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Abstract

Optimal placement of wireless structural health monitoring (SHM) sensors has to consider modal identification accuracy
and power efficiency. In this study, two-tier wireless sensor network (WSN)-based SHM systems with clusters of sensors
are investigated to overcome this difficulty. Each cluster contains a number of sensor nodes and a cluster head (CH). The
lower tier is composed of sensors communicating with their associated CHs, and the upper tier is composed of the network
of CHs. The first step is the optimal placement of sensors in the lower tier via the effective independence method by
considering the modal identification accuracy. The second step is the optimal placement of CHs in the upper tier by
considering power efficiency. The sensors in the lower tier are partitioned into clusters before determining the optimal
locations of CHs in the upper tier. Two approaches, a constrained K-means clustering approach and a genetic algorithm
(GA)-based clustering approach, are proposed in this study to cluster sensors in the lower tier by considering two
constraints: (1) the maximum data transmission distance of each sensor; (2) the maximum number of sensors in each
cluster. Given that each CH can only manage a limited number of sensors, these constraints should be considered in practice
to avoid overload of CHs. The CHs in the upper tier are located at the centers of the clusters determined after clustering
sensors in the lower tier. The two proposed approaches aim to construct a balanced size of clusters by minimizing the
number of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH under the
two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the network lifetime
is extended. A numerical example is studied to demonstrate the feasibility of using the two proposed clustering approaches
for sensor clustering in WSN-based SHM systems. In this example, the performances of the two proposed clustering
approaches and the K-means clustering method are also compared. The two proposed clustering approaches outperform
the K-means clustering method in terms of constructing balanced size of clusters for a small number of clusters.
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1. Introduction

Considering that measurements of large structures are usually incomplete, detecting structural damage in large
complex structures is a challenging task. Therefore, structural health monitoring (SHM) using a limited number of
sensors is a critical problem. Optimal sensor placement (OSP) of wired SHM systems detecting changes in modal
parameters uses information measured from sensors with satisfactory sensitivity [1]. One of the widely used OSP
methods is the effective independence (EI) method [2]. The EI method uses the Fisher information associated with
candidate sensor locations to solve the OSP problem.
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Wireless SHM systems have the advantages of low manufacturing costs, low-power requirements, small size, and
simplicity of deployment (lack of cables) compared with traditional wired SHM systems [3-5]. Hence, increasing interest
has been paid to applying wireless sensor networks (WSNs) to SHM in the last decade. However, power is at a premium
in @ WSN because the remote sensors are powered by batteries [6]. Thus, power efficiency is another important issue
for the OSP of wireless SHM systems, in addition to information effectiveness [7]. There are several techniques to solve
this problem, such as data reduction, sleep/wakeup approaches, and power-efficient routing [8, 9]. This study focuses
on the investigation of cluster-based, power-efficient routing.

Hussain et al. [10] indicated that cluster-based approaches are suitable for monitoring applications. Several clustering
techniques for WSNs are available in the literature, including the hierarchical approach, the K-means algorithm, and the
genetic algorithm (GA). Heinzelman et al. [11] proposed the low-energy adaptive clustering hierarchy (LEACH)
protocol. To uniformly scatter the energy load on each sensor, the cluster heads (CHs) in LEACH are rotated randomly.
Each sensor transmits data to its CH, and then the CH routes the data to the base station (BS). Inspired by the LEACH
and Bluetooth protocols, Kottapalli et al. [6] proposed a two-tier, lower and upper tiers, wireless network architecture
for SHM. The lower tier is composed of clusters of sensors. The upper tier is composed of CHs. The lower and upper
tiers operate on battery power and regular wall power supply with a battery backup, respectively. Similar to LEACH,
each sensor transmits its data to the associated CH, and then the result is transmitted to the BS.

K-means clustering is one of the popular unsupervised machine learning algorithms. It separates a dataset into K
clusters and searches for the best representative point in each cluster in a certain mathematical sense. In the study of
Sasikumar & Khara [12], centralized and distributed K-means clustering algorithms were employed as network
simulators. Results indicate that distributed clustering is more efficient than centralized clustering. To mend the choice
procedure for the initial centroid in the K-means method, Ray & De [13] proposed the energy efficient clustering
protocol based on K-means (EECPK-means) method using the midpoint algorithm for WSNs. Periyasamy et al. [14]
developed a modified K-means clustering algorithm. Each cluster includes three CHs (simultaneously chosen). These
CHs are rotated as the active CH by using a load-sharing mechanism to conserve the residual energy of sensors and
extend the network lifetime.

A GA is an optimization method guided by the principles of evolution [15, 16]. Unlike traditional optimization
methods, a GA searches for a global optimal solution without calculating the gradient of the objective function [17].
Some research has applied GAs to sensor clustering of WSNs. For instance, Jin et al. [18] decided the number and
location of CHs by using a GA that minimizes the communication distance in a WSN. Each sensor connects to its nearest
CH after CHs are selected. Ferentinos & Tsiligiridis [19] presented a multiobjective GA-based optimization
methodology for WSN design and energy management, in which each sensor node also connects to its nearest CH.
Peiravi et al. [20] used a two-nested GA for sensor clustering of WSNs to optimize the network lifetime. Nayak &
Vathasavai [21] developed a clustering algorithm based on GA to optimize the WSN lifetime by considering distance
and energy as parameters of the fitness function. Pal et al. [22] proposed a GA-based clustering method, namely energy
efficient weighted clustering (EEWC) method. The fitness function is based on cluster separation, cluster compactness,
and number of CHs. Simulation result indicates that EEWC is more effective in improving the network performance
than other methods. Bhola et al. [23] proposed an optimized LEACH (O-LEACH) protocol based on the GA. The O-
LEACH protocol balances the total number of CHs via fitness function based on residual and threshold energy to select
CHs. The O-LEACH outperforms the LEACH in terms of improving energy consumption. Khoshraftar & Heidari [24]
used the GA to improve the clustering process of wireless sensor nodes and find an optimum route. The fitness function
is a function of energy, the total number of nodes and CHs, and sum of distance of all sensor nodes to the associated CH
and BS. The network lifetime and reliability are improved by reducing energy consumption, using fewer number of
CHs, and decreasing transmission distance.

The above studies developed different clustering approaches to reduce energy consumption and prolong the network
lifetime. However, none of these studies analyzed the performance of clustering approaches in terms of constructing a
balanced size of clusters which is a benefit of extending the network lifetime. To solve this problem, Hassan et al. [25]
proposed three indices, standard deviation of mean square error, variation for clusters size, and clusters size range, to
evaluate performance of clustering approaches for constructing a balanced size of clusters. In their study, the
performances of K-means and fuzzy C-means algorithms were investigated. It is noteworthy that K-means and fuzzy C-
means algorithms without using any constraint, the maximum data transmission distance of each sensor for example.
Hence, practical applications of the two algorithms are not easy.

This study investigates the OSP of wireless SHM systems by using the two-tire network architecture proposed by
Kottapalli et al. [6]. The first step is the optimal placement of sensors in the lower tier via the effective independence
(EI) method by considering modal identification accuracy. The second step is the optimal placement of CHs in the upper
tier by considering power efficiency. The sensors in the lower tier are partitioned into clusters before determining the
optimal locations of CHs in the upper tier. Two approaches, a constrained K-means clustering approach and a genetic
algorithm (GA)-based clustering approach, are proposed in this study to cluster sensors in the lower tier by considering
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two constraints: (1) the maximum data transmission distance of each sensor; (2) the maximum number of sensors in
each cluster. Given that each CH can only manage a limited number of sensors, these constraints should be considered
in practice to avoid overload of CHs. The CHs in the upper tier are located at the centers of the clusters determined after
clustering the sensors in the lower tier. The two proposed approaches aim to construct a balanced size of clusters by
minimize the number of clusters (or CHs) and the total sum of the squared distance between each sensor and its
associated CH under the two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced,
and the network lifetime is extended. To demonstrate the feasibility of using the two proposed clustering approaches for
sensor clustering of WSN-based SHM systems, a numerical example is studied. The performances of the two proposed
clustering approaches and K-means clustering method for constructing a balanced size of clusters are compared in this
example by using the three indices proposed by Hassan et al. [25].

2. WSN Architecture

In this study, a two-tier WSN architecture proposed by Kottapalli et al. [6] is adopted. The sensors of a WSN are
divided into several clusters. There is a CH in each cluster. The lower tier is composed of sensors communicating with
their associated CHs, and the upper tier is composed of the network of CHs. Sensors transmit their data to their individual
CHs, and then the CHs route the data to the BS. This study assumes that the CHs themselves do not measure data. The
optimal placement of sensors (including the sensors in the lower tier and the CHs in the upper tier) considers modal
identification accuracy and power efficiency. The steps are shown in Figure 1. The first step is the optimal placement
of sensors in the lower tier by considering modal identification accuracy. In this study, the optimal locations of sensors
in the lower tier are determined through EI method to estimate the structural modal parameters accurately by using the
minimum number of sensors. The second step is the optimal placement of CHs in the upper tier by considering power
efficiency. The sensors in the lower tier are clustered in advance to determine the optimal locations of CHs in the upper
tier. Two approaches, a constrained K-means clustering approach and a GA-based clustering approach, are proposed in
this study to cluster sensors in the lower tier. The CHs in the upper tier are located at the centers of the clusters determined
after clustering the sensors in the lower tier. These steps are detailed in later sections.

= Step 1: Optimum Placement of Sensors in the Lower Tier : =

: The optimal locations of sensors in the lower tier are
| |determined through EI method to estimate structural
| |modal parameters accurately using the minimum
| | number of sensors.

Step 2: Optimum Placement of CHs in the Upper Tier '.

-
1

I | The sensors in the lower tier are clustered. Two
I | approaches, a constrained K-means clustering approach
I [and a GA-based clustering approach, are proposed in
I | this study to cluster the sensors in the lower tier.

1

|

1

1

|

1

1

a—

The CHs in the upper tier are located at the centers of
the clusters determined after clustering sensors in the
lower tier.

Figure 1. Schematic diagram of the OSP for wireless SHM systems

3. OSP Using the EI Method

The OSP problem for wired SHM systems aims to estimate structural modal parameters accurately by using the
minimum number of sensors. In this study, the El method [2], a widely used OSP technique, is adopted to locate the
sensors in the lower tier optimally. The EI method is introduced in the following.

3.1. El Method

Assuming there are n candidate sensor locations and m target modes, the structural response, v, is estimated as
follows:
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y=oq+w 1)

where @ € R™™ s the target mode shape matrix, q is the modal coordinate, and w is the zero mean white Gaussian
noise vector.

The covariance of the error between g and its unbiased estimator g, J (defined in Equation 2), is minimized to obtain
the best sensor location.

=AD" = (3T = F! @

where o2 is the variance of w, the unbiased estimator § = (®7®)~*d7, and F is the Fisher information matrix [26].
Considering that J is equal to the inverse of F, maximizing F will minimize J and achieve the best estimate of g.

The El method employs the EI distribution vector £, (defined in Equation 3) to assess the contributions to the
independence of the target modes by the candidate sensor locations.

Ep=[® ¥]IQ[d P11 (3)

where A and ¥ are the eigenvalue and eigenvector of the Fisher information matrix F, respectively, zis an mXx1 vector
and each element is equal to one, and the symbol ® is the Hadamard product.

Each element of £}, denotes the contribution to the independence of the target modes by the associated sensor
location. If the required number of sensors is not reached, the sensor location corresponding to the smallest £, element
is deleted and this process is repeated.

4. Constrained K-Means Clustering Approach

The K-means clustering method is a well-known data-clustering method [27, 28]. Assuming X = {¥1 X2 .. X,}
is a set of n points to be separated into K clusters, the K-means clustering method finds the cluster centers by minimizing
the sum of the squared distance between each point and the associated cluster center J(C).

J(©) = Eik=1J (i) = Ekat Zueai i — well? (4)

where u, is the mean of cluster ¢, and J(c) is the sum of the squared distance between each point of cluster ¢, and
the cluster center u;. K-means starts with K initial cluster centers at random positions. Each point belongs to the cluster
that has the closest center to it. The K cluster centers need to be recalculated after all points are assigned to their clusters.
This process is repeated until all cluster centers no longer move.

In this study, two constraints are considered for the power efficiency problem of WSNSs. The first one is the maximum
data transmission distance of each sensor (the maximum distance between each sensor and its associated CH). The
second one is the maximum number of sensors in each cluster. Given that each CH only manages a limited humber of
sensors, these constraints should be considered in practice to avoid overload of CHs. Figure 2 presents the flowchart of
the constrained K—means clustering approach. Two decisions are made after using the K-means clustering method: the
first one is a decision on the limitation of the maximum data transmission distance of each sensor, and the second one
is a decision on the limitation of the maximum number of sensors in each cluster. If the two constraints are conformed
to, then the clustering process is done; else, one cluster is added, and re-clustering is performed. The process of the
proposed constrained K-means clustering approach is detailed below (Figure 2):

Step 1: The cluster number (K), the maximum number of sensors in each cluster (Nmax), and the maximum data
transmission distance of each sensor (dmax) are set.

Step 2: The sensors are separated into K clusters by taking K cluster centers initially at random positions.

Step 3: The distances between each sensor and all cluster centers are calculated. Then, each sensor is assigned to the
cluster with the closest center to it to form K initial clusters.

Step 4: The positions of cluster centers are recalculated and checked if any cluster center is changed.
Step 5: If any cluster center is changed, then Steps 3 to 5 are repeated; else, Step 6 is performed.

Step 6: If there is any data transmission distance of sensors larger than dmax, then one cluster is added (K=K+1), and
Steps 2 to 6 are repeated; else, Step 7 is performed.

Step 7: If the number of sensors in any cluster is larger than Nmax, then one cluster is added (K=K+1), and Steps 2 to 7
are repeated; else, the clustering process is done.
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Figure 2. Flowchart of the constrained K-means clustering approach
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A GA is an optimization method guided by the principles of evolution [15, 16]. Unlike traditional optimization
methods, a GA searches for a global optimal solution without calculating the gradient of the objective function.

5.1. Steps of the GA-based Clustering Approach

Herein, a clustering approach using GA for sensor clustering of WSNs is proposed, and Figure 3 displays the
flowchart. The process of this approach is detailed in the following:

Step 1: The maximum number of sensors in each cluster (Nmax), the maximum data transmission distance of each sensor
(dmax), the maximum number of generations, the mutation rate, and the population size are set. The cluster
number (K) is equal to N/Nmax if the total number of sensors (N) is divisible by Nmax; otherwise, K is equal to
N/Nmax +1. Assuming that N has to be divisible by Nmax in the GA-based clustering approach, some pseudo-
sensors are added to N if N is not divisible by Nmax. The pseudo-sensors are removed after the clustering process

is done.

Step 2: Individuals (chromosomes) of the first generation are randomly generated.

Step 3: The fitness value of each chromosome is assessed.
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Step 4: Selection: parents for crossover are selected.
Step 5: Crossover: attributes of the parents are mixed to generate better offspring.

Step 6: Mutation: the genetic information is disturbed randomly to have the possibility of leading to a better
chromosome.

Step 7: Elite: the elite (the better chromosomes in the current generation and offspring) automatically survives to the
next generation.

Step 8: If there is any data transmission distance of sensors larger than dmax, then Steps 4 to 8 are repeated; else, Step 9
is performed.

Step 9: Steps 3 to 9 are repeated until the maximum number of generations is reached.

The maximum number of sensors in each cluster (Nmarx), the
maximum data transmission distance of each sensor (dmax), the
maximum number of generations, the mutation rate, and the
population size are sel

|Initial population is generated; Set gen=1 (gen—-generation)|

—4 The fitness value of each chromosome 1s evaluated |

| Selection |‘—
|

Crossover |

!

| Multation |

l

| Elite |

gen=gen~1 |

!

5 there any data
transmission
distance of
sensors larger
than efmax?

Figure 3. Flowchart of the GA-based clustering approach

5.2. Fundamental Parts of the GA-based Clustering Approach

The fundamental parts of this method are explained in the following.

5.2.1. Population Initialization

In a simple GA [15, 16], a chromosome (or string) is composed of substrings coded by k-bit binary integers, and
each substring represents the value of a parameter. However, this is very difficult for sensor clustering of WSNs. Herein,
an integer-coded string is designed. All sensors are regarded as a sample string, and the integers in the genes of a string
represent the numbering of sensors; that is, the integers in the genes of a string are not duplicated. Figure 4 shows an
example of a string representation scheme in the GA-based clustering approach with 10 sensors separated into 5 clusters
(each cluster has 2 sensors). The population of the first generation is produced randomly and evolved in an iterative
way.
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Cluster 1  Cluster2 Cluster3 Cluster4  Cluster 5

s |aVz | av¥a | a¥a | 2 Ve 4
13151719 [2]{4]6{8 |19

Figure 4. Example of a string representation scheme in the GA-based clustering approach

5.2.2. Fitness Value

The objective function of the proposed GA-based clustering approach is J(C), as defined in Equation 4. The energy
dissipation of a sensor to transmit a message, e, can be estimated as follows [11, 29, 30]:

e = kd° (5)

where d is the distance between a receiver and a sensor, and k and c are constants (usually 2 < ¢ < 4). For simplicity,
k=1 and c=2 are considered in this study. Thus the objective function of a string represents its qualification based on
energy consumption minimization. Considering that the optimization of the GA maximizes the fitness function and
minimizes the objective function, the fitness function of the GA can be defined as a constant minus the objective
function.

5.2.3. Selection

Selection is an operator to select parents from the strings in the current generation for crossover based on fitness
during each successive generation. There are several selection methods commonly used in GAs, and the roulette-wheel
strategy is chosen in this study. The roulette-wheel strategy randomly selects a string from the current generation in
accordance with the following probability:

P(s)) = spo— ®)

2:Iiv:P1 F(Sj)

where F (s;) is the fitness of the string s;, and NP is the size of the population (NP is an even integer in this study).

5.2.4. Crossover

Crossover is an operator to mix attributes of the parents to generate better offspring. There are several crossover
methods commonly used in GAs, such as one-point crossover, two point crossover, and uniform crossover. A portion
of genes of the parents is exchanged with each other to create better offspring and to continue the inheritance of superior
parents. However, the above crossover operator will generate some offspring with duplicated genes, and this problem is
difficult to solve. Accordingly, this study utilizes a crossover method, as shown in Figure 5. First, the first gene of one
of the parents is exchanged for that of the other. Second, the duplicated gene is changed to the original first gene of the
parent. This study assumes that the parents have produced a total of NP offspring by mating; that is, the crossover rate
is assumed to be one.

Parent 1 1 2131415 6

Parent 2 3 5 6|1 4|2 1
1 | porcts s enchanged
v
3|12|13|4|5]6
1|5|6|4)|2 }
3

The duplicated gene is changed to
the original first gene of the parent

Offspringl | 3 1 2 |1 | 4|56

Offspring 2 1 5 6|4 2 3

Figure 5. Example of the crossover scheme in the GA-based clustering approach
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5.2.5. Mutation

Mutation is an operator to disturb genetic information randomly with a fixed probability p,, to lead to a better
individual. For binary integer-coded strings, a gene is mutated by inverting its value (one becomes zero and zero
becomes one). In this study, we use the following mutation for integer representation. A string is divided into two parts
with an equal number of genes. The mutation probability, pm, represents the probability to exchange the genes in each
position of the two parts. The mutation scheme in the GA-based clustering approach is shown in Figure 6.

l‘l‘ Part | 'lT Part 2
Parent 3 1| 3| 5| 7]|9]2]|4)|6 | 8|10

L. '

The first and third genes of the
two parts are exchanged

Y

Offspring 3 2 |83|6 |7 ]9 1 14 ]|5 |8 |10

Figure 6. Example of the mutation scheme in the GA-based clustering approach

5.2.6. Elite

After the mutations take place, the elite (the better individuals in the current generation and offspring) automatically
survives to the next generation. A better individual is defined as the individual with a smaller sum of the first 80%
shortest cluster-based distances in this study. The cluster-based distance is J(c,) in Equation 4. The reason for using the
sum of the first 80% shortest cluster-based distances instead of the sum of all cluster-based distances is that although
the individual with a smaller sum of the first 80% shortest cluster-based distances may not be better, some genes of an
individual associated with certain cluster-based distances may be the best. Therefore, using an elite based on a smaller
sum of the first 80% shortest cluster-based distances may lead to faster convergence.

5.2.7. Locations of CHSs

After clustering of sensors, the mean of cluster ¢, uy, is computed. The locations of sensors and CHs are restricted
to nodes with horizontal and vertical integer coordinates in this study. The CH of cluster ¢, is located at u; if u; is a
node with horizontal and vertical integer coordinates, and there is no sensor located at u,; otherwise, the node with
horizontal and vertical integer coordinates closest to u,, is chosen as the location of the CH for cluster c.

6. Numerical Example
To confirm the feasibility of the proposed constrained K-means and GA-based clustering approaches, a humerical
example is studied. SAP2000 is adopted for structural analysis in this example.

6.1. Description of the Structural Model

A simply supported deck is selected to illustrate the feasibility of the proposed constrained K-means and GA-based
clustering approaches. The deck has dimensions of 15 m in length, 3.5 m in width, and 0.25m in thickness. The elastic
modulus E=24.86 GPa, and the shear modulus G=10.35 GPa. Figure 7 shows the finite element 3D model and joint
numbering of the deck. Figures 8 and 9 show the first five 2D and 3D mode shapes of the deck, respectively.

@

2682



Civil Engineering Journal Vol. 8, No. 12, December, 2022

16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
15 123 |31 |39 |47 |55 [63 |71 (79 [87 95 |103]111|119]127 135|143 |151 |159 [167 ]175|183 [191]199 J207 |215 |223 |231 |239 |247
14 |22 130 |38 146 154 |62 |70 |78
13 |21 |29 |37 ]45 153 |61 |69 |77 |85
12 |20 |28 |36 |44 |52 |60 |68 |76 |84
11 |19 |27 [35 |43 |51 |59 |67 |75 |83

1021110 |118 1126|134 ]142 |150 |158 |166 |174 |182 |190 |198 J206 |214 |222 [230 |238 |246
101109 |117 {125 |133 1141 149|157 |165 173 [181 |189 |197 205 |213 |221 |229 [237 245
1001108 |116 124 |132 ]140 |148 |156 [164 1172 |180 [188 |196 J204 [212 236 244

= [aon [ [J3 |«

99 |107 |115]123 |131 139|147 ]155 [163 |171 179 |187 {195 J203 |211 227 235|243
10 |18 |26 |34 |42 |50 |58 |66 |74 [82 90 |98 |106 1141122 130|138 146|154 |[162]170|178 [186 |194 ]202 |210 |218 [226 |234 [242

TS

9, 117 |25 [33 |41 |48 |57 |65 |73 |81 |89 |97 |105]113]121 1298137 |145]153 |161 169|177 |185 193 |201 |209 |217 |225 |233 |241
(b)

Figure 7. The deck model (a) finite element 3D model (b) joint numbering
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Figure 9. The first five 3D mode shapes of the deck (a) the 1t mode shape (b) the 24 mode shape (c) the 3™ mode shape (d)
the 4t mode shape (e) the 51 mode shape

6.2. Results and Discussion
6.2.1. Main Findings of the Present Study
6.2.1.1. Sensor Location Using the EI Method

The first five modal properties analyzed by SAP2000 are used for searching the optimal locations of sensors in the
lower tier in this study. The optimal locations of 10, 15, and 30 vertical wireless sensors in the lower tier are determined
using the EI method, and Figure 10 shows the results. Figures 8 and 9 show that along the x direction of the deck, the
deformations of both sides are larger than that of the middle part for the five mode shapes. The sensor location with
larger modal deformation contributes more to the independence of the target modes. Figure 10 shows that the locations
of fewer sensors are within those of more sensors. That is, the locations of more sensors spread from those of fewer
sensors to the two simply supported ends of the deck.
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Figure 10. Optimum sensor locations of the deck with (a) 10 sensors (b) 15 sensors (c) 30 sensors
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6.2.1.2. Clustering Sensors Using the Constrained K-Means and GA-based Clustering Approaches

Herein, the result of 30 sensors (Figure 10-c) is implemented by the proposed constrained K-means clustering
approach. The maximum number of sensors in each cluster (Nmax) is assumed to be 5, and the maximum data
transmission distance of each sensor (dmax) is 8 m. The implementation results are shown in Figure 11. The 30 sensors
are separated into 11 clusters. The number of sensors in each cluster changes from 2 to 5. Owing to the large variation
in the number of sensors in each cluster, constructing a balanced size of clusters by using the constrained K-means
clustering approach is not easy.
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Figure 11. Clustering 30 sensors (deployed by EI method) implemented by using the constrained K-means clustering
approach with Nmax=5

Figure 10-c shows that the optimum locations of the 30 sensors solved using the El method are uniformly distributed
on both sides along the x direction. To compare the performances of the two proposed approaches, the 30 sensors are
deployed randomly, then the randomly placed 30 sensors are clustered using the two proposed approaches. The
maximum data transmission distance of each sensor (dmax) is set to 8 m. Figures 12-a, 12-b, and 12-c present the
clustering results using the constrained K-means clustering approach for Nmax equal to 3, 4, and 5, respectively. The
number of clusters is 14, 13, and 9 for Nmax equal to 3, 4, and 5, respectively. The number of sensors for each cluster
changes from 1 to 3, 1 to 4, and 2 to 5 for Nmax qual to 3, 4, and 5, respectively. After clustering sensors, the locations
of CHs are determined and shown in Figure 12.
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Figure 12. Clustering the randomly placed 30 sensors and deploying cluster heads implemented by using the constrained K-
means clustering approach with (a) Nmax=3 (b) Nmax=4 (€) Nmax=5

Next, the GA-based clustering approach is conducted with the following parameters: the population size NP and
mutation probability p,,, are set to 300 and 0.05, respectively. Figures 13-a, 13-b, and 13-c display the clustering results
using the GA-based clustering approach for Nmax equal to 3, 4, and 5, respectively. The number of clusters is 10, 8, and
6 for Nmax equal to 3, 4, and 5, respectively. The number of sensors in all clusters is the same for Nmax equivalent to 3
and 5. The number of sensors in each cluster changes from 2 to 4 for Nmax equivalent to 4. In fact, the total number of
sensors (30) is not divisible by Nmax (4) for this case. Seven clusters have four sensors, and only one cluster has two
sensors
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Figure 13. Clustering the randomly placed 30 sensors and deploying cluster heads implemented by using the GA-based
clustering approach with (a) Nmax=3 (b) Nmax=4 (€) Nmax=5
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Three indices proposed by Hassan et al. [25] are used herein to evaluate the performance of the constrained K-means
and GA-based clustering approaches in the formation of a balanced size of clusters. The three indices are the standard
deviation of mean squared error (STD (MSE)), the variation in cluster size (V), and the cluster size range (CSR), which
are introduced as follows:

o Standard deviation of mean squared error STD(MSE): STD(MSE), as shown in Equation 7, measures the difference
in homogeneity of the average of intra-distance for each cluster.

2 K_ SE i— 2
STD(MSE) = /2—1—1””1; ats] ™

1 N; 2
MSE; = N_jzizll(xij o)) ®)
vK  MSE;
Umse = %’ 9)

where MSE; is the averaged square intra-distances of sensor nodes to the cluster’s center for the jth cluster; pysg
is the averaged mean squared error for distances; K is the number of clusters; N; is the number of sensor nodes in
the jth cluster; x;; and w; are the sensor node i and cluster center for the jth cluster, respectively. A smaller
STD(MSE) means a higher uniformity of the intra-distances for clusters.

e Variation in cluster size V: V, as shown in Equation 10, measures the dissimilarity of the density of the sensor
nodes in the clusters (number of sensor nodes in each cluster).

25‘{=1|Sj_ﬂ5j|
=== (10)
ZI.(= S
ps; = JTU (11)

where Sj and Hs; refer to the cluster size and the mean of cluster size for the jth cluster, respectively. A smaller
V means a higher balance in cluster size.

o Cluster size range CSR: CSR, as shown in Equation 12, measures the ratio of the minimum cluster size to the
maximum cluster size.

CSR = Smin (12)

CSmax

where CS,,i, and CS,, ., are the minimum and maximum cluster sizes in the network, respectively. CSR takes a
value between 0 and 1. A narrower range (CSR close to 1) means a smaller difference in size between the
minimum and maximum cluster sizes, and it is better.

Table 1 lists the three indices of the constrained K-means and GA-based clustering approaches for Nmax equal to 3,
4, and 5. The values of STD(MSE) of the constrained K-means clustering approach are smaller than those of the GA-
based clustering approach for Nmax equal to 3, 4, and 5. Nevertheless, this finding does not imply that the constrained K-
means clustering approach outperforms the GA-based clustering approach because STD(MSE) is meaningful for
comparing different approaches only when the number of clusters is the same. The reason why the value of STD(MSE)
of the constrained K-means clustering approach is smaller than that of the GA-based clustering approach is that the
number of clusters of the former is larger than that of the latter under the same dmax and Nmax constraints. A smaller
number of clusters implies a smaller number of CHs. Given that CHs consume more power than other sensors, the power
consumption implemented by the GA-based clustering approach seems smaller than that by the constrained K-means
clustering approach. The values of V of the constrained K-means clustering approach are larger than those of the GA-
based clustering approach for Nmax equal to 3, 4, and 5. Meanwhile, the values of CSR of the constrained K-means
clustering approach are smaller than those of the GA-based clustering approach for Nmax equal to 3, 4, and 5. Based on
the results of V and CSR, the GA-based clustering approach is better than the constrained K-means clustering approach
for constructing a balanced cluster size. After clustering sensors, the locations of CHs are determined and shown in
Figure 13.

6.2.2. Comparison the Constrained K-Means and GA-Based Clustering Approaches with the K-Means Clustering
Method

In fact, there is no clustering approach proposed in other studies considering the two constraints, the maximum data
transmission distance of each sensor (dmax) and the maximum number of sensors in each cluster (Nmax). Therefore, it is
difficult to compare the performances of the constrained K-means and GA-based clustering approaches with other
clustering approach. Nevertheless, the performances of the two proposed clustering approaches are still compared with
that of the K-means clustering method herein. Table 1 also lists the three indices of the K-means clustering method for
the number of clusters equal to 6, 8, 9, 10, 13, and 14.
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Table 1. STD(MSE), V, and CSR of the constrained K-means Clustering approach, the GA-based clustering approach, and
the K-means Clustering method

Approach dmax  Nmax  Number of clusters  STD(MSE) \% CSR
8m 3 14 0.566 0.209 0.333
Constrained K-means clustering approach 8 m 4 13 0.592 0.521  0.250
8m 5 9 1.394 0.988 0.400
8m 3 10 3.245 0 1
GA-based clustering approach 8m 4 8 4.029 0.438 05
8m 5 6 4.429 0 1
/ / 6 5.661 7 0.2
/ / 8 1.579 1.438 0.333
K-means clustering method ! ! ° 1635 1333033
/ / 10 0.696 1.8 0.2
/ / 13 0.592 0521 0.25
/ / 14 0.490 1.265 0.2

Note: “/”: no data available

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=3 (the number of clusters is equal
to 14) with the K-means clustering method for the number of clusters equal to 14, the K-means clustering method
conforms to the constraint of dmax=8 m, but does not conform to the constraint of Nmax=3 (the largest cluster has 5 sensor).
According to STD(MSE), the K-means clustering method outperforms the constrained K-means clustering approach (the
value of STD(MSE) of the K-means clustering method is smaller than that of the constrained K-means clustering
approach). However, the constrained K-means clustering approach outperforms the K-means clustering method
according to V and CSR (the value of V of the constrained K-means clustering approach is smaller than that of the K-
means clustering method, and the value of CSR of the constrained K-means clustering approach is larger than that of the
K-means clustering method).

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=4 (the number of clusters is equal
to 13) with the K-means clustering method for the number of clusters equal to 13. The K-means clustering method
conforms to the constraints of dmax=8 m and Nmax=4 (the largest cluster has 4 sensor). The constrained K-means clustering
approach and the K-means clustering method have nine identical clusters and only two different clusters. The values of
STD(MSE), V, and CSR of the K-means clustering method are all the same with those of the constrained K-means
clustering approach; that is the performances of the K-means clustering method and the constrained K-means clustering
approach are the same.

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=5 (the number of clusters is equal
to 9) with the K-means clustering method for the number of clusters equal to 9, the K-means clustering method conforms
to the constraint of dmax=8 m, but does not conform to the constraint of Nmax=5 (the largest cluster has 6 sensor). The
constrained K-means clustering approach outperforms the K-means clustering method according to STD(MSE), V, and
CSR (the values of STD(MSE) and V of the constrained K-means clustering approach are smaller than those of the K-
means clustering method, and the value of CSR of the constrained K-means clustering approach is larger than that of the
K-means clustering method).

Comparing the GA-based clustering approach for dmax=8 m and Nmax=3 (the number of clusters is equal to 10) with
the K-means clustering method for the number of clusters equal to 10, the K-means clustering method conforms to the
constraint of dmax=8 m, but does not conform to the constraint of Nmax=3 (the largest cluster has 5 sensor). According to
STD(MSE), the K-means clustering method outperforms the GA-based clustering approach (the value of STD(MSE) of
the K-means clustering method is smaller than that of the GA-based clustering approach). However, the GA-based
clustering approach outperforms the K-means clustering method according to V and CSR (the value of V of the GA-
based clustering approach is smaller than that of the K-means clustering method, and the value of CSR of the GA-based
clustering approach is larger than that of the K-means clustering method).

Comparing the GA-based clustering approach for dmax=8 m and Nmax=4 (the number of clusters is equal to 8) with
the K-means clustering method for the number of clusters equal to 8, the K-means clustering method conforms to the
constraint of dmax=8 m, but does not conform to the constraint of Nmax=4 (the largest cluster has 6 sensor). According to
STD(MSE), the K-means clustering method outperforms the GA-based clustering approach (the value of STD(MSE) of
the K-means clustering method is smaller than that of the GA-based clustering approach). However, the GA-based
clustering approach outperforms the K-means clustering method according to V and CSR (the value of V of the GA-
based clustering approach is smaller than that of the K-means clustering method, and the value of CSR of the GA-based
clustering approach is larger than that of the K-means clustering method).
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Comparing the GA-based clustering approach for dmax=8 m and Nmax=5 (the number of clusters is equal to 6) with
the K-means clustering method for the number of clusters equal to 6, the K-means clustering method conforms to the
constraint of dmax=8 m, but does not conform to the constraint of Nmax=5 (the largest cluster has 10 sensor). The GA-
based clustering approach outperforms the K-means clustering method according to STD(MSE), V, and CSR (the values
of STD(MSE) and V of the GA-based clustering approach are smaller than those of the K-means clustering method, and
the value of CSR of the GA-based clustering approach is larger than that of the K-means clustering method).

6.2.3. Implication and Explanation of Findings

The constrained K-means and GA-based clustering approaches construct a balanced size of clusters by minimizing
the number of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH
under the two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the
network lifetime is extended.

The GA-based clustering approach is better than the constrained K-means clustering approach for constructing a
balanced cluster size based on the results of V and CSR. Hence, the consumption of energy in each cluster implemented
by the GA-based clustering approach is more balanced than that by the constrained K-means clustering approach. A
balanced consumption of energy in clusters will prolong the network lifetime. Nevertheless, the GA-based clustering
approach is slow in execution compared with the constrained K-means clustering approach. Although the constrained
K-means clustering approach may not have the best solution, it is still acceptable for clustering numerous sensors.

Generally speaking, the K-means clustering method without any constraints, and its result is not easy to conform
to practical constraints. In terms of constructing a balanced cluster size, the constrained K-means clustering approach
and the GA-based clustering approach outperform the K-means clustering method for a small number of clusters based
on STD(MSE), V, and CSR (the number of clusters equal to 9 and 6, for example). The fewer clusters, the fewer CHs.
Since CHs consume more energy than other sensors, using fewer CHs will save more energy and extend the network
lifetime.

7. Conclusions

This study investigates the OSP of two-tier WSN-based SHM systems with clusters of sensors. The lower tier is
composed of sensors communicating with their associated CHs, and the upper tier is composed of the network of CHs.
The first step is the optimal placement of sensors in the lower tier via the EI method by considering modal identification
accuracy. The second step is the optimal placement of CHs in the upper tier by considering power efficiency. The sensors
in the lower tier are clustered before determining the optimal locations of CHs in the upper tier. Two approaches, a
constrained K-means clustering approach and a GA-based clustering approach, are proposed to cluster sensors in the
lower tier. The CHs in the upper tier are located at the centers of the clusters determined after clustering the sensors in
the lower tier. The two proposed clustering approaches construct a balanced size of clusters by minimizing the number
of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH under the two
constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the network lifetime is
extended. To illustrate the feasibility of the two proposed approaches, a numerical example is studied. In this example,
the performances of these clustering approaches are also compared. Important conclusions are summarized in the
following:

e The optimal locations of different numbers of sensors solved by using the EI method have an inheritable
characteristic; that is, the locations of fewer sensors are within those of more sensors.

e The performance for the constrained K-means and the GA-based clustering approaches in the formation of a
balanced size of clusters cannot be evaluated by STD(MSE) because STD(MSE) is meaningful for comparing
different approaches only when the number of clusters are the same.

e The number of clusters implemented by the constrained K-means clustering approach is larger than that by the
GA-based clustering approach under the same dmax and Nmax constraints. A larger number of clusters implies a
larger number of CHs. Given that CHs consume more power than other sensors, the power consumption
implemented by the GA-based clustering approach seems smaller than that by the constrained K-means clustering
approach.

e According to V and CSR, the GA-based clustering approach is better than the constrained K-means clustering
approach for constructing a balanced cluster size. In other words, the consumption of energy in each cluster
implemented by the GA-based clustering approach is more balanced than that by the constrained K-means
clustering approach. A balanced consumption of energy in clusters will extend the network lifetime.

e The GA-based clustering approach is slow in execution compared with the constrained K-means clustering
approach. Although the constrained K-means clustering approach may not have the best solution, it is still
acceptable for clustering numerous sensors.
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e Since the K-means clustering method without any constraint, its results is not easy to conform to practical
constraints. In terms of constructing balanced cluster size, the constrained K-means and the GA-based clustering
approaches outperform the K-means clustering method for a small number of clusters based on STD(MSE), V, and
CSR. The fewer clusters, the fewer CHs. Since CHs consume more energy than other sensors, using fewer CHs
will save more energy.

e How to apply the proposed approaches to complicated real structures would be explored on the basis of this
research in the future.
8. Declarations
8.1. Author Contributions

Conceptualization, S.L.H.; methodology, S.L.H.; software, J.W.H.; validation, J.W.H., C.Y.K. and S.L.H.; formal
analysis, J.W.H.; investigation, J.W.H.; resources, S.L.H.; data curation, J.W.H. and C.Y.K.; writing—original draft
preparation, J.W.H.; writing—review and editing, C.Y.K.; visualization, JW.H. and C.Y.K.; supervision, S.L.H.;
project administration, S.L.H.; funding acquisition, S.L.H. All authors have read and agreed to the published version of
the manuscript.

8.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

8.3. Funding

This work was supported by the Ministry of Science and Technology of the Republic of China under research grants
MOST 106-2221-E-009 -052 -MY3 and MOST 103-2625-M-009-003.
8.4. Acknowledgements

The authors would like to thank the Ministry of Science and Technology of the Republic of China for financially
supporting this research.
8.5. Conflicts of Interest

The authors declare no conflict of interest.

9. References

[1] Cha, Y. J., Agrawal, A. K., Kim, Y., & Raich, A. M. (2012). Multi-objective genetic algorithms for cost-effective distributions
of actuators and sensors in large structures. Expert Systems with Applications, 39(9), 7822—-7833. doi:10.1016/j.eswa.2012.01.070.

[2] Kammer, D. C. (1990). Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures. 1990
American Control Conference. doi:10.23919/acc.1990.4791265.

[3] Spencer, B. F., Ruiz-Sandoval, M. E., & Kurata, N. (2004). Smart sensing technology: Opportunities and challenges. Structural
Control and Health Monitoring, 11(4), 349-368. doi:10.1002/stc.48.

[4] Lynch, J. P. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock
and Vibration Digest, 38(2), 91-128. doi:10.1177/0583102406061499.

[5] Lin, T. H., Lu, Y. C., & Hung, S. L. (2014). Locating damage using integrated global-local approach with wireless sensing system
and single-chip impedance measurement device. The Scientific World Journal, 2014, 729027. doi:10.1155/2014/729027.

[6] Kottapalli, V. A., Kiremidjian, A. S., Lynch, J. P., Carryer, E., Kenny, T. W., Law, K. H., & Lei, Y. (2003). Two-tiered wireless
sensor network architecture for structural health monitoring. Smart Structures and Materials 2003: Smart Systems and
Nondestructive Evaluation for Civil Infrastructures. doi:10.1117/12.482717.

[7] Zhou, G.-D., Yi, T.-H., Xie, M.-X,, Li, H.-N., & Xu, J.-H. (2021). Optimal Wireless Sensor Placement in Structural Health
Monitoring Emphasizing Information Effectiveness and Network Performance. Journal of Aerospace Engineering, 34(2),
4020112. doi:10.1061/(asce)as.1943-5525.0001226.

[8] Abdulkarem, M., Samsudin, K., Rokhani, F. Z., & A Rasid, M. F. (2020). Wireless sensor network for structural health
monitoring: A contemporary review of technologies, challenges, and future direction. Structural Health Monitoring, 19(3), 693—
735. d0i:10.1177/1475921719854528.

[9] Hung, S. L., Ding, J. T., & Lu, Y. C. (2019). Developing an energy-efficient and low-delay wake-up wireless sensor network-
based structural health monitoring system using on-site earthquake early warning system and wake-on radio. Journal of Civil
Structural Health Monitoring, 9(1), 103-115. doi:10.1007/s13349-018-0315-2.

2691



Civil Engineering Journal Vol. 8, No. 12, December, 2022

[10] Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wireless sensor networks. Journal of Networks,
2(5), 87-97. d0i:10.4304/jnw.2.5.87-97.

[11] Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless
microsensor networks. Proceedings of the 33" Annual Hawaii International Conference on System Sciences, Maui, HI, USA.
d0i:10.1109/hicss.2000.926982.

[12] Sasikumar, P., & Khara, S. (2012). K-Means Clustering in Wireless Sensor Networks. 2012 Fourth International Conference on
Computational Intelligence and Communication Networks. doi:10.1109/cicn.2012.136.

[13] Ray, A., & De, D. (2016). Energy efficient clustering protocol based on K-means (EECPK-means)-midpoint algorithm for
enhanced network lifetime in wireless sensor network. IET Wireless Sensor Systems, 6(6), 181-191. doi:10.1049/iet-
wss.2015.0087.

[14] Periyasamy, S., Khara, S., & Thangavelu, S. (2016). Balanced Cluster Head Selection Based on Modified k -Means in a
Distributed Wireless Sensor Network. International Journal of Distributed Sensor Networks, 2016(3), 5040475.
doi:10.1155/2016/5040475.

[15] Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, United
States. doi:10.7551/mitpress/1090.001.0001.

[16] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. (1989). Choice Reviews Onling,
27(02), 27-0936-27-0936. doi:10.5860/choice.27-0936.

[17] Adeli, H., & Hung, S. L. (1994). Machine learning: neural networks, genetic algorithms, and fuzzy systems. John Wiley & Sons,
Hoboken, United States.

[18] Jin, S., Zhou, M., & Wu, A. S. (2003). Sensor network optimization using a genetic algorithm. Proceedings of the 7! world
multiconference on systemics, cybernetics and informatics, 27-30July, 2003, Orlando, United States.

[19] Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic
algorithms. Computer Networks, 51(4), 1031-1051. doi:10.1016/j.comnet.2006.06.013.

[20] Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). An optimal energy-efficient clustering method in wireless sensor
networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126.
doi:10.1002/dac.1336.

[21] Nayak, P., & Vathasavai, B. (2017). Genetic algorithm based clustering approach for wireless sensor network to optimize routing
techniques. 2017 7" International Conference on Cloud Computing, Data Science &amp; Engineering - Confluence.
doi:10.1109/confluence.2017.7943178.

[22] Pal, R., Yadav, S., Karnwal, R., & Aarti. (2020). EEWC: energy-efficient weighted clustering method based on genetic algorithm
for HWSNs. Complex &amp; Intelligent Systems, 6(2), 391-400. doi:10.1007/s40747-020-00137-4.

[23] Bhola, J., Soni, S., & Cheema, G. K. (2020). Genetic algorithm based optimized leach protocol for energy efficient wireless
sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1281-1288. doi:10.1007/s12652-019-
01382-3.

[24] Khoshraftar, K., & Heidari, B. (2020). A Hybrid Method Based on Clustering to Improve the Reliability of the Wireless Sensor
Networks. Wireless Personal Communications, 113(2), 1029-1049. doi:10.1007/s11277-020-07266-6.

[25] Hassan, A. A. hussian, Shah, W. M., Othman, M. F. |., & Hassan, H. A. H. (2020). Evaluate the performance of K-Means and
the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks. International Journal of Electrical and
Computer Engineering, 10(2), 1515-1523. doi:10.11591/ijece.v10i2.pp1515-1523.

[26] Middleton, D. (2009). An Introduction to Statistical Communication Theory. McGraw-Hill, New York, United States.
doi:10.1109/9780470544112.

[27] Jain, A.K., & Dubes, R.C. (1988). Algorithms for Clustering Data. Prentice Hall, New Jersey, United States. doi:10.2307/1268876.

[28] Forero, P. A., Cano, A., & Giannakis, G. B. (2011). Distributed Clustering Using Wireless Sensor Networks. IEEE Journal of
Selected Topics in Signal Processing, 5(4), 707—-724. doi:10.1109/jstsp.2011.2114324.

[29] Jae-Hwan Chang, & Tassiulas, L. (n.d.). Energy conserving routing in wireless ad-hoc networks. Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064). doi:10.1109/infcom.2000.832170.

[30] Li, Q., Aslam, J., & Rus, D. (2001). Hierarchical power-aware routing in sensor networks. Proceedings of the DIMACS
workshop on pervasive networking, 10, No. 381677.381687, 21 May, 2001, New Jersey, United States.

2692


https://en.wikipedia.org/wiki/Hoboken,_New_Jersey



