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Abstract 

Various natural disasters such as floods, fires, earthquakes, etc. have affected human life. Detection and classification of 
large and small earthquakes caused by natural or abnormal events have been always important to Earth scientist. One of 
the most important research challenges in this field is the lack of an effective method for identifying and categorizing 
various types of seismic events at less important and important levels. Based on latest achievements of Data Mining 
international institutions such as Rexer-KDnugget-Gartner and also newest authentic articles, SVM, KNN, C4.5, MLP are 
from most important and popular and leading classifiers in data world. Therefor in present study, a boost learning system 
consisting support vector machine algorithms with linear regression, MLP Neural Network  ،C4.5 decision tree and KNN 
near neighbourhood have been utilized in a combined form to detect and categorize micro seismic events. In general, the 
steps involved in the proposed method are: 1) performing artificial seismic tests, 2) data gathering and analysis, 3) 
conducting pre-processing and separating training and testing samples, 4) generating relevant models with training samples 
and detecting and clustering test samples and 5) extracting a cluster with the maximum candidate using boost learning. 
After simulations, it was observed that the accuracy of proposed boost method to the best answer was about 6.1% higher 
compare to other methods and the error rate was 0.082% of recalling. Accuracy of detection and classification to the best 
answer were also improved compare to other methods up to 2.31% and 6.34%, respectively. 

Keywords: Seismic Events; Seismic Data Classification; Boost Learning; Micro Seismic Detection. 

 

1. Introduction 

People face a variety of natural disasters in their life such as earthquakes, floods, fires and volcanoes from the past 

until now [1, 2]. These disasters have impacted human life and imposed irreparable damage on them. Micro seismic 

monitoring is the passive observation of very small-scale earthquakes which occur in the ground as a result of human 

activities or industrial processes such as mining, hydraulic fracturing, enhanced oil recovery, geothermal operations or 

underground gas storage.  Micro seismic science grew out of earthquake seismology and focuses on micro-earthquakes 

(i.e. magnitude less than zero).  These micro-earthquakes are too small to be felt on the surface, but they can be detected 

by sensitive equipment such as geophones and accelerometers. Various methods are used to forecast the occurrence of 

earthquake events such as mathematical modeling, ionosphere analysis and studying animals' behavior [3, 5]. Some these 

methods only utilize from a single feature and are not able to use different features in earthquake forecasting. Therefore, 
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earthquake events cannot be correctly forecasted through analyzing only a feature [6]. Nowadays, methods related to 

computer science can play important roles in different felids. Data mining techniques [7] and machine learning 

techniques [8] can be very useful in detection and classifying micro seismic events. In the other side, boost learning is 

being commonly used in many applications related to data mining including forecast, detection and classification and so 

on and is very effective in providing optimum and desirable output. Hence in present study, micro seismic events have 

been detected and then classified by combining machine learning techniques including support vector machine with 

linear regression [9, 10], MLP Neural Network [11] and C4.5 decision tree and (Ross Quinlan, 2014) [12] KNN [13]. 

Near neighborhood. The rest of present study is as follow: the literature review of study has been provided in section 2. 

Section (3) presents the suggested model with a description proposed architecture. In sections (4) and (5) the results have 

been represented and section (6) has been allocated to conclusion and future recommendations. 

2. Literature Review 

2.1. Micro Seismicity 

Large-scale earthquakes are caused when energy is released as a result of rock failure along a fault. In contrast, micro 

seismic events are caused when human activities such as mining or oil and gas production change the stress distribution 

or the volume of a rock mass. When the rock attempts to redistribute the stress within the rock mass, it will suddenly 

slip or shear along pre-existing zones of weakness such as along faults or fracture networks Traditional micro seismic 

mapping determines the location and magnitude of the event.  When micro seismicity is observed over time, operators 

may start to see patterns of seismicity related to production activities. Advanced micro seismic analysis performed by 

ESG can reveal more detailed information about the micro seismicity of the area and how the rock is responding to 

mining or oil and gas production activities, leading to increased efficiency and optimized operations. This small failure 

results in the release of energy in the form of seismic waves and is known as a micro seismic event. Passive micro 

seismic data are commonly buried in noise, which presents a significant challenge for signal detection and recovery. For 

recordings from a surface sensor array where each trace contains a time-delayed arrival from the event, we propose an 

autocorrelation-based stacking method that designs a denoising filter from all the traces, as well as a multi-channel 

detection scheme. This approach circumvents the issue of time aligning the traces prior to stacking because every trace's 

autocorrelation is centered at zero in the lag domain. The effect of white noise is concentrated near zero lag, so the filter 

design requires a predictable adjustment of the zero-lag value. Truncation of the autocorrelation is employed to smooth 

the impulse response of the denoising filter. In order to extend the applicability of the algorithm, we also propose a noise 

pre-whitening scheme that addresses cases with colored noise. The simplicity and robustness of this method are validated 

with synthetic and real seismic traces.  

In the earthquake-seismology community, a micro seismic event typically is defined as an earthquake that is not “felt” 

by the public, which usually implies an earthquake with a “moment magnitude” Mw less than about 3 or 4. Mw is a 

common measure of an earthquake’s strength and is a dimensionless quantity defined as Mw = 0.67 Log10(M0) – 6.07. 

In the equation above, the variable M0 is the “seismic moment” in units of [N•m], which is a quantitative measure of the 

amount of energy released in an earthquake such that M0 = μ A D, where A is the surface area of the rupture created by 

the earthquake along a fault or fracture, D is the amount of rock displacement along the rupture surface, and μ is the 

average shear strength of the rock encompassing the ruptured zone. A fracture is defined as a crack or break in a rock, 

and a fault is defined as a fracture along which relative displacement or “throw” of the rock has occurred across the 

fracture. For typical fluid injection or withdrawal scenarios, reservoir pressure changes of a few hundred psi (a few 

megapascals) can induce weak micro seismic events of magnitudes less than M –2, with associated rock displacements 

much less than a millimeter along fracture scale lengths much shorter than a meter. An M–2 event is approximately one 

billion times weaker (less energetic) than earthquakes that the public can feel. Moderate “fault reactivation” or significant 

“rock-fracturing” events typically induce micro seismic energy of magnitudes less than M2, with associated rock 

displacements less than a centimeter along fracture or fault lengths shorter than a few (or tens of) meters. An M2 event 

is approximately 100 to 1000 times weaker than what the public can feel. Large fault related earthquake rupture events 

typically radiate seismic energy with magnitudes greater than M4, with associated fault slip displacements greater than 

several centimeters or meters along fault lengths greater than several (tens or hundreds of) kilometers. An M3 or M4 

event is typically the weakest magnitude that the public can feel. 
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Figure 1. Example of recorded seismic waveforms generated by an Mw < 0 induced micro seismic event (blue) and an Mw > 

5 natural felt earthquake (red) 

 

Figure 1. compares an induced micro seismic waveform (M < 0) with a natural felt earthquake (M > 5). The micro 

seismic waveform contains much higher-frequency content than the earthquake waveform. Larger earthquakes have 

rupture processes of greater duration (tens of seconds to minutes), which tends to suppress higher-frequency components 

(e.g., Haskell fault model). The corresponding cutoff frequency or corner frequency is generally inversely proportional 

to earthquake size. Micro seismic data are characterized by smaller magnitudes, higher frequencies, shorter wavelengths, 

and shorter duration. Conversely, most felt earthquake data are characterized by larger magnitudes, lower frequencies, 

longer wavelengths, and longer duration. Based on scaling relationships between various source parameters (including 

frequency content and magnitude), processing techniques developed for natural felt earthquakes have been applied to 

micro seismic data. Micro seismic monitoring is an important tool for monitoring fluid flow and pressure/stress changes 

in the subsurface during fluid injection and extraction, especially during hydraulic fracturing for enhanced hydrocarbon 

production and geothermal energy production. In general, we record the seismic waves generated by micro seismic 

events with geophone arrays at or near the earth’s surface and in boreholes. Because we cannot predict the exact source-

excitation times of micro seismic events, we measure ground motion continuously and try to detect micro seismic 

waveforms in the continuous recorded data. For all micro seismic events detected, we locate the (x, y, z) spatial location 

(hypocenter) and the Mw < 0 induced micro seismic event (blue) and an Mw > 5 natural felt earthquake (red). [14] 

Kai et al (2014) utilized from particle swarm optimization algorithm (an algorithm of data mining) to forecast seismic 

events. They applied forecasting process on the seismic database and created a significant improvement (Cai and et al, 

2014) [15], Landerb et al (2015) investigated the relationship between sea depth, volcano and earthquake using 

geophysical approaches of data mining and proposed a method to forecast the occurrence of these seismic events [16]. 

Mark Last et al (2016) emphasized on forecasting seismic events in Israel and its neighbors. They conducted their 

predictions by combining time series methods and data mining approaches (Land grebe and R. D. Muller, 2015) [17]. 

Inshuman et al (2017) utilized from a model named MOIDIS to estimate and forecast seismicity on the ice surface [18]. 

They focused on the experiments of 2015 in their study (Anshuman and et al, 2017) [19].  

2.2. Other's Applied Works 

The classification relies on differences in signal energy distribution between natural and artificial seismic sources. 

Jari Kortström and his colleagues have filtered seismic records via 20 narrow band-pass filters and divided them into 

four phase windows: P, P coda, S, and S coda. They then computed a short-term average (STA) value for each filter 

channel and phase window. The 80 discrimination parameters served as a training model for the SVM. They calculated 

station specific SVM models for 19 on-line seismic stations in Finland. The training data set included 918 positive 

(earthquake) and 3469 negative (no earthquake) examples. An independent test period determined method and rules for 

integrating station specific classification results into network results. Finally, they applied the network classification 

rules to independent evaluation data comprising 5435 fully automatic event determinations, 5404 of which had been 

manually identified as explosions or noise, and 31 as earthquakes. The SVM method correctly identified 94% of the 

non-earthquakes and all but one of the earthquakes. The result implies that the SVM tool can identify and filter out blasts 

and spurious events from fully automatic event solutions with a high level of accuracy. The tool helps to reduce the 

work-load and costs of manual seismic analysis by leaving only a small fraction of automatic event determinations, the 

probable earthquakes, for more detailed seismological analysis. The self-learning approach presented here is flexible 

and easily adjustable to the requirements of a denser or wider high-frequency network. [20]. 

Based on latest achievements Data Science specialists, SVM, KNN, C4.5, MLP are from most important and popular 

and leading classifiers in the data specialist world society. It's visible in recent reports of Data Mining international 
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institutions such as Rexer-KDnugget-Gartner and also newest authentic articles that mentioned in references. No need 

to less that one of the most important step in data mining process is correct event detection and data classification. In 

this paper improvement of data detection and classification has been shown usage a modern method by Boost Learning 

System. 

3. Data Gathering and Analysis 

In present study, the limited experimental seismic method has been used to carry out related experiments. The used 

tools and devices are as follow: 

 The SPseise3 seismograph with sensors (geophones) connected to the device at a distance of 2.5 meters from 

each other. 

 A calibrated 20 Kg weight. 

 Calibrated meter. 

The environmental conditions of experiment included a natural environment in a land with rugged soil and 

asymmetric geometry and in three steps as follow: 

 In an area without slope 

 In an area with positive slope: in this step, the sensor is located in a point higher than landing level of the weight. 

 In an area with negative slope: in this step, the sensor is located in a point lower than landing level of the weight. 

The experiment was carried out by creating hit and shake on the ground through leaving 20 kg weight from heights 

of 0.5 m, 1 m and 1.5 m, in a way that three times falling was performed from aforementioned heights in each of the 

three surfaces (without slope, positive slope and negative slope). Since three steps of experiment were carried out each 

of the surfaces and data were received from three sensors in each step, the total of obtained data equals to 3*3*3=27 

which a sample of extracted signals has been shown in this section in diagrams. 

 

 

 

 

 

 

 

 

Figure 1. Falling from a height of 0.5 m on a non-sloping surface 

 

 

 

 

 

 

 

 

 

Figure 2. Falling from a height of 1 m on a non-sloping surface 
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Figure 3. Falling from a height of 1.5 m on a non-sloping surface 

After carrying out related experiments, a set of features was extracted which the features were used to evaluate and 

conduct related algorithms. Table 1. presents the features have been used in present study. 

3.1. Average Velocity of p-wave 

In this experiment, the average velocity of the initial wave propagation, which is important for analysis, is 500 m / 

s, which is obtained by dividing the distance between the sensor and the hypocentre (seismic focus) by the time that the 

signal is received by the device. 

3.2. Sample Rate 

In this research, discrete sampling was performed on continuous wave with the time period of 267 microseconds. 

The numbers in the Excel data sheet are the wave amplitude in micro-volt, i.e. in every 267 microseconds, a point of the 

signal is read. In the following tables, examples of datasets are presented. 

3.3. The Sample of Datasets 

Table 1. Dataset 1 

 No slope 

Height from earth surface 0.5 m 1 m 1.5 m 

Sensor1-2.5m to hit point 470 records 470 records 470 records 

Sensor2-5m to hit point 470 records 470 records 470 records 

Sensor3-7.5m to hit point 470 records 470 records 470 records 

Table 2. Dataset 2 

 Positive slope 10% 

Height from earth surface 0.5 m 1 m 1.5 m 

Sensor1-2.5m to hit point 470 records 470 records 470 records 

Sensor2-5m to hit point 470 records 470 records 470 records 

Sensor3-7.5m to hit point 470 records 470 records 470 records 

Table 3. Dataset 3 

 Negative slope 10% 

Height from earth surface 0.5 m 1 m 1.5 m 

Sensor1-2.5m to hit point 470 records 470 records 470 records 

Sensor2-5m to hit point 470 records 470 records 470 records 

Sensor3-7.5m to hit point 470 records 470 records 470 records 
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Technical specifications of SPsies-3 

Number of recording channels:  4 (3 + 1 AUX)   

Frequency recording range:  5 - 4600 Hz   

Analog anti-aliasing filter options:  250, 500, 1000 Hz  

Sampling interval options:  32, 64, 125, 250, 500, 1000 or 2000 µs 

Analog to Digital resolution:   24 b it                                                 

Hardware gain options:  24,36,48,60 dB  

 Maximum recording g data length:  Up to 16384 samples 

Pre -trigger delay:  Up to 4096 samples  

Table 4. presents the features have been used in present study. In this table sensors has been separated numbered for 

better diagnosis in different situation. 

Table 4. Data Features 

 
Height = 0.5 m (II) 

A (far) B (middle) C (near) 

without slope s7 s8 s9 

positive slope s10 s11 s12 

negative slope s19 s20 s21 

Height = 1.0 m (II) 

A (far) B (middle) C (near) 

without slope s1 s2 s3 

positive slope s16 s17 s18 

negative slope s22 s23 s24 

Height = 1.5 m (II) 

A (far) B (middle) C (near) 

without slope s4 s5 s6 

positive slope s13 s14 s15 

negative slope s25 s26 s27 

 

In Table 4, the columns related to t height indicate the heights of weight falling and the rows are for the slope of 

surface. S1 indicates positive slope and means the down to the top route. S2 indicates negative slope and meant the top 

to the down route and S3 indicates flat and non-slope surface. The columns of the second row indicate three sensors 

have been used in the experiment. Sensor A is the farthest sensor from the source (7.5 m), sensor B is the middle one 

from the source (5 m) and sensor C is the nearest sensor to the source (2.5 m). For example, S7 indicates the received 

signal from sensor (A) i.e. the farthest sensor from the source in the first falling i.e. from the height of 0.5 m in non-

slope surface. The rest of the experiment is in a same way, i.e. S27 indicates the signal received from the nearest sensor 

to the source (sensor C) in falling from the height of 1.5m in the negative slope surface (down to top route). Different 

statuses of the experiment with different heights and sensors have been shown in following figure. 

After gathering data from different sensors in far, middle and near distances as well as in different statuses of non-

slope, positive slope and negative slope, it was needed to combine data and produce a coherent dataset to determine the 

cluster of each sample. For this purpose, all of the gathered data were prepared in the form of Excel file. Therefore, in 

present study, the experiments were carried out on 12690 samples. 

4. Description of the Proposed Method 

In this section, the process of seismic events detection and classification has been firstly described and then, the 

learning algorithms and how to produce related models have been investigated. Finally, methods' combination and 
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evaluating criteria have been described. 

4.1. Seismic Events Classification 

Nowadays, Software and data mining tools like Rapid-Miner have provided opportunities to apply machine learning 

algorithms on a set of data and extract variety of outputs. In present study, data were firstly gathered and then required 

pre-processing acts were applied on the seismic events data and a coherent dataset was produced using Rapid-Miner 

software and machine learning algorithms including SVM algorithm, MLP neural network algorithm, and C4.5 decision-

making tree and KNN algorithm. The produced dataset was used to create related model based on the training samples. 

Training data involved 80% of micro seismic event samples and were used to training process of model of mentioned 

algorithms. The experimental data involved 20% of micro seismic event samples and were used to evaluate the proposed 

method and each of the mentioned algorithms. The sampling method of experimental data was based on the balancing 

technique (balance sampling technique). It would be possible to extract the same samples from each of the groups by 

this technique to cover all of the groups. After producing coherent data set from a set of recorded seismic events and 

separating training data from experimental data, the data were inserted to the core of learning machine algorithms. The 

following figure represents how insert data, producing training models and finally classification of each sample by 

learning machine algorithms. 
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Figure 4. Applying machine learning algorithms on micro seismic events 
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As it can be seen from Figure 5, all seismic events recorded by seismograph machine and sensors were firstly inserted 

to the proposed system as inputs. Then, the data were gathered in a unique profile and turned into a set of coherent 

events. The classification process was performed by an expert based on the less important and important events and so 

on. In present study, the X-means clustering algorithm was used to measure the accuracy of classification done by expert 

as well as to determine cluster for all samples and it was observed that classes are exactly as same as clusters. Therefore, 

the classes determined by the expert were reliable. Data were separated in two groups of experimental and training after 

producing a coherent data set and classifying them by expert and X-means algorithm. Then, the training data were 

inserted to each of the algorithms one-by-one. Each algorithm produced the related model to classify experimental 

samples by receiving training data. Then, each classifier algorithm sent a cluster of each sample to the input of boost 

learning algorithm. 

4.2. Boost Learning System 

The structure of boost learning algorithm is in a way that the out puts of algorithms of support vector machine 

learning with linear regression, MLP Neural Network, C4.5 decision-making tree and KNN receive a cluster and 

determine the number of which cluster is more than other clusters. The cluster with the most candidates for each sample 

is selected as a final output. The flowchart of boost learning has been shown in Figure 6. 

 

Figure 5. Flowchart and architecture of boost learning method 

As it can be seen from Figure 6, a cluster is sent to output of each seismic event sample per repetition as the optimum 

cluster. The optimum cluster among the output of algorithms can be selected using following equation. 

𝐵𝑖 = max(𝐶1; 𝐶2; 𝐶3; … ; 𝐶𝑛) (1) 

Where, Bi indicates the final cluster to ith sample and C is the determined cluster to hth cluster by deep learning 

algorithms. 

4.3. Evaluation Criteria 

In all of classifier and forecaster algorithms, the accuracy, precision, recalling and real error are the most criteria of 

evaluation. The following equation presents how to calculate the accuracy of seismic events' classification. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

Where, TP indicates the number of detections and classifications which have been classified as less important or 

important.  TN indicates the number of detections and classifications which have been classified as non-important and 

FP is for false classifications. The following equation shows how to calculate the recalling of seismic events' 

classification. 

𝑅𝑒𝐶𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

The following equation shows how to calculate the precision of seismic events' classification. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

The following equation shows how to calculate the error rate of seismic events' classification. 

𝐸𝑟𝑟𝑜𝑟 = 100 −
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

The following equations show how to calculate the mean of real errors and mean square of errors. 

𝑀𝑆𝐸 = 𝑀𝑒𝑎𝑛(𝐸𝑟𝑟𝑜𝑟2) (6) 

𝑅𝑀𝑆𝐸 = 𝑆𝑞𝑟(𝐸𝑟𝑟𝑜𝑟) (7) 

5. Results evaluation 

In present study, the forecasting and classification process of micro seismic events was carried out on 3330 samples 

of data recorded by SPseise3 seismograph machine consisting up of Three sensors (geophones) connected to the machine 

with a distance of 2.5 m from each other, a 20kg calibrated weight and a calibrated meter. 20% of data extracted from 

whole of the data in a balance form were used as experimental data and 80% of them used as training data in order to 

evaluate data mining algorithms as well as to combine optimum algorithm in the form of a boost learning system. 

Therefore, in this section, the results of all algorithms have been analysed and evaluated based on the mentioned 

evaluation criteria. 

Since the samples extracted from available sensors were without monitoring, it was firstly needed to determine a 

cluster for each sample and then, machine learning algorithms with monitoring include SVM, neural network, decision-

making tree and so on applied on the final clustered data. In present study, three thresholds have been defined to detect 

three different classes as follow: 

 Data obtained from dropping the weight from a height of half a meter: noise class 

 Data obtained from dropping the weight from a height of one meter: less important events class 

 Data obtained from dropping the weight from a height of one and a half meters: important events class 

The learning algorithms can be applied on data with determining the classes related to each sample. Following figure 

represents a comparison between the precision of micro seismic event detection and classification of different algorithms 

including MLP neural network, SVM, C4.5 decision-making tree, KNN and proposed boost method. 

Figure 6. A comparison between precision of micro seismic event detection and classification of proposed method with the 

other methods 

As it can be seen, the level of precision of proposed method to the best answer has been improved up to 6.1% compare 

to the other methods. Following figure represents a comparison between the total error rate of micro seismic event 

detection and classification of different algorithms including MLP neural network, SVM, C4.5 decision-making tree, 

KNN and proposed boost method. 
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Figure 7. A comparison between error rate of micro seismic event detection and classification of proposed method with the 

other methods 

Since reduction in error rate of proposed method is complementary of precision level, it can be seen that the error 

rate has been improved up to 0.82% compare to the other methods. Following figure represents a comparison between 

the recalling and accuracy of micro seismic event detection and classification of different algorithms including MLP 

neural network, SVM, C4.5 decision-making tree, KNN and proposed boost method. 

Figure 8. A comparison between recalling and accuracy of micro seismic event detection and classification of proposed 

method with the other methods 

As it can be seen, the level of accuracy and recalling of micro seismic event detection and classification in the 

proposed method have been improved compare to the mean accuracy of other methods up to 37.4% and 42.5%, 

respectively. Following figure represents a comparison between the RMSE values of micro seismic event detection and 

classification of different algorithms including MLP neural network, SVM, C4.5 decision-making tree, KNN and 

proposed boost method. 
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Figure 9. A comparison between RMSE value of micro seismic event detection and classification of proposed 

method with the other methods 

Following figure represents a comparison between the mean real error of micro seismic event detection and 

classification of different algorithms including MLP neural network, SVM, C4.5 decision-making tree, KNN and 

proposed boost method. 

Finally, with calculating the value of mean error rate and error mean square, it was observed that the proposed boost 

method detects and classifies the seismic with higher efficiency compare to the other methods. 

6. Conclusion 

In present study, the micro seismic events were detected and classified through combining machine learning methods 

including back up vector machine, MLP neural network, and C4.5 decision-making tree and KNN algorithm in the form 

of boost learning. The procedure of experiment was in a way that less important and important seismic events caused 

by weight falling from various heights and different distances of far, middle and near recorded by laboratory devices 

and sensors. Then, the data were pre-processed and classified. The classification was based on the level of height, 

distance and considered sensors. After this step, the training data (80%) and experimental data (20%) were separated 

from each other. The training data were used to train considered algorithms and the experimental data were used to 

evaluate the precision, accuracy, and recalling and error rate of the proposed method. In the next step, the algorithms of 

support vector machine, MLP neural network, C4.5 decision-making tree and KNN produced related models and the 

new and without class experimental data were inserted to the models in order to evaluations. The cluster related to each 

sample was determined by each of the algorithms and the answers inserted to the boost learning system. Finally, the 

cluster with the most number of candidates was selected as the main cluster of related event. The precision and accuracy 

were significantly improved by this strategy. After simulation of the proposed method, it was observed that the precision 

of proposed boost method was improved up to 6.1% compare to the other methods. The error rate improved up to 0.82% 

and the recalling and accuracy of detection and classification to the best answer were also improved in the proposed 

method up to 2.31% and 6.34%, respectively. 
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