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Abstract 

Soil moisture is an essential factor that influences agricultural productivity and hydrological processes. Soil moisture 

estimation using field detection methods takes time and is challenging. However, using Remote Sensing (RS) and 

Geographic Information System (GIS) technology, soil moisture parameters become easier to detect. In microwave remote 

sensing, synthetic aperture radar (SAR) data helps to retrieve soil moisture from more considerable depths because of its 

high penetration capability and the illumination power of its light source. This study aims to process the SAR Sentinel-1A 

data and estimate soil moisture using the Water Cloud Model (WCM). Many physical and empirical models have been 

developed to determine soil moisture from microwave remote sensing platforms. However, the Water Cloud Model gives 

more accurate results. In this study, the WCM model is used for mixed crop types. The experimental soil moisture was 

determined from in-situ soil samples collected from various agricultural areas. The soil backscattering values 

corresponding to the different soil sampling locations were derived from Sentinel SAR data. Using linear regression 

analysis, the laboratory's soil moisture results and soil backscattering values were correlated to arrive at a model. The 

model was validated using a secondary set of in-situ moisture content values taken during the same period. The R2 and 

RMSE of the model were observed to be 0.825 and 0.0274, respectively, proving a strong correlation between the 

experimental soil moisture and satellite-derived soil moisture for mixed crop field types. This paper explains the 

methodology for arriving at a model for soil moisture estimation. This model helps to recommend suitable crop types in 

large, complex areas based on predicted moisture content. 

Keywords: Water Cloud Model (WCM); Synthetic Aperture Radar (SAR); Soil Backscattering. 

 

1. Introduction 

Soil moisture is the most influential factor causing surface runoff fluctuations and soil infiltration capacity [1, 2]. 

Soil moisture varies based on location and crops [3]. The in-situ measurements available to measure soil moisture are 

complex. However, with RS and GIS technology, we can estimate the soil moisture content for challenging areas such 

as highly vegetated areas, dense forests, and grasslands [4]. Active remote sensors such as RADAR transmit signals to 

the earth's surface by illuminating their own light source and receiving the signals that are reflected back to the sensor. 

SAR is an imaging radar that has its own energy source. The successive radar pulses from SAR are transmitted to the 

target, received back to the sensor as backscattered signals, and then recorded. The spatial resolution of this image 

depends on pulse length and beam width. 
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Radar backscattered energy depends on satellite sensor parameters and earth terrain parameters. Some sensor 

parameters include frequency/wavelength, polarization, viewing geometry, spatial resolution, and speckle. The earth's 

terrain parameters are the surface geometry, the roughness of the surface, and the dielectric constant. Among these 

factors, polarization, surface roughness, and dielectric properties play a dominant role in retrieving soil moisture content 

[5]. The polarization of the radar has a significant effect on the nature and magnitude of the backscattered signal. There 

are four combinations of polarization, which include both transmit and receive polarizations. They are HH, VV, VH, 

and HV. The letters H and V are designated as horizontal and vertical, respectively. HH and VV polarizations are like-

polarized, whereas HV and VH are cross-polarized. The strength of like-polarized signals is stronger than that of cross-

polarized signals. 

The surface roughness of earth objects purely depends on the wavelength and incidence angle of RADAR [6]. The 

texture of the earth’s surface is classified as smooth and rough. If the variations in the height of the objects (h) are 

smaller than the radar wavelength () i.e., h < , then the surface is said to be smooth. When the variations in the height 

are greater than the radar wavelength i.e., h > , then the surface is said to be a rough surface [7]. The smooth surfaces 

appear darker in the radar image since very little energy is received back, and thus it is recorded by the radar antenna. 

The rough surfaces appear lighter in the radar image since more energy is scattered back to the radar antenna.  

The dielectric properties of the soil surface are influenced by the percentage of moisture content in the soil [8]. The 

surface appears rougher and darker in the satellite image when the soil is moist or wet. The large difference in electric 

properties results in a higher radar backscattered signal [9]. However, if the soil is dry, the surface appears smooth and 

is lighter in color in the satellite image. Some transmitted energy penetrates the soil's subsurface, resulting in less 

backscattered energy. 

In this study, the soil moisture values are determined using the backscattered energy of SAR data, which depends on 

polarization, surface roughness, and dielectric properties. The backscattered energy value of dual polarization (VV+VH) 

mode is used in this study. Many models, such as physical, empirical, and semi-empirical models [10], are used to 

determine soil moisture content. Many physical and empirical models are developed to simulate the data or parameters 

from microwave remote sensing platforms. However, these models are used only for a particular crop type. 

The four different crop fields, such as paddy fields, sesame plants, groundnuts, and jasmine flowering plants, were 

selected to assess the soil moisture for different agricultural fields. The Water Cloud Model (WCM) is extensively used 

for the above different heterogeneous crop fields to explore the model's capabilities. The main aim of this study is to 

calculate the soil moisture content using the Water Cloud Model (WCM) for different heterogeneous agricultural fields 

such as paddy fields, sesame plants, groundnuts, and jasmine flowering plants. 

In this study, the complex effect of scattering between vegetation and soil is made simple by the WCM model, which 

works for many vegetation layer types. The WCM model removes the scattering effect of vegetation layers to estimate 

soil moisture content. 

2. Literature Review 

Srinivasa Rao et al. [11] used the Dubois model and Topp's model with only HH polarization to estimate soil 

moisture. The backscattering coefficient values and dielectric constant from HH polarization were computed, and these 

values were correlated and simulated for cross-polarized signatures like HV. These output results of soil moisture are 

compared with field-observed data and then validated. This model provides accurate results in soil moisture monitoring 

using RISAT data only in different polarizations, such as HH and HV (in medium and coarse resolutions). 

Thanabalan et al. [12] used dual-polarimetric RISAT-1 to determine soil moisture. They used Topps and the 

Modified Dubois Model (MDM) to assess soil moisture in Theni District. IRS LISS IV satellite data provided the land 

use/land cover classifications for various land categories. Thus, the backscattering values were first derived, and then 

the surface roughness values were measured as field measurements from the selected sample locations. These values 

were correlated using a linear regression analysis. 

Mirsoleimani et al. [13] used the Modified Dubois Model (MDM) and Calibrated Integral Equation Model (CIEM) 

to estimate soil moisture and compare the results in their study area, Karaj Watershed, Iran. They have used the Sentinel-

1 C band in their study. The model (MDB and CIEM) variables include the angle of incidence and root mean square 

height, which are retrieved from the satellite images. The known values of in-situ observations were used as inputs to 

this model to correlate the backscattering values in the VV and VH polarizations. Then the correlated σ0 values from 

Sentinel 1 SAR data were compared, and the results were validated using linear regression analysis. 

Collingwood et al. [14] have used the ANN model for Melville Island, Nunavut's study area, to calculate soil 

moisture. They have used RADARSAT-2 SAR satellite data. The variables used in this study were the surface roughness 

values, the backscattered values of HH polarization, and the angle of incidence. The surface roughness variable was 

very dynamic and temporal. This model was applied to lower incidence angles to reduce the surface roughness and 

backscattered values in the study area. 
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Artificial neural network (ANN) models can be applied to more unique physical soil constraints [15]. Like 

conventional models, it is also used to retrieve soil moisture. But it gives better results than any other traditional model. 

This model is suitable for only studying the spatial distribution pattern of soil [16, 17]. ANNs must input the prior 

knowledge information into the model. Some statistical input data without any assumptions can be included in this 

model for analysis. These models can be applied to newer areas, requiring few assumptions [18]. 

Nijaguna et al. [19] employed an improved version of the Water Cloud Model (WCM) with a deep learning-based 

hybrid model to retrieve the soil moisture values. They have used the Deep Max Out Network (DMN) in addition to the 

Bidirectional Gated Recurrent Unit (Bi-GRU) schemes to attain higher accuracy in the results. This study suggested a 

novel technique as a hybrid model for soil moisture retrieval in homogenous regions. 

Dopper et al. [20] have presented the hybrid technique of using radiative transfer modeling and machine learning 

with the help of hyperspectral images. They have applied this modeling technique to estimate soil moisture for 

permanent grassland sites. This modeling technique requires less number of field measurements. Also, the model yields 

good results for undisturbed and water-limited areas. 

Lei et al. [21] have performed the vegetative canopy water content measurement to improve the Water Cloud Model 

(WCM) in retrieving soil moisture. Their results clearly stated that a more specific vegetation water content is created 

using the vertical canopy arrangement and biomass. Using Improved WCM (IWCM), the retrieval of soil moisture 

values for various levels of forests, such as green wood, grasslands etc., was determined. 

Yahia et al. [22] have proposed the inversion of the Water Cloud Model (WCM) to enhance the measurement of soil 

moisture values. They have suggested using the Optical Trapezoidal Model (OTM) to compute vegetation canopy 

indices. They have applied this novel technique to the Sidi Rached and Blackwell farms. 

Luo et al. [23] have used the Back Propagation Neural Network (BPNN) model to find the relationship between the 

bands and the soil moisture measurement data. The optical and thermal infrared satellite data from different periods 

were considered as input values, as were the field measurement data. They have applied this model to estimate the 

surface moisture content of the soil in bare land and vegetated areas. The correlation coefficient between the in-situ 

field-measured soil moisture and the estimated soil moisture was observed to be 0.9001, and the results give highly 

accurate values. 

Based on the findings from the literature review, it is evident that soil moisture models are used only for specific 

agricultural fields or crop types like grasslands, wheat fields, or paddy fields. Hence, this study mainly estimates soil 

moisture for different crop fields or mixed heterogeneous crops. This study used Sentinel 1A SAR and microwave 

satellite data. Sentinel 1A has dual polarization (VV+VH) mode. Table 1 provides the specifications of the satellite data. 

The Water Cloud Model (WCM) is utilized in this study to find the moisture content in the soil for mixed heterogonous 

crop types. This model's main advantage is reducing the complex effect of scattering between vegetation and soil. 

Table 1. Specifications of sentinel 1A SAR satellite data 

Details of specification Sentinel-1 data 

Data product used Ground Range Detected Level-1 Product 

Orbit Descending 

Polarization VV-VH 

Imaging frequency C-band (5.4GHz) 

Resolution 20 m (Full resolution) 

Temporal Resolution 12 days 

3. Study Area and Data Collection 

The study area chosen is Maiyur and Sampathinallur villages, Maduranthakam Taluk, Kancheepuram district, Tamil 

Nadu, India. This area has a hot and humid climate. The Palar River is the major river in this region, which is not 

perennial. Generally, these villages have witnessed average rainfall and have more diversified agricultural crop fields. 

The average temperature in this area ranges from 19.8 to 38.6 ºC. 

The study area extends from 12°40'31.57"N, 79°56'13.43"E to 12°39'52.43"N, 79°56'33.27"E. The study area is 

shown in Figure 1. 
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Figure 1. The study area of Maiyur and Sampathinallur village 

Fourteen soil samples were collected from the study area during February 2022 and March 2022 at four different 

agricultural fields in Maiyur and Sampathinallur villages in Maduranthakam taluk, Kancheepuram district, Tamil Nadu, 

India. Field 1 and Field 2 soil samples were collected from paddy fields and sesame plants, respectively, at Maiyur 

village. Field 3 and Field 4 soil samples were collected from groundnut and jasmine flowering plants, respectively, at 

Sampathinallur village. The eight in-situ soil samples were used for estimating the experimental soil moisture 

measurement, and the remaining six ground samples were utilized for validating the model. The spatial location of in-

situ soil samples is depicted in Figure 2. 

  
(a) Maiyur Village (b) Sampathinallur village 

Figure 2. Field sample data Locations 
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The soil samples were collected from Maiyur and Sampathinallur villages on the same date as the satellite passed 
the study region. The Global Positioning System was used to determine the location of the soil samples [24]. Figure 3 
shows the photos taken in the field while collecting the soil samples. 

 

Figure 3. Soil sampling 

The gravimetric soil moisture content of the field samples was determined. Volumetric soil moisture has been 

determined from gravimetric soil moisture [25]. The following formula is used to compute both gravimetric and 

volumetric soil moisture: 

Sg = 
𝑊𝑠 − 𝑊𝑑

𝑊𝑑
 (1) 

ρb = 
𝑊𝑠

𝑉
 (2) 

Sv = Sg × ρb (3) 

where Sg is Gravimetric soil moisture in cm3/cm3, ρb is Bulk Density in gm/cm3, Sv is Volumetric Soil moisture in 

cm3/cm3, Ws is Weight of wet sample in gm, Wd is Weight of dried sample in gm, and V is Volume of sample in cm3. 

The gravimetric soil moisture values of the collected soil samples are tabulated in Table 2. The gravimetric moisture 

content lies between 0.099 cm3/cm3 and 0.169 cm3/cm3. The observations show that the soil moisture content is very 

low at the S13 and S14 site samples in Field4 compared to other field site samples. 

Table 2. Experimental results of field sample data 

Sl. No. Sample_ID Latitude Longitude Gravimetric soil moisture (cm3 cm-3) 

1 F1_S1 12°39'56.44"N 79°56'34.07"E 0.127 

2 F1_S2 12°39'56.42"N 79°56'33.53"E 0.147 

3 F1_S3 12°39'55.39"N 79°56'33.36"E 0.133 

4 F1_S4 12°39'55.21"N 79°56'33.84"E 0.132 

5 F2_S5 12°39'54.22"N 79°56'33.73"E 0.157 

6 F2_S6 12°39'54.35"N 79°56'33.10"E 0.169 

7 F2_S7 12°39'52.61"N 79°56'32.72"E 0.146 

8 F2_S8 12°39'52.43"N 79°56'33.27"E 0.136 

9 F3_S9 12°40'30.25"N 79°56'13.41"E 0.146 

10 F3_S10 12°40'29.74"N 79°56'13.40"E 0.141 

11 F3_S11 12°40'29.80"N 79°56'15.24"E 0.131 

12 F3_S12 12°40'30.26"N 79°56'15.22"E 0.143 

13 F4_S13 12°40'30.47"N 79°56'14.38"E 0.116 

14 F4_S14 12°40'31.57"N 79°56'13.43"E 0.099 

4. Research Methodology 

The Sentinel Application Platform (SNAP) software is used to process the sentinel SAR data in this study. In the 
Sentinel Application Platform (SNAP), the Sentinel data is opened as an XML file with the band combinations B4, B3, 
and B2. The sentinel 1A SAR data is pre-processed in the SNAP toolbox. The amplitude and intensity values of VV and 
VH scenes could be viewed on the display. Generally, all the bands in the Sentinel data were of different sizes and 
resolutions. The subset function is used to perform both spatial and spectral resampling. The resampling technique is 
performed to make all the bands of the same size and resolution. Lee's adaptive filter does the speckle suppression in 

SAR data. SRTM DEM data is used for terrain correction. Figure 4 displays the sentinel 1A SAR data used in this study. 
The False Color Composite (FCC) of different polarizations of the satellite is viewed in the display. 
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Figure 4. Sentinel 1A SAR data of study area 

The backscattering values are retrieved from SAR data, representing the vegetation and underlying soil [26]. The 

values of soil backscattering are extracted from the combined backscattered energy [27]. The methodology of this study 

is shown in Figure 5. 

 

Figure 5. Methodology for Sentinel data processing and soil moisture retrieval 
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Validation of Results 
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Using WCM, the soil moisture values are then retrieved from the combined backscattering value. The relationship 

between combined backscattering of vegetation & soil is given below [28]. 

𝜎0 = 𝜎0𝑣𝑒𝑔 + 𝜏2𝜎0𝑠𝑜𝑖𝑙  (4) 

𝜎0𝑣𝑒𝑔 = 𝐴 𝑚𝑣𝑐𝑜𝑠𝜃 (1 − 𝜏2)  (5) 

𝜏2 =  𝑒(−2𝐵𝑚𝑣 𝑠𝑒𝑐𝜃)  (6) 

where 𝜎0  is combined backscattering value, 𝜎0𝑣𝑒𝑔 is vegetation backscattering value, 𝜎0𝑠𝑜𝑖𝑙 is soil backscattering 

value, 𝑚𝑣 is vegetation water content, 𝜃 is local incidence angle that is extracted from the corrected SAR data, and 𝜏2 

is two-way vegetation transmissivity. 

The vegetation moisture content (𝑚𝑣) is determined from the laboratory method and is employed in the WCM [29]. 

These values from the model represent the combined backscattering values. The linear regression analysis is then carried 

out, which proposes a statistical model to determine the soil moisture parameter for the respective soil backscattering 

values for heterogeneous crops. The in-situ soil moisture values and the soil backscattering values are correlated using 

a linear regression model. The experimental soil moisture values were compared and analyzed with the satellite-derived 

soil moisture values to validate the model using a secondary set of in-situ soil samples. 

5. Results and Discussion 

A regression analysis was performed between the soil backscattering values and in-situ soil moisture values. Table 

3 shows the soil backscattering values from the sentinel SAR data. From the regression analysis, the correlation 

coefficient value (R2) is found to be 0.825, as depicted in Figure 6. Thus, there is a good correlation between satellite-

derived soil backscattering and experimental soil moisture values [30]. 

Table 3. Experimental results and satellite-derived soil backscattering values of field sample data 

Sl. No. Sample_ID Experimental soil moisture (cm3 cm-3) Soil backscattering values in dB 

1 F1_S1 0.244 -13.421 

2 F1_S3 0.254 -12.544 

3 F2_S5 0.312 -14.269 

4 F2_S7 0.292 -14.034 

5 F3_S9 0.297 -13.924 

6 F3_S11 0.266 -13.922 

7 F3_S12 0.291 -14.470 

8 F4_S14 0.167 -11.725 

 

Figure 6. Regression Analysis between experimental soil moisture and soil backscattering values 
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From the linear statistical regression analysis, the soil moisture for heterogeneous crops can be obtained from the 

equation; 

Soil Moisture = (-0.044 ∗ 𝜎0𝑠𝑜𝑖𝑙) - 0.333 (7) 

The satellite-derived and the measured soil moisture values are compared and analyzed to validate the above 

equation. The Root Mean Square Error (RMSE) value is determined to be 0.0274 [31]. Figure 7 compares the observed 

field values and satellite-derived soil moisture. 

 

Figure 7. Comparison between field and satellite-derived soil moisture 

The R2 and RMSE of observed and derived values obtained from the model are 0.825 and 0.0274, respectively. The 

deviation from the field and satellite-based soil moisture values is between 0.01 cm3/cm3 to 0.04 cm3/cm3. This model 

was validated by comparing the soil moisture values obtained from the field and the model. The results prove that the 

proposed model can be applied to different agricultural fields. Thus, the proposed model is also applicable for estimating 

the soil moisture for various crop fields. This model can be used to reduce the oversupply of water for agricultural 

purposes and to alleviate the water shortage in particular locations based on soil moisture. 

The R2 value reported by various researchers was between 0.65 and 0.78, and the RMSE value ranged from 0.05 to 

1. The backscattered values purely depend on the vegetation over the underlying soil and the surface roughness. Due to 

the effects of the physical parameters that affect the backscattered signal, the results of their findings were low. The 

results retrieved from Figure 7 are accurate when compared to other earlier studies. 

6. Conclusion 

This study estimates the soil moisture for different crop fields using Remote Sensing and GIS technology. Using 

Setinel-1 SAR data, a semi-empirical WCM model has been used in this study to determine the soil moisture values 

from SAR backscattering values [32]. The regression analysis shows that soil moisture has a robust correlation with the 

satellite-derived soil backscattering values. The same model may be further applied for more mixed land cover. This 

model is more suitable for heterogeneous crop regions. The results from this model can be used for irrigation 

management practices so that a sufficient quantity of water may be irrigated for the crops in that region to attain 

maximum crop productivity yield. These results will be more beneficial for using water resources in the area to increase 

the crop productivity index. 

The processing of the Sentinel-1 data and the assessment of soil moisture initially had several limitations. Soil 

moisture estimation is more complex in highly vegetated areas when compared with dry, bare soil areas. The satellite 

backscattered signals are more affected by surface roughness, dielectric constant, and vegetation cover over the 

underlying soil [33]. The effect of these parameters results in more complexity in extracting the satellite backscattered 

signals. The resulting backscattered energy is the combination of both soil and vegetation backscattering values. To 

overcome these limitations, factors like vegetation moisture content and the Normalized Difference Vegetation Index 

(NDVI) are used in this study. More factors like the Normalized Difference Water Index (NDWI), Leaf Area Index 

(LAI), Enhanced Vegetation Index (EVI), etc. can be used for further study to assess the soil moisture content for more 

accurate results. In addition to Sentinel-1 SAR data, Sentinel-2 satellite data, which provides high spatial and temporal 

resolution, can be explored to assess soil moisture estimation [34]. The various regression models will be used for 

comparing the satellite-derived soil backscattering values and the experimental soil moisture. 
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