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Abstract 

One of the main hydraulic properties of unsaturated soils is the Soil-Water Characteristic Curve (SWCC). It is essential to 

understand, predict soil water storage and determine the hydraulic and mechanical behaviour of soils. These curves can be 

obtained by direct and indirect measurements. The measurements to obtain these curves are expensive, delicate to perform 

and can be really slow for fine soils, so predictive models become necessary. In order to make a numerical model, a couple 

of identification tests were carried out to obtain the physical properties of each sample among the four subgrade materials 

collected in the regions of Dakar and Thies (Senegal). The measurement tests of the matric suction were then conducted 

depending on the nature of the material (fine-grained soil or coarse-grained soil) and allowed to draw the SWCC of each 

soil. Among numerous predictive models developed for SWCC in the last decades; this study used the Perera model to fit 

the SWCC of four (04) subgrade materials, which did not give a satisfactory coefficient of correlation (R2 = 58% and a 

relatively low sum of the squared residuals (SSR)). This leads to modifying the Perera model to better fit the SWCC on 

the basis of an understanding of the effect of each parameter on the shape of the SWCC. The proposed modified model 

was validated by checking the adjusted R2, minimizing the SSR in order to approach at most the experimental air entry 

value. The modified model works pretty well on coarse-grained and fine-grained soils. This modified model of Perera 

provided a very good correlation R2 equal to 99.98, 98.74, 99.64, and 99.73 for the sandy soils (Sebikotane and Keur Mory) 

and the Marley and Clayey soils of Diamniadio, with a minimal SSR obtained compared to Perera’s and Hernandez model. 
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1. Introduction 

Several research studies have been done over the last decades to better understand the mechanics of unsaturated 

soils. In the previous studies [1–5], the soil–water characteristic curve (SWCC) was defined as the most useful concept 

of unsaturated soil mechanics. It can serve to estimate the water storage and also intervene in slope stability, bearing 

capacity, and agriculture fields [6]. The SWCC is a non-linear relationship between the volumetric water content,  or 

degree of saturation, Sr and matrix suction,  The latter is defined as that suction component that relates to the height 

to which water can be drawn or sucked up into unsaturated soil. These retention curves can be obtained either directly 

or indirectly by measurement. A SWCC describes the amount of water retained in soil under equilibrium at a given 

matric suction. This most important hydraulic property of unsaturated soils is related to the size and connectedness of 

pore spaces and is strongly affected by the soil texture and structure. However, the shape of the SWCC is hysteretic, 

with wetting and drying curves. In this study, only the drying process (Figure 1) is determined due to the experimental 

difficulties associated with the measurement of the wetting curve [7, 8]. 
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Figure 1. Typical features of the Soil-Water Characteristic Curves (SWCC) [9]) 

Figure 1 describes a typical sigmoidal shape, which can be divided into three parts commonly named boundary effect 

zone, transition zone, and residual conditions. There are three main features that necessarily define the shape of the 

SWCC. The first is the air entry value (AEV) corresponding to the suction required to drain freely the water from the 

largest pores; the second feature represents the slope of the SWCC obtained in the transition zone or the rate of water 

loss [10], and the third feature represents the volumetric water content below which an increase in suction has no effect 

on the water content [11]. 

These tests are expensive, really delicate to handle, and can be influenced by several factors [12]. To overcome the 

lack of devices, expensive cost, and delicacy of these tests, an estimation of the SWCC became necessary in this field. 

Several models have already been developed for the prediction of the SWCC and can be classified into three groups. 

The first approach and the most popular are classified as empirical models [13–16]. In this approach, having data 

(measured suction and water content) is necessary to make predictions in order to find the corresponding suction for a 

given water content. The second approach was based on the soil properties [17–19]. This approach is really interesting 

as it uses the physical properties of the materials (Atterberg limits, grain size distribution) to predict the suction value. 

It is an alternative, given that suction measurement tests are expensive, delicate to handle, and very difficult to perform. 

And finally, the third approach was based on machine learning using programming software. Artificial Neural Networks 

is used to estimate the soil-water characteristic curves. This method is considered an aid to determining the suction value 

[20–25]. This system is built similarly to the human brain, with a neural network to connect the input data to the output 

data. The advantage of this method is the unnecessity to know the link between the input and output data. However, the 

main inconvenience of this approach is the need for a very large database. Given the required time, the complexity of 

these tests, the lack of a device to measure the SWCC in Senegal, and the ease of obtaining physical parameters in 

practically all laboratories, the second approach was used to predict the SWCC in this paper. 

Fredlund & Xing (1994) model is a popular empirical model used to estimate the SWCC because it can describe a 

much wider range of suction than other models up to 106 kPa at zero water content [14]. Each parameter of the model 

has an impact on the shape of the SWCC. Indeed, the parameter “𝑎𝑓” is related to air entry value, “𝑏𝑓” to the pore size 

distribution (PSD); while “𝑐𝑓” is related to the residual zone, specifically the water content and the residual soil suction. 

Fredlund et al. (2002) also used a database of 6000 soils implemented in SoilVision to found a predictive model using 

the particle size distribution to predict the fitting parameters 𝑎𝑓, 𝑏𝑓 and 𝑐𝑓 in the Fredlund model [26]. 

Zapata et al. (2000) developed a model based on 190 soils depending on the nature of the sample (granular or plastic 

soils) [19]. The parameter 𝐷60 was used for the granular soils, while the parameter 𝜔𝑃𝐼 was used for the plastic soils. 

The coefficient of determination 𝑅2 was not high; but at the time it was a real advance in the field. Moreover, numerous 

authors have used that work to find new correlations. 

Perera et al. (2005) selected the 134 best soil-water characteristic curves from a database collected by Zapata and 

added another dataset of 83 from the NCRHP 9–23 project [18]. After identification tests, this database was divided 

into 154 non-plastic soils and 63 plastic soils. The particle size distribution of each soil was used to obtain the 

diameters from 𝐷10  through 𝐷90 as well as the Atterberg limits (LL, PL, and PI) for the statistical analysis used to 

find the fitting parameters. The results of this study, compared with Zapata results, showed a decrease in the algebraic 



Civil Engineering Journal         Vol. 9, No. 06, June, 2023 

1331 

 

and absolute errors from 88.5% to 8.6% and 14.8%, respectively, associated with an increase in adjusted R2 values 

from 2% to 58% for the non-plastic soils. However, the algebraic errors decreased from 20.4% to 0.1% for the plastic 

soils, while they decreased from 23.9% to 9.2% with a R2 of 51. It can therefore be observed that these results are 

not satisfactory enough, even if they were a notable advance in the field because they managed to minimize the errors 

of Zapata’s model. 

Torres Hernandez (2011) collected the largest database at the time to predict the SWCC and also used the Fredlund 

& Xing equation and a non-linear regression analysis to predict the fitting parameters of the model [17]. In this model, 

hysteresis is not taken into account; only the dry path is presented. 36394 samples were obtained from the NRCS 

"National Resources Conservation Service," including 31876 plastic soils, 4518 granular soils and 68 soils not usable 

for lack of insufficient information. Two series of equations were proposed according to whether the soil was granular 

or plastic. For plastic soils, the 𝑃200, plasticity index, and liquidity limit constituting the “Group Index” were used to 

estimate the fitting parameters. For granular soils, the model of prediction depends only on a single parameter named 

𝐷10 (diameter of sieve corresponding to 10% of passing). The results showed an adjusted R2 of 81% for fine soils and 

89% for the granular materials. 

In the present study, the Perera model was used to fit the SWCC based on the experimental data. The study was 

also interested in understanding the effect of each parameter on the shape of the curve in order to propose a modified 

Perera mode. A statistical analysis to minimize errors was also carried out to test the reliability of the modified 

model. 

2. Materials and Methods 

2.1. Sample Locations and their Physical Properties 

The marl and clay were sampled at Diamniadio in the city of Rufisque, around 25 km southeast of Dakar. The marl 

and clay lie between 14° 73' 50'' North, 17° 19' 64'' West in the context of the Senegalese-Mauritanian sedimentary 

basin. The geology of Diamniadio is part of the geology of the Cap Verde peninsula, which is located at the western end 

of the Senegal-Mauritania basin. The various outcrops encountered in the Rufisque-Bargny zone are formed by a 

volcanic group and a sedimentary group of Tertiary or Quaternary. Diamniadio is marked by the appearance of faults 

delimiting ascending blocks such as the Ndiass and Dakar horsts, and collapsed blocks such as the Rufisque garden. 

Two other sandy soils have also been collected, one at Sebikotane (14° 78' 74'' North, 17° 13' 03'' West) and the other 

at Keur Mory (14° 77' 80'' North, 16° 75' 47'' West). These are characterized by a Quaternary dune system composed of 

three elements that were established between the Ogolian and Holocene periods in Senegal. These are: 

 Rubbed sands of the Ogolian ergs of Sangalkam, Pikine, Keur Massar, Bambilor and Tivaouane; 

 Semi-fixed dune sand known as yellow dune; 

 Sand of living dune of the north coast called white dune. 

The Sebikotane sample belongs to the Ogolian ruby sand and the Keur Mory sand would belong to the white dune 

dated to the Holocene. 

All four samples were subjected to a series of identification tests. These included grain size analysis, Atterberg limits, 

specific gravity test, to identify and classify them. The physical properties are given in Table 1 while the sample location 

map is shown in Figure 2. A summary of the methodology used in this study in Figure 3. 

Table 1. Summary of the physical properties of the subgrade materials 

Materials 𝜸 (
𝒌𝑵

𝒎𝟑
) 𝑮𝒔 𝑪𝒖 𝑷𝑰 

𝑷𝟐𝟎𝟎

(%)
 

𝑫𝟏𝟎

(𝒎𝒎)
 

𝑫𝟐𝟎

(𝒎𝒎)
 

𝑫𝟑𝟎

(𝒎𝒎)
 

𝑫𝟔𝟎

(𝒎𝒎)
 

𝑫𝟗𝟎

(𝒎𝒎)
 

Sebikotane Sand 1.817 2.666 1.26 - 0.78 0.17 0.19 0.20 0.21 0.248 

Keur Mory Sand 1.78 2.668 3.41 - 4.61 0.082 0.099 0.19 0.28 0.39 

Diamniadio Clay 1.63 2.741 - 26 77.13 - - - - - 

Diamniadio Marl 1.92 2.609 - 14.38 51 - - - - - 
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Figure 2. Sample location 

 

Figure 3. Flowchart describing the methodology of this work 
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2.2. Experimental Methods 

The selected materials were subjected to suction measurement tests, mainly depending on the nature of the material. 

The pressure chamber test was conducted on the Marl and Clay soils to determine the equilibrium water content retained 

in the soil. The testing procedure described in ASTM standard D6836-16 method B or C was followed [27]. After 

saturation and setting the sample in the chamber, the suction is applied until equilibrium is reached, i.e., when the level 

of water does not change. Another step of suction is then applied until the curve is complete or the maximum suction 

that the device can apply is reached. On the other two samples (Sebikotane and Keur Mory sand), the hanging column 

test adapted for granular soils was carried out following procedure method A in ASTM D6836-16 [27]. And to complete 

the SWCC at low water content, a chilled hygrometer test (Method D of the ASTM standard D6836-16) was used to 

measure the activity water of the soils within 0.001. 

When the tests were done, the Perera model described in the Equations 2 to 16 was used to plot the retention curves. 

Let’s recall that Perera model is based on Fredlund’s equation (Equation 1) to predict the fitting parameters. 

𝜃 = (𝜃𝑠 − 𝜃𝑟) [1 −
ln(1+

𝜓

ℎ𝑟
)

ln(1+
106

ℎ𝑟
)
]

[
 
 
 

1

ln(𝑒+(
𝜓

𝑎𝑓
)

𝑏𝑓
)

𝑐𝑓

]
 
 
 

+ 𝜃𝑟  (1) 

where θ is Volumetric water content, θr is Residual volumetric water content, θs is Saturated water content, ψ is Matric 

suction, hr is Residual suction, and af, bf et cf is Fitting parameters of Fredlund’s model. 

Equations 2 to 16 described below the two sets of equations used by Perera to find the fitting parameters of Fredlund’s 

model. 

 For non-plastic soils 

𝑎𝑓 = 1.14𝑎 − 0.5  (2) 

𝐷100 = 10
[
40

𝑚1
+𝑙𝑜𝑔(𝐷60)]

  (3) 

𝑎 = −2.79 − 14.1𝑙𝑜𝑔(𝐷20) − 1.9 ∗ 10−6𝑃200
4.34 + 7𝑙𝑜𝑔(𝐷30) + 0.055𝐷100  (4) 

𝑚1 =
30

[𝑙𝑜𝑔(𝐷90)−𝑙𝑜𝑔(𝐷60)]
  (5) 

𝑏𝑓 = {5.39 − 0.29𝑙𝑛 [𝑃200 (
𝐷90

𝐷10
)] + 3𝐷0

0.57 + 0.021𝑃200
1.19} 𝑚1

0.1  (6) 

𝐷0 = 10
[
−30

𝑚2
+𝑙𝑜𝑔(𝐷30)]

  (7) 

𝑚2 =
20

[𝑙𝑜𝑔(𝐷30)−𝑙𝑜𝑔(𝐷10)]
  (8) 

𝑐𝑓 = 0.26𝑒0.758𝑐 + 1.4𝐷10  (9) 

𝑐 = 𝑙𝑜𝑔 𝑚2
1.15 − (1 −

1

𝑏𝑓
)  (10) 

ℎ𝑟 = 100  (11) 

with D10 is Grain diameter corresponding to 10 % passing by weight, D20 is Grain diameter corresponding to 20 

% passing by weight, D30 is Grain diameter corresponding to 30 % passing by weight, D60 is Grain diameter 

corresponding to 60 % passing by weight, and D90 is Grain diameter corresponding to 90 % passing by weight. 

 For plastic soils 

𝑎𝑓 = 32.835𝑙𝑛(𝑤𝑃𝐼) + 32.438  (12) 

𝑏𝑓 = 1.421𝑤𝑃𝐼−0.3185  (13) 

𝑐𝑓 = −0.2154𝑙𝑛(𝑤𝑃𝐼) + 0.7145  (14) 
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ℎ𝑟 = 500  (15) 

𝜔𝑃𝐼 is Weighed Plasticity index 

𝜔𝑃𝐼 = 𝑃200 ∗ 𝑃𝐼  (16) 

𝑃200 is Material passing the n°200 Standard Sieve expressed as a decimal, 𝑃𝐼 is Plasticity Index (%) = Liquid 

Limit – Plastic Limit 

Figures 4 to 7 describe the SWCC with the Perera model used to fit the experimental data. 
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Figure 4. SWCC fit with Perera model on Sebikotane Sand 
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Figure 5. SWCC fit with Perera model on Keur Mory Sand 
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Figure 6. SWCC fit with Perera model on Diamniadio Marl 
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Figure 7. SWCC fit with Perera model on Diamniadio Clay 

The prediction of the four (04) SWCC fitting with the Perera model does not give a good correlation. It can be 

observed that the air entry value pressure is underestimated for the sandy soils; while it is overestimated for marly and 

clayey soils of Diamniadio. This leads to thinking that it would be necessary to modify the values of 𝑎𝑓 related to the 

air entry value; but also, for 𝑏𝑓 and 𝑐𝑓 related to the slope of the transition zone and the residuals suctions of the SWCC. 

As shown in Figure 6 and 7, the air entry value for the clayey and marly soils of Diamniadio is overestimated. So in 

order to fix it, it is necessary to understand how the fitting parameters of Perera’s model behave on the SWCC. 

2.3. Process of Analysis 

For the plastic soils (clay and the marl of Diamniadio), Equations 12 to 16 show that the fitting parameters only 

depend on 𝑤𝑃𝐼 which itself depends on 𝑃200and 𝑃𝐼. The 𝑤𝑃𝐼 was varied from 1 to 30 to see how it affects the shape of 

the SWCC. Compared with the experimental data, Figure 8 shows that varying 𝑤𝑃𝐼 influences the three zones (boundary 

effect, transition and residual zone) of the SWCC. This means that not only the 𝑎𝑓 must change by decreasing it to get 

the right air entry value; but also, the 𝑏𝑓 and 𝑐𝑓 must be modified to better fit the experimental data. Some modifications 

have been made in the fitting parameters of Perera’s model. Equations 17 to 21, describe the new fitting parameters for 

plastic soils. 
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𝑎𝑓 = 32.835𝑙𝑛(𝜔𝑃𝐼) + 3.3781  (17) 

𝑏𝑓 = 3.2937𝜔𝑃𝐼−0.3185  (18) 

𝑐𝑓 = −0.1𝑙𝑛(𝜔𝑃𝐼) + 0.942  (19) 

ℎ𝑟 = 500  (20) 

where 

𝜔𝑃𝐼 = 𝑃200 ∗ 𝑃𝐼  (21) 
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Figure 8. Impact of 𝒘𝑷𝑰 on the shape of the SWCC of Diamniadio Marl 

For non-plastic soils, three new parameters 𝛼 , 𝛽 and 𝜆 have also been introduced in the Perera’s model to modify 

the fitting parameters. The modified model is presented below: 

𝑎𝑓 = 𝛼 ∗ (1.14 𝑎 − 0.5) 𝑎𝑣𝑒𝑐 𝑎𝑓 ≥ 1  (22) 

𝑎 = −2.79 − 14.11𝑙𝑜𝑔𝐷20 − 1.9. 10−6𝑃200
4.34 + 7𝑙𝑜𝑔𝐷30 + 0.055𝐷100  (23) 

𝐷100 = 10
[
40

𝑚1
+𝑙𝑜𝑔(𝐷60)]

  (24) 

𝑚1 =
30

[𝑙𝑜𝑔(𝐷90)−𝑙𝑜𝑔(𝐷60)]
  (25) 

𝑏𝑓 = 𝛽 ∗ (0.936𝑏 − 3.8)  (26) 

𝑏 = {5.39 − 0.29 𝑙𝑛 [𝑃200 (
𝐷90

𝐷10
)] + 3 𝐷0

0.57 + 0.021 𝑃200
1.19}𝑚1

0.1  (27) 

𝐷0 = 10
[
−30

𝑚2
+𝑙𝑜𝑔(𝐷30)]

  (28) 

𝑚2 =
20

[𝑙𝑜𝑔(𝐷30)−𝑙𝑜𝑔(𝐷10)]
  (29) 

𝑐𝑓 = 𝜆(0.26𝑒0.758𝑐 + 1.4𝐷10) 𝑤𝑖𝑡ℎ {
𝑐𝑓 ≥ 0.5

𝑖𝑓 𝑛𝑜𝑡 𝜆 = 1
  (30) 

𝑐 = log 𝑚2
1.15 − (1 −

1

𝑏𝑓
)  (31) 

ℎ𝑟 = 100  (32) 
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3. Results and Discussions 

Firstly, the analyze is made on how separately each new parameter influences the shape of the SWCC in the non-

plastic soils. Figure 9 shows that a variation of α from 0.5 to 20 does not have an effect on the shape of the SWCC; but 

on the other hand, it increases the air entry value suction. It is like a translation of axis. So, comparing with the 

experimental data, we can say that α is close to 20. 
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Figure 9. Impact of α on the shape of the SWCC of Sebikotane Sand 

An increase of β from 0.05 to 0.25 influences the air entry value as well as the slope of the transition zone, while 

above 0.25 up to 1, a slight increase of the air entry value can be observed. For β higher than 1, the air entry value, the 

slope of the transition zone as well as the residual suction remain unchanged (Figure 10). 
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Figure 10. Impact of β on the shape of the SWCC of Sebikotane Sand 
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λ affects the residual suctions unlike β where the effect was more noticeable on the transition zone. Figure 11 shows 

that λ and the residual suctions act in opposite direction. Indeed, when the value of λ is low, the residual suctions are 

high; while they tend to zero when λ tends to 0.5. 
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Figure 11. Impact of λ on the shape of the SWCC of Sebikotane Sand 

The separate analysis of the impact of each parameter allows to have a rough overview of α, β, and λ that could 

predict the whole SWCC based on the experimental data. According to that analyze, α seems to be around 20, while 

0.25 ≤ 𝛽 ≤ 2.5 and λ appears to be equal to 0.5. By varying α, β and λ, mentioned above taking into account the 

approximative values found earlier gives the best combinations. 

3.1. Statistical Analysis 

Equation 17 to 32 were used to fit the experimental data by finding the fitting parameters; while minimizing the 

errors. Indeed, a statistical analysis is associated with this study. In order to verify the reliability of the model, three 

parameters that can be considered as the most relevant were analyzed. 

 The adjusted 𝑅2 is widely used for a regression analysis because it allows to compare the experimental data with 

the predicted model. It is considered good when it is close to 100%. 

 A statistical technique named Sum Squared Residuals (Equation 33) is used to find the best fit from the data. It 

measures the amount of error remaining between the regression function and the experimental data by altering the 

fitted parameters iteratively until the squared differences between the predicted and measured data were minimized. 

According to previous study [7, 28] a best fit should have a SSR less than 10−3 

𝑆𝑆𝑅 = ∑ 𝑤𝑖
𝑛
𝑖=1 (𝜃𝑖 − 𝑓(𝜔𝑖))

2
  (33) 

where 𝜃𝑖 represents the value of the measured volumetric water content, 𝑓(𝜓𝑖) represents predicted value of the 

volumetric water content, and 𝜔𝑖 weighting factor set equal to 1. 

 And finally, the results obtained with the modified model should be compared with those obtained with other 

authors (Hernandez and Perera). 

In order to obtain the best SWCC while minimizing the errors, several simulations were carried out with α, β and λ. 

The values of these three parameters introduced in the modified Perera model for granular soils and used to predict the 

SWCC of the Sebikotane and Keur Mory sands (Figures 12 and 15) are presented in Table 2. 
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Figure 12. SWCC fit with modified Perera’s model on Sebikotane Sand 

0

20

40

60

80

100

0.001 0.1 10 1000 10
5

Hanging coulum data

Activity meter data

Perera's model

Modified Perera's model

D
eg

re
e 

of
 S

at
ur

at
io

n 
(%

)

Matric Suction (kPa)
 

Figure 13. SWCC fit with modified Perera’s model on Keur Mory Sand 
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Figure 14. SWCC fit with modified Perera’s model on Marl of Diamniadio 
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Figure 15. SWCC fit with modified Perera’s model on Clay of Diamniadio 

Table 2. values of parameter α, β et λ for the modified Perera’s model 

Parameter Value 

α 16.1 

β 1.222 

λ 0.6 

The following Tables 3 to 6, show the results obtained with the Perera’s model, Hernandez model and the modified 

Perera’s. It can be observed a clear improvement of the coefficient of correlation 𝑅2associated with the Sum Squared 

Residuals 𝑆𝑆𝑅 in particular for the two coarse-grained soils. Indeed, as mentioned above, for the sandy soils (Sebikotane 

and Keur Mory respectively), the 𝑅² increased from 58% to 99.98% and 78.78 to 98.74% while the minimum sum 

squared residual is obtained with the modified model defining the error committed by the predictive model on the 

experimental data was obtained with the modified model (1.96 10-5 and 6.73 10-4) in Tables 3 and 4. 

Table 3. Soil Water Characteristic Curve fit parameters for Sebikotane Sand 

Model 
Parameters 

R2 (%) SSR 
𝛉𝐬 𝛉𝐫 𝐚𝐟 𝐛𝐟 𝐜𝐟 𝐡𝒓 

Perera 

0.3550 0.004 

2.45 9.494 1.55 

100 

58 2.8 10-2 

Hernandez 5.894 3.964 0.693 85 8. 10-3 

Perera’s modified 39.442 11.53 0.849 99.98 1.96 10-5 

Table 4. Soil Water Characteristic Curve fit parameters for Keur Mory Sand 

Model 
Parameters 

R2 (%) SSR 
𝛉𝐬 𝛉𝐫 𝐚𝐟 𝐛𝐟 𝐜𝐟 𝐡𝒓 

Perera 

0.375 0.102 

6.735 6.415 0.739 

100 

78.78 1.47 10-2 

Hernandez 8.703 6.773 0.646 78 1.51 10-2 

Perera’s modified 108.44 7.839 0.726 98.74 6.73 10-4 

Table 5. Soil Water Characteristic Curve fit parameters for Marl of Diamniadio 

Model 
Parameters 

R2 (%) SSR 
𝛉𝐬 𝛉𝐫 𝐚𝐟 𝐛𝐟 𝐜𝐟 𝐡𝒓 

Perera 

0.2621 0.0047 

97.862 0.753 0.285 

500 

90.48 2.24 10-3 

Hernandez 519.955 4.013 1.005 92.6 2.7 10-3 

Perera’s modified 68.8016 1.7461 0.7050 99.64 6.09 10-5 
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Table 6. Soil Water Characteristic Curve fit parameters for Clay of Diamniadio 

Model 
Parameters 

R2 (%) SSR 
𝛉𝐬 𝛉𝐫 𝐚𝐟 𝐛𝐟 𝐜𝐟 𝐡𝒓 

Perera 

0.4048 0.0227 

130.891 0.547 0.069 

500 

94.88 4.31 10-3 

Hernandez 809 1.06 1.104 91.8 9.4 10-3 

Perera’s modified 101.8315 1.2675 0.6044 99.93 6.85 10-5 

The same can be said for the fine soils. As a matter of fact, the adjusted 𝑅2 value is respectively equal to 99.64 and 

99.93 for the Marley and Clayey soils of Diamniadio were going from 58% to 85% for Perera’s and Hernandez model. 

It is also found that the minimal SSR respectively equal to 6.09 10-5 and 6.85 10-5 were obtained with the modified 

model (Tables 5 and 6). All the results obtained in this study, show that this modified model is good for fitting these 

four subgrade materials. 

4. Conclusion 

Determining the soil-water characteristic curves (SWCC) is delicate to perform, time-consuming, and the devices 

are expensive. To overcome all these parameters, prediction was and still is the way to go in this field. In this paper, 

Perera’s model did not give a good fit. Therefore, the look at modelling, starting from understanding the effect of each 

parameter on the shape of the SWCC, finally allowed to modify the Perera’s model. The results of this study show that 

the modified model works well for both fine- and coarse-grained soils. A statistical analysis was carried out to confirm 

these results. Indeed, the adjusted R2 values for the sandy soils of Sebikotane and Keur Mory and the clayey and marly 

soils of Diamniadio are respectively 99.99, 98.74, 99.64, and 99.93, which are high compared to the other models 

(Perera’s and Hernandez). This study also showed that the minimal SSR was all obtained with this modified model, 

respecting the values prescribed by Miller et al. and Leong et al. According to them, the lower the residual value SSR 

is, the closer the model is to the experimental data, which is the case here. The statistical analysis confirms the result, 

this modified model better fits the SWCC of these four subgrade materials. However, even if this work is a good start, 

it has only been tested on four soils, and the database should be expanded to test it on more samples. That will be useful 

for using Artificial Neural Network to play our part in this unsaturated field. 
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