete prior to entering the pouring process [6]. For SCC, the concrete 

maintenance will be carried out promptly after pouring concrete to reduce water evaporation from the concrete’s surface 

and reduce the risk of premature cracking. 

Controlling the amount of water evaporated in the early curing stage is important to ensure the quality of the concrete. 

When the rate of water evaporation is too high, the concrete will fall into a state of dehydration, affecting the hydration 

of cement, leading to a decrease in the bearing strength of the concrete [7]. According to Khoa & Vu [8], when concrete 

is in the plastic state, the loss of water facilitates the development of plastic shrinkage. If dehydration occurs rapidly, it 

will cause the plastic shrinkage to quickly reach its maximum and continuously develop in the subsequent stages of 

concrete (the solid phase). As a result, more cracks will be created in concrete structures [7]. The ACI standard states 

that precautions should be taken when water evaporation rates reach 1kg/m2/h. The Australian standard guidelines state 

that plastic shrinkage cracking occurs when the water evaporation rate reaches a value of 1 kg/m2/h [9]. For the above 

reason, there is a need to accurately predict the level of water evaporation and plastic shrinkage in the early curing stage 

to serve as a basis for effective maintenance of the concrete. Since the parameters of SCC depend nonlinearly on the 

input components [10, 11], the development of a mathematical model to predict the parameters from the input ingredients 

and environmental conditions is critical for the calculation of other conditions that were not presented in the learning 

data samples [12]. 

To date, there are various studies and resulting models to estimate the parameters of SCC in general and the water 

evaporation rate (WEP) and concreate shrinkage in particular. Many of these previous research works concentrated on 

an important factor of the concrete, its compressive strength [13–16]. However, the amount of research concentrating 

on water evaporation rate and concrete shrinkage is much less. Due to the process complexity, in practice, the 

evaporation rate assessment is often carried out by site engineers based on the Nomograph developed by ACI [7]. The 

Nomograph in ACI 305R-10 estimates the rate of evaporation of surface humidity from concrete based on inputs of air 

temperature, relative humidity, and wind velocity. Alternatively to Nomograph, the work in Khoa and Vu [8] proposed 

a polynomial function of the three inputs used in Nomograph together with the temperature of the concrete as an 

additional input. On the other hand, the studies have highlighted that dependencies on the inputs undergo changes when 

the production technique is altered or new additives are introduced, leading to the need for model updates or re-training 

with new data. 

In Almohammad-albakkar et al. [6], the authors studied the SCC containing micro-silica and/or nano-silica to 

develop a theoretical drying shrinkage model that could predict both the development trend and final values of drying 

shrinkage with a mean absolute error (MAE%) at 28 days around 8.62%. Nguyen et al. [10] investigated the development 

of a predictive model for the plastic shrinkage of SCC (B4TW-SCC) based on 1.216 sets of shrinkage data. The plastic 

shrinkage was assessed based on input factors, including variations in cement content (with changes up to 40%) and a 

W/P ratio ranging from 0.36 to 0.48. Meanwhile, Li & Li [11] developed a method for predicting the plastic shrinkage 

of SCC based on the theory of critical stress and structural voids. With various SCC samples having different 

compressive strengths prepared, the model’s predicted results were found to be in good agreement with the measured 

values. The impact of different additives on the occurrence and magnitude of plastic shrinkage in SCC was discussed in 

Turcry & Loukili [12]. The tests were initiated immediately after casting SCC samples, and deformation parameters and 

pore pressure were monitored. As a result, a mechanism to prevent cracking was identified. 

Wang et al. [17] demonstrated that the use of fibers and fly ash to increase the diameter of voids in concrete can 

reduce tensile forces within the void walls, resulting in reduced plastic shrinkage in concrete. Erten et al. [18] showed 

that cracks caused by shrinkage can diminish the corrosion resistance of high-performance concrete, and fibers can limit 

crack formation. Boshoff & Combrinck [19] proposed a model for predicting the shrinkage-induced cracking level based 

on the W/P ratio during the process from concrete pouring to setting. The model was built based on a large amount of 

experimental data. Ghoddousu et al. [20] developed an equation to estimate plastic shrinkage values based on the coarse 

aggregate ratio and W/P ratio under hot-dry climate conditions. The results showed that plastic shrinkage depends on 

time and has a linear relationship with evaporable water content. In the study of cracking and plastic shrinkage, Qi et al. 

[21] demonstrated that the higher difference between the water leaving the concrete and the evaporable water from the 

surface, as well as negative pressure within the voids, leads to an increase in the elastic deformation value of SCC.  

However, it can be observed that most of the research primarily focuses on the evaluation of concrete's plastic 

shrinkage. The estimation of both the plastic shrinkage parameters and the evaporable water content of SCC 

simultaneously based on changes in the W/P ratio, environmental factors (temperature, humidity), and time remains an 

unexplored area. 

In recent years, in the fields of technology in general and construction technology in particular, artificial neural 

networks (ANNs) have been studied and applied to model nonlinear relationships between object parameters [22–24] 

as well as the behavior of materials. According to Haykin [25], the advantage of using ANN is the capability to solve 

problems that do not have a known or given mathematical model of the object. The object to be forecasted is a function 
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that depends on many factors or a complex predictor that has a nonlinear relationship with the dependent factors. 

However, there are not yet any studies using ANN to predict the percentage of water evaporated from the concrete and 

also the deformation of the concrete structure (measured by the length shrinkage of the samples) in the early stage of 

curing in Vietnam’s climate. Another popular tool recently developed is deep learning networks. They have been 

successfully used for many signal processing problems, especially for image processing and recognition in construction 

[26]. However, the main problem with these tools is that a huge set of data samples is required to train them because the 

number of parameters is much higher compared with the classic models. 

In this paper, a new approach to predicting the WEP and the plastic shrinkage size of SCC is proposed. For the 

purpose of this article, we experimentally mixed 48 base SCC samples to create data sample sets. The computation 

models predicting the WEP and the plastic shrinkage size of SCC based only on four inputs, including the concrete 

water-to-binder ratio, environment temperature, relative humidity, and the time after pouring the concrete into the 

mold. This simple requirement will ease the implementation of the models in practical use. As nonlinear pre dictors, 

the classic Multi-Layer Perceptron (MLP) and the modified neuro-fuzzy Takaga-Sugeno-Kang (TSK) network were 

proposed. These models have been proven highly effective as predictive solutions for various technical problems 

[10, 13, 14]. 

2. Method for Determining the Water Evaporation Percentage and the Plastic Shrinkage Size of Samples SCC 

The predictive models will receive input from four variables: the W/B ratio of the mixture, the environment 

temperature and relative humidity, and the time elapsed since pouring the mixture into the mold. The models will also 

produce four outputs: two rates of the water evaporation percentage (WEP) for samples without and with curing, and 

two deformation lengths (concrete sample shrinkages) for samples without and with curing. The general methodology 

of the proposed process is shown in Figure 1. 

 

Figure 1. The process of the proposed methodology used for implementing the predictive models 
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The numerical results showed that both networks can serve effectively as robust nonlinear predictors for WEP 

and shrinkage size parameters of SCC, with a slight advantage observed in the performance of the modified TSK 

network. 

Water evaporation from concrete is the loss of water to the surrounding environment, influenced by weather factors 

such as air temperature, air relative humidity, wind speed, and solar radiation. This evaporation process spans several 

days, with a very high rate in the first 8 to 10 hours after pouring and a much slower rate for the rest of the process [10]. 

In this study, the volume of water evaporated through the open surface of the SCC was quantified by periodically 

weighing 10×10×30 cm test specimens on a precision electronic scale with an accuracy of 0.1g (see Figure 2-a). Over a 

10-hour period, with the sampling period equal to every one hour, commencing from the time of concrete pouring into 

the mold, the concrete sample weight was recorded to determine the volume of water evaporated. The concrete samples 

were tested for water loss in two curing conditions: no curing and water curing. 

  

(a) (b) 

Figure 2. Measurement of Plastic Shrinkage of SCC (a) and measuring the water loss of SCC (b) 

Plastic shrinkage is a physical process occurring during the initial stages of concrete setting and hardening, primarily 

driven by the rapid evaporation of water. Water shrinkage increases the negative pressure in the capillaries, causing 

aggregated particles to come closer together and resulting in deformation within the concrete [10]. In this study, plastic 

deformation was assessed using two strain gauges positioned at both ends of 10×10×30 cm concrete specimens. 

Continuous measurements were taken over an 8-hour period (from 10:00 to 18:00), beginning with the initial 

measurement. The variable value represents the combined output of the two gauges, which was then converted to mm/m 

based on the combined value of the variable measurement and the length of the specimen. Concrete samples were 

subjected to testing under two distinct curing conditions, including no curing and water curing (see Figure 2-b). 

The experiment was conducted in the natural environmental conditions of the Hanoi region of Vietnam. Four distinct 

weather conditions (namely C1, C2, C3, and C4) were selected based on their relative suitability with the typical weather 

regions of Vietnam's hot and humid climate, including different climate seasons and parameters. The experiment 

conditions are shown in Table 1. 

Table 1. Weather conditions used in generating samples 

Symbol Characteristics Air temperature (oC) Air humidity (%) 

C1 Wet, hot 15 to 30 70 to 95 

C2 Dry 18 to 30 40 to 65 

C3 Hot, humid 28 to 35 65 to 85 

C4 Hot 28 to 40 40 to 65 

The measurements of evaporation served to calculate the cumulative percentage of water evaporated from the sample 

at each measurement interval, relative to the total quantity of water used during the concrete sample’s mixing process. 

Table 2 shows two illustrative sets of measurement results obtained at different temperature and relative humidity 

(RH%) conditions, as well as two distinct curing conditions. 
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Table 2. Examples of Water Evaporation Percentage and Shrinkage size measurement 

Time (h) T (oC) RH (%) 
WEP (%) Plastic shrinkage size (mm/m) 

without curing with curing without curing with curing 

Sample No. 1 

0 26 50 0 0 0 0 

1 30 40 3.39 3.1 0 0 

2 32 41 7.28 6.1 0 0 

3 32 40 16.94 13.97 -1.22 -0.91 

4 32 45 22.36 19.1 -1.83 -1.51 

5 31 42 27.1 23.2 -2.1 -1.81 

6 31 50 30.91 26.5 -2.31 -2.07 

7 28 52 32.58 28.2 -2.35 -2.1 

8 28 55 32.58 28.2 -2.43 -2.13 

9 27 60 32.58 28.2 -2.43 -2.13 

10 26 63 32.58 28.2 -2.43 -2.13 

Sample No. 2 

0 30 85 0 0 0 0 

1 31 75 3.7 3.4 0 0 

2 35 65 8.9 8.1 0 0 

3 33 67 12.3 11.4 -0.74 -0.59 

4 32 68 15.1 14.1 -1.11 -0.89 

5 32 68 17.5 16.4 -1.35 -1.08 

6 31 69 19.57 18.1 -1.45 -1.17 

7 30 70 20.7 18.85 -1.47 -1.19 

8 29 72 20.91 18.9 -1.5 -1.21 

9 28 75 20.91 18.9 -1.5 -1.21 

10 28 76 20.91 18.9 -1.5 -1.21 

3. The Neural Network and Neuro-Fuzzy Network as Nonlinear Estimators 

The prediction models are represented by nonlinear transfer functions between input vectors and output vectors. 

Typically, as in this research, when the transfer function is not known in advance, the model’s parameters are determined 

based on machine learning algorithms and some data sample sets. In the classic approach of the supervised mode of 

training, there are at least two data sets required: the learning data set and the testing data set [25]. 

If we denoted the learning data samples set containing p pairs of input-output {𝑥𝑖 , 𝑑𝑖} where 𝑖 = 1, . . . , 𝑝; 𝑥𝑖 ∈ ℝ𝑁; 
𝑑𝑖 ∈ ℝ𝐾  then the parameters w of a function f() are adapted during the learning process to minimize the error function, 

also called the sum squared error (SSE) function: 

𝐸𝑙𝑒𝑎𝑟𝑛 =
1

2
∑ ‖𝑓𝒘(𝒙𝑖) − 𝒅𝑖‖

2𝑝
𝑖=1 → 𝑚𝑖𝑛  (1) 

When the learning process ends, the achieved function is tested with new set of q pairs of data {𝑥𝑖
𝑡𝑒𝑠𝑡 , 𝑑𝑖

𝑡𝑒𝑠𝑡} where 

𝑖 = 1, . . . , 𝑞. The different measures to evaluate the performance, among which we can use again SSE function: 

𝐸𝑡𝑒𝑠𝑡 =
1

2
∑ ‖𝑓𝒘(𝒙𝑖

𝑡𝑒𝑠𝑡) − 𝒅𝑖
𝑡𝑒𝑠𝑡‖2𝑝

𝑖=1   (2) 

or other measures such as the mean relative error (MRE), the correlation score, etc. [25].  

Throughout the testing process, the parameters of the function (indicated as components in 𝑤) remain unaltered. 

When multiple model candidates were available, the one with the lowest testing error was chosen as the optimal choice. 

As previously mentioned, in this research, we will use MLP and modified TSK models to assess their performance with 

the data sets we collected. 

3.1. The Multi-Layer Perceptron 

The MLP is a feedforward structure with one input layer, one output layer, and some hidden layers [25]. There is no 

limitation on the number of hidden layers, but the most popular configuration is the MLP with one hidden layer. 
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In Figure 3, an example of MLP network with 1 hidden layer is presented with N inputs, M neurons in the hidden 

layer and K outputs. It’s also recommended that each neuron should have a so-called bias input equal 1. The connections 

from the inputs to the hidden neurons are denoted by the weights 𝑊𝑖𝑗 (𝑖 = 1, … , 𝑀; 𝑗 = 0, … 𝑁) the connections from 

the hidden neurons to the outputs are denoted by 𝑉𝑖𝑗 (𝑖 = 1, … , 𝐾; 𝑗 = 0, … , 𝑀). 

The transfer function of hidden neurons is denoted as f1, and the transfer function of output neurons is f2. The popular 

selection of f1 is the 𝑡𝑎𝑛𝑠𝑖𝑔() defined as follow [22]: 

𝑓1(𝑥) = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  (3) 

and linear function for f2 [22]. 

 

Figure 3. An example of MLP with one hidden layer 

With the above descriptions, the output of the MLP is calculated as a feedforward network for an input vector 𝒙 =
[𝑥1, 𝑥2, … , 𝑥𝑁] ∈ ℝ𝑁as follow: 

1. The aggregated inputs of hidden neurons: 

𝑢𝑖 = ∑ 𝑊𝑖𝑗 ⋅ 𝑥𝑗
𝑁
𝑗=0   (4) 

2. Outputs of hidden neurons vi for 𝑖 = 1, … , 𝑀 (let v0 = 1): 

𝑣𝑖 = 𝑓1(∑ 𝑊𝑖𝑗 ⋅ 𝑥𝑗
𝑁
𝑗=0 )  (5) 

3. Outputs of the MLP network yk for 𝑘 = 1, … , 𝐾: 

𝑦𝑘 = 𝑓2(∑ 𝑉𝑘𝑖 ⋅ 𝑣𝑖
𝑀
𝑖=0 )  (6) 

or in a simplified form as: 

𝑦𝑘 = 𝑓2(∑ [𝑉𝑘𝑖 ⋅ 𝑓1(∑ 𝑊𝑖𝑗𝑥𝑗
𝑁
𝑗=0 )]𝑀

𝑖=0 )  (7) 

When the data sample sets are provided, the number of inputs and the number of outputs of an MLP align with the 

corresponding dimensions of the input and output vectors in the sample sets. However, the appropriate number of hidden 

neurons is not straightforward and needs to be determined. 

For a given number of hidden neurons, the MLP undergoes training to fit a designated set of learning data samples, 

involving the adjustment of weights Wij and Vij. In this paper, the classic Levenberg–Marquadrt algorithm was used to 

train the MLPs [25]. The selection of the optimal number of hidden neurons was determined using a trial-and-error 

approach, similar to the method outlined in Nguyen & Tran [22] and Haykin [25]. 

3.2. The modified TSK Neuro-fuzzy Network 

The second nonlinear estimator that is used for testing in this paper is a modified version of the neuro-fuzzy TSK 

network, whose structure is presented in Figure 4, where N indicates the number of inputs and M denotes the number of 

reasoning rules. For the sake of clarity, the network in Figure 3 shows only one output, although it's important to note 

that this model can be configured for any desired number of outputs. This modified model has two significant deviations 

from the original TSK model [27]: 

 It uses the Mahalanobis distance instead of the Euclidean distance in the membership function, and 

 It abstains from computing the averages of weights in the final response. 
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For an input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁] ∈ ℝ𝑁, in the classic TSK network, the output membership value indicating 

“how close vector x is to a center point 𝑐𝑖 = [𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑁]” is as follow: 

𝜇𝑖(𝒙) = ∏ 𝜇𝑖(𝑥𝑗)𝑁
𝑗=1 = ∏

1

1+(
𝑥𝑗−𝑐𝑖𝑗

𝜎𝑖𝑗
)

2𝑏𝑖𝑗

𝑁
𝑗=1   

(8) 

where it can be clearly seen the use of Euclidean distances between each dimension of x and ci. Therefore, the number 

of so-called width parameters σij is 𝑁 × 𝑀 and the number of so-called shape parameters bij is also 𝑁 × 𝑀. 

 

Figure 4. An example of a modified TSK network with one output 

In the modified network, the Mahalanobis measure is used as the distance between x and ci with the formula: 

‖𝑥 − 𝑐𝑖‖𝑀 = √‖𝑥 − 𝑐𝑖‖𝑇 ⋅ 𝐴𝑖 ⋅ ‖𝑥 − 𝑐𝑖‖  (9) 

where Ai is the so-called scaling matrices. It can be seen that the Euclidean distance is a special case of the Mahalanobis 

distance, where the scaling matrices are identity matrices.  

With this measure, the membership function is determined as follow: 

𝜇𝑖(𝒙) =
1

1+(
‖𝒙−𝒄𝑖‖

𝑀
𝜎𝑖

)

2𝑏𝑖
  

(10) 

The introduction of scaling matrix Ai for each reasoning rule initially serves to reduce the number of width 

parameters 𝜎𝑖 to M only (one parameter for one rule) and the shape parameter 𝑏𝑖 also to M only. On the other hand, the 

scaling matrices allow a better penetration of the rules into the space of features, which, in turn, would facilitate 

improved data modelling. A demonstration of this enhanced data space penetration and representation is shown on Fig. 

5, where data samples are grouped into three areas. As depicted in Figure 5-a, that different scales in data dimensions 

have no influence on the Euclidean distance, therefore the equi-distance lines have circular shapes. In contrast, the 

Mahalanobis distance, by taking into account the correlations of the data points, leads to equidistant lines having the 

rotated elliptical shapes, as illustrated in Figure 5-b. These shapes, in turn, would generate a better data representation 

for further computation blocks in our proposed model. 

  

(a) (b) 

Figure 5. (a) A demonstration of clustering of 2-D data samples using Euclidean distance, (b) and using Mahalanobis distance 
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The modified TSK network uses the same linear TSK function 𝑓𝑖(𝑥), for 𝑖 = 1, … , 𝑀, as in the classic network, with 

the outputs are: 

𝑓𝑖(𝑥) = 𝑞𝑖0 + ∑ 𝑞𝑖𝑗𝑥𝑗
𝑁
𝑗=1   (11) 

where qij are linear parameters to be trained.  

For the classic network, the final output is a weighted response from all the reasoning rules: 

𝑦 =
∑ 𝜇𝑖(𝑥)⋅𝑓𝑖(𝑥)𝑀

𝑖=1

∑ 𝜇𝑖(𝑥)𝑀
𝑖=1

  (12) 

but the modified TSK uses just the numerator of Equation 12, i.e. the output of the modified TSK is as follow: 

𝑦 = ∑ 𝜇𝑖(𝑥) ⋅ 𝑓𝑖(𝑥)𝑀
𝑖=1   (13) 

This simplification has a significant impact on the training algorithm of the network [27]. In the classical 

approach, the denominator also includes trainable parameters, resulting in complex gradient formulas and requiring 

more computational operations. However, despite the introduction of the matrix A i, it does not significantly 

complicate the learning process, as it was shown in Linh [27] that the matrices can be determined once after the 

initialization of the data centers using fuzzy clustering method and they don’t need to be updated during the training 

of other parameters. For a data set containing p input samples xj and M data centers ci, the determination of matrix 

Ai is as follow: 

 Calculate the degrees uji (also called the membership values) that a sample vector xj belong to a centers ci (for 𝑗 =

1,2, … , 𝑝;  𝑖 = 1,2, … , 𝑀): 

𝑢𝑗𝑖 =

1

‖𝑥𝑖−𝑐𝑗‖
2

∑
1

‖𝑥𝑖−𝑐𝑘‖
2

𝑀
𝑘=1

  (14) 

 Calculate the matrices of covariation Fi for 𝑖 = 1,2, … , 𝑀: 

𝐹𝑖 = ∑ 𝑢𝑗𝑖
2 (𝑥𝑗 − 𝑐𝑖) ⋅ (𝑥𝑗 − 𝑐𝑖)

𝑇𝑝
𝑗=1   (15) 

 Calculate the scaling matrices Ai for 𝑖 = 1,2, … , 𝑀: 

𝐴𝑖 = √𝑑𝑒𝑡(𝐹𝑖)
𝑁

⋅ 𝐹𝑖
−1  (16) 

In the case of the TSK network, similar to the MLP network, the number of inputs and outputs is determined by the 

data samples. During the training process, it’s needed to find the number of rules that enable the network to achieve a 

desirable low level of testing errors. We used a similar “trial and test” approach, starting with a network containing just 

one rule and increasing the number of rules during these trials [22]. To train the TSK networks, the hybrid algorithm 

described in Linh [27] was used. 

4. Field Experiments and Numerical Results 

In this section, the experiments to mix the concrete samples and measure the evaporation rates at different time 

points will be discussed. With the collected data samples, the two networks are trained with different networks’ 

structures to experimentally determine the best candidates for the prediction tasks discussed in Section 1 and Section 

2. 

4.1. Sample Mixtures Preparation and Data Collections 

In order to create the data samples, we mixed a total of 48 samples of SCC, with 7 main components [28]: 

 Cement: from 17.3 to 18.8%; 

 Fly ash: from 5.9 to 6.2%; 

 Sand: around 34.2%; 

 Stone: around 32.6%; 

 Super ductile additive: from 0.23 to 0.25%; 

 Viscosity modifying admixtures: 0.008% to 0.0085%; 

 Water: from 7.8 to 8.3%. 
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These mixtures allow for a W/B ratio within the range of 0.3 to 0.35. Each mixture was then poured into two molds, 

one for testing with curing and the other without curing. Each test spanned a duration of 10 hours, measuring the water 

evaporation and the concrete shrinkage at every hour. Each measurement generates a row of data, as shown in Table 2. 

Then, for each mixture, half of the samples were used for measuring 11 points without curing, while the remaining half 

was used for measuring 11 points of samples with curing. As total, 11 × 48 = 528 samples were collected. With these 

48 sets, we randomly selected 32 sets (i.e., 2/3 of the total) containing 352 samples to form the learning set and the rest 

of the 176 samples to form the testing set. 

The collected WEP and shrinkage sizes are illustrated in Figure 6. It can be evidently seen that when the concrete 

samples are cured with water surfacing, both the corresponding WEP and shrinkage are reduced as expected. 

 

(a) 

 

(b) 

Figure 6. The measured of WEP (a), and shrinkage (b) for the SCC samples mixed in the experiments for cases without 

curing (blue) and with curing (red) 

With those collected data samples, the next task is to train the network models. As previously mentioned, the 

networks’ structure parameters, i.e., the number of hidden neurons in the MLP network and the number of reasoning 

rules in the TSK network, were selected based on the method of “trial and error”. To identify sub-optimal values 

for these parameters, we randomly generated multiple networks with varying configurations, then trained and tested 

them with the data sets generated above. The network with the lowest test error was selected for further 

consideration. 

In this study, we used the Mean of Squared Errors (MSE) and Square of Correlation Coefficients (R2) between the 

expected values and the actual outputs to compare the performance of the models. In Figure 7, the changes in testing 

MSE error of MLP networks and TSK networks versus the number of hidden neurons are presented. As can be seen in 

Figure 7-a for the MLP network, when the number of hidden neurons is greater than 30, practically the testing error 

stays at a similar level, and the network with 39 hidden neurons achieved the lowest testing error. Consequently, this 

network was selected for further consideration. 

 

(a) 
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(b) 

Figure 7. The changes in testing error versus structure parameter for MLP (a), and TSK (b) networks 

A similar result was achieved for the modified TSK network, as depicted in Figure 7-b. The testing errors stabilized 

after 30, and the network with 34 reasoning rules obtained the lowest testing error. With that, the TSK network with 34 

reasoning rules was selected for further consideration. 

4.2. Numerical Results 

As seen in Figure 7-a, after testing many MLP networks with different numbers of hidden neurons, the MLP network 

with 39 hidden neurons was selected as the configuration that delivered the best performance. As mentioned earlier, the 

network has four parallel outputs to estimate the following: 1. WEP for non-cured concrete; 2. WEP for concrete cured 

with water; 3. shrinkage size for non-cured concrete samples; and 4. shrinkage size for concrete samples cured with 

water. The testing results (conducted on the set of 176 samples after learning with the other 352 samples) for WEP are 

presented in Figure 8. The MSE error for no-cured samples was 1.428%, and for samples with curing, it was 1.343%. 

The corresponding R2 were 0.9843 and 0.9835. 

The results for the prediction of shrinkage sizes for both cases (samples without and with curing) using MLP are 

shown in Figure 9. The MSE error for no-cured samples was 0.0974 mm/m and for samples with curing it was 0.101 

mm/m, where the corresponding R2 were 0.9886 and 0.9851. 

 

(a) 

 

(b) 

Figure 8. The testing error of MLP network for water evaporation percentage prediction for concrete samples (a) without 

curing, and (b) with curing  
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(a) 

 

(b) 

Figure 9. The testing error of MLP network for deformation (in mm) of concrete samples (a) without curing and (b) with curing  

The results for WEP and shrinkage estimations were very satisfactory for us; the errors were at very low levels, 
which shows the great capability of the MLP network to learn nonlinear problems. With a similar process, the TSK 

models were trained on the same data sets. As seen in Figure 7-b, after testing many TSK networks with different 
numbers of reasoning rules, the TSK network with 34 reasoning rules was selected as the best configuration. The 
networks were trained to generate similar 4 outputs in parallel as the MLP network. The testing results for WEP are 
shown in Figure 10. For the TSK network, the MSE error for no cured samples was 1.009%, and for samples with curing, 
it was 1.014%. The corresponding R2 were 0.9922 and 0.9906, respectively. 

 

(a) 

 

(b) 

Figure 10. The testing error of TSK network for water evaporation percentage prediction for concrete samples (a) without 

curing and (b) with curing  
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The results for using TSK to predict the shrinkage sizes for both cases (samples without and with curing) are shown 

in Figure 11. The MSE error for no cured samples was 0.0778 mm/m and for samples with curing it was 0.0768 mm/m, 

where the corresponding R2 were 0.9926 and 0.9910. The results for WEP and shrinkage estimations were again very 

satisfactory, relatively even better than the performance of the MLP. 

 

(a) 

 

(b) 

Figure 11. The testing error of TSK network for deformation (in mm) of concrete samples (a) without curing and 

(b) with curing  

The results for both cases are collected in Tables 3 and 4 for comparison purposes. 

Table 3. Mean squared error for testing samples 

Case 
MLP  

(39 hidden neurons) 

TSK  

(34 reasoning rules) 

WEP no curing (%) 1.428 1.009 

WEP with curing (%) 1.343 1.014 

Shrinkage when no curing (mm/m) 0.0974 0.0778 

Shrinkage when with curing (mm/m) 0.101 0.0768 

Table 4. R2 coefficient for testing samples 

Case 
MLP  

(39 hidden neurons) 

TSK  

(34 reasoning rules) 

WEP no curing 0.9843 0.9922 

WEP with curing 0.9835 0.9906 

Shrinkage when no curing 0.9886 0.9926 

Shrinkage when with curing 0.9851 0.9910 
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5. Conclusion 

The paper presented the application of MLP and the modified TSK networks to estimate the water evaporation rates 

and the shrinkage size of SCC samples for different environmental conditions. The SCC samples were tested when not 

cured and when curing with water. Experimental specimens of concrete were mixed and measured to create a total of 

528 data samples for training and testing the networks. Numerical results showed that both networks can be trained from 

the data sets to make highly accurate predictions of WEP and shrinkage size for both cured and not cured concrete 

samples. Comparatively, the TSK network showed better performance than MLP for the data sets used. The networks 

required only four inputs, including the concrete water-to-binder ratio, environment temperature, relative humidity, and 

the time after pouring the concrete into the mold. These inputs are straightforward to implement, making the proposed 

solutions readily adaptable for practical uses. 

Based on the achieved results, there are various opportunities to expand the proposed solutions. First, the 

effectiveness of the models can be significantly enhanced by using additional input parameters such as solar radiation, 

wind speed, or the actual temperature of the concrete sample. These environmental factors are known to have an impact 

on the concrete’s workability and parameters. Another important factor in the behavior of the SCC is the concrete curing 

methods. Once the models are trained to predict the SCC’s parameters based on curing methods, we can use the results 

to select the method that gets the best performance from the SCC. Inversely, we are also going to use the data samples 

for inverse parameter search, where users can estimate the inputs, i.e., the parameters of the concrete or the parameters 

of the environment, in order to achieve the expected WEP or shrinkage sizes of the mixed SCC samples. 
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