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Abstract 

The development of sustainable concrete in achieving the developmental goals of the United Nations in terms of sustainable 

infrastructure and innovative technology forms part of the focus of this research paper. In order to move towards 

sustainability, the utilization of the by-products of agro-industrial operations, which are fly ash (FA) and rice husk ash 

(RHA), in the production of concrete has been studied. Considering the environmental impact of concrete constituents, 

multiple mechanical and hydraulic properties of fly ash (FA) and rice husk ash (RHA) concrete have been proposed using 

intelligent techniques; artificial neural network (ANN) and evolutionary polynomial regressions (EPR). Also, an intelligent 

mix design tool/chart for this case under study is proposed. Multiple data points of concrete materials, which were further 

reduced to ratios as follows; cement to binder ratio (C/B), aggregate to binder ratio (Ag/B), and plasticizer to binder ratio 

(PL/B) were used in this exercise. At the end of the protocol, it is observed that the constituents’ ratios are dependent on 

the behavior of the whole, which can be solved by using the proposed model equations and mix design charts. The models 

performed optimally, as none showed any performance below 80%. However, ANN, which predicted Fc03, Fc07, Fc28, 

Fc60, Fc90, Ft28, Ff28 & Fb28, S, Ec28 & K28, and P with an accuracy of greater than 95% each with average error of 

less than 9.4% each, is considered the decisive technique in predicting all the studied concrete properties, including the life 

cycle assessment potential of the concrete materials. 

Keywords: Fly Ash; Rice Husk Ash; Concrete Hydro-Mechanical Properties; Sustainable Concrete; Concrete Life Cycle Assessment. 

 

1. Introduction 

The worldwide construction sector has profited from the world's fast-growing economy during the twentieth century 

and continues to achieve new heights [1]. Sustainability in the building industry is among the most crucial needs of 

developing countries because of limited natural resources and growing carbon dioxide emissions from massive cement 

and concrete manufacturing. Due to the breakdown of utilized CaCO3 in the cement clinker and the burning of fuel, 

cement production is responsible for emitting approximately 5 to 7% of carbon dioxide emissions worldwide [2–7]. As 
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a result, green concrete development is now a big problem [8]. Pursuant to the IEA (International Energy Agency), 

lowering the clinker to cement proportion from 65% to 60% by 2050 will diminish total carbon dioxide (CO2) emissions 

related to cement manufacturing by up to 37 percent. The use of ordinary Portland cement (OPC) can be decreased if a 

percentage of the concrete production can be substituted with recycled concrete aggregates, cutting greenhouse gas 

emissions associated with cement manufacturing [9–11]. Palm oil shells (POS), sugarcane bagasse ash (SCBA), 

corncob, elephant grass ash (EGA), wood ash, coir coconut fiber, rice husk ash (RHA), tobacco product waste (TPW), 

and other agricultural by-products have all been shown to be useful as additions [10, 12–18]. Some by-products give 

advantages such as enhanced strength and durability, economic savings from surplus cement and natural aggregates, and 

ecological advantages like fewer carbon dioxide emissions and simpler disposal of harmful waste materials [1, 19–23]. 

To lessen the environmental effects, eco-friendly green concrete can be described as the substitution of a percentage 

of cement with natural or recyclable resources [24, 25]. Industrial wastes from power plants with substantial discharges 

are known as fly ash (FA). Its inadequate comprehensive usage results in a massive build-up that encroaches on arable 

land, produces dust, and pollutes water supplies. However, because of its high aluminum and silicon content, it has the 

potential for pozzolanic properties when activated by grinding, calcining, and other methods, and thus can be used as 

supplemental cementitious materials (SCMs). Mineral admixtures are effective SCMs that not only conserve cement but 

also alleviate numerous environmental issues created by industrial waste [25–27]. Furthermore, it assists businesses and 

governments in lowering the cost of pollution control. It is well accepted that using industrial waste as a mineral additive 

in green concrete casting offers several benefits and promising future prospects [28]. 

Rice husk is one of the most common agricultural wastes extracted from rice grain pods during milling [29, 30]. 

Rice husk ash (RHA), like FA, is a pozzolanic material with a very high level of reactivity that may be used in concrete 

mix designs to replace up to 30 percent of the total OPC. Concrete produced using RHA is still an ideal material in the 

United States. FA supply has dropped in recent years due to decreasing coal use, overall economic stagnation, and 

regulatory hurdles, despite a rise in its use in concrete industry. However, RHA has the ability to satisfy demand as FA 

supplies decline [30]. Concrete has been proven to benefit from the use of rice husk ash and other mineral admixtures. 

Due to its wide surface area, RHA is comparable to other pozzolans used in concrete production, notably micro silica 

[31–34]. The compressive strength of concrete was substantially improved and the permeability of the concrete was 

significantly lowered by adding RHA to the mix [30]. 

Amin et al. [35] researched the impact of optimal replacement levels of rice husk ash and FA on the fresh and 

hardened features of concrete mixes. Replacement levels from OPC amounts were 10, 20, and 30% for each recycled 

material, respectively (RHA and FA). Hardened concrete was tested mechanically for bond strength, modulus of 

Elasticity, modulus of rupture, splitting tensile strength, and compression strength. When compared to the control 

combination, test findings showed that the fly and rice husk ash improved physical and mechanical properties. The 

cementitious concentration of 450 kg/m3 produced better results than the alternative values tested. The mechanical 

characteristics of RHA percentage replacement of 10 percent and 30 percent were more useful than FA in each group. 

The water permeability of all mixes reduced as the cementitious quantity rose due to the reduction in entrapped air. As 

the cementitious level reduced, the water permeability loss ratios rose. Mater et al. [36] developed an artificial neural 

network (ANN) model to assess the compression strength of green concrete by combining waste disposal and artificial 

intelligence (AI).The recommended technology allows for partial replacement of concrete components with recycled 

coarse aggregate (RCA), recycled fine aggregate (RFA), and fly ash (FA).The model was built, trained, and evaluated 

in Python using experimental data obtained from the literature. The results showed that replacing 10% FA with cement 

caused a modest drop in compressive strength of up to 9%, particularly at young ages.  

Naseri et al. [37] optimized the green and sustainable concrete mixture proportion. The model that needed to be 

developed in this example considered concrete functional characteristics (such as fast chloride permeability test, 

carbonation, and slump, compressive strength), unit cost, and environmental consequences. As a consequence, a novel 

prediction approach is known as "Marine predator programming" was supplied to the model. ANN, support-vector 

machines (SVMs), and second polynomial regression were used to evaluate the implementation of the generated ML 

model. The findings showed that Marine predator programming was extremely capable of estimating many tangible 

aspects. Eco-friendly combinations can lower the environmental score by 74.37% and 67.83%, respectively. Sustainable 

mixing proportions have a sustainability rating of up to 80.03% lower than conventional experimental combination 

proportions. Water absorption, split tensile strength, compression strength, and concrete slump test with varied amounts 

of rice hull ash as a replacement for cement and fine particles substituted with coal bottom ash (CBA) were separated 

and blended by Bruskheel et al. [38]. The modifiability and amount of water absorbed by concrete reduced as the 

amounts of RHA and CBA in concrete increased. Furthermore, applying 5 percent RHA and 30 percent fine aggregate 

(FAg) in concrete for 4 weeks consistently increased compression strength and split tensile strength by 9.10% and 

7.73%, respectively. By partially substituting rice hulls ash as a cementing ingredient from 0 to 40 percent, Patnaik et 

al. [39] studied the fresh, mechanical, and durability properties of concrete based on C30 grade rice hull ash. The test 

findings also revealed that as the percentage of OPC substituted with rice hull ash increases, the compression strength 

and tensile strength of cured concrete increases, before declining. For non-destructive concrete compressive strength 
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testing, the rebound hammer test was used, and a mathematical relationship was developed between the compression 

and rebound values of RHA concrete, which showed a strong correlation. 

Current studies and allied sectors have started to concentrate on climate change and environmental problems. As a 

result, numerous methods and indicators have been created to better identify the primary causes of these issues and to 

take steps to mitigate their effects. For the environmental assessment of "green" concrete mixes, a systematic Life Cycle 

Assessment (LCA) method is needed. Despite the importance of environmentally friendly infrastructure actions, the 

rising costs of building materials and other building supplies, and the reality that even before concrete is poured in a 

structure, its effects are imprinted for several years [40], a life-cycle framework is especially important for a systematic 

detection and characterization of the environmental impacts of both traditional and "green" concrete production. LCA 

is a method for statistically and comparably analyzing the environmental effect of a product/process [41]. The use of 

SCMs instead of clinker/cement has been shown to have a lower environmental effect [17]. Despite various researches 

focusing on ecologically friendly concrete mixes utilizing FA, the authors are unaware of any LCA of rice hull ash 

concrete. Rice hull ash in concrete is not widely used in the U.S. since nowadays it is a novel product that requires 

additional investigation into its environmental implications. Because RHA improves early strength development, which 

is an issue with FA concrete, it can be used instead of OPC in the concrete mixture [42]. Figure 1 summarized the 

structural and environmental benefits of using FA and RHA in concrete. The development of intelligent models to 

optimize the utilization of the combined effect of rice husk ash (RHA) and fly ash (FA) in concrete would have solved 

the inconsistency in the right proportions to achieve the required strengths for a more sustainable infrastructure. 

Furthermore, a clearer understanding of the environmental impact of the inclusion of RHA and FA in concrete as partial 

replacements for cement would have equally informed future research, design, and construction of concrete structures 

on the optimal amount of replacement needed to achieve sustainable strength without further endangering the 

environment. 

In this study, intelligent models and mix design tools/charts have been proposed for rice husk ash and fly ash blend 

concrete data points under environmental impact considerations for the hydro-mechanical properties (slump, 

compressive strength, splitting tensile strength, flexural strength, bonding strength, elastic modulus, and permeability) 

of concrete. 

2. Background Literature Review 

2.1. Green Concrete 

During the last century, the building and construction industry have relied heavily on concrete, the most frequently 

utilized and efficient man-made substance [43–47]. Concrete constructions can be customized to have any required 

qualities and come in just about any required form. This is conceivable due to the robustness, foldability, and less life 

cycle cost of the material [48–51]. The primary conventional binder for concrete manufacture is Ordinary Portland 

Cement (OPC). By 2050, cement consumption is predicted to exceed 6 Gt/year [52–54]. OPC manufacture requires a 

significant amount of fuel and natural resources. It is a multi-stage industrial process that produces massive amounts of 

greenhouse gases such as CO2 [55–57]. Numerous environmentalists criticize the manufacturing industry for pollutant 

emissions, claiming that it contributes for around 5–7% of worldwide CO2 emissions. For every kilogram of cement 

created, around 0.8-0.9 kg of CO2 is released [58, 59]. There is worldwide agreement on the need to reduce the carbon 

footprint of the cement industry via substantial substitution of cement in concrete. As a result, a solution for the long-

term sustainability of concrete is required, as is the development of a new binder capable of overcoming the barriers 

associated with the manufacture and implementation of OPC [60–62]. 

Supplementary cementitious materials (SCMs) constitute substances that may be used in lieu of OPC in certain 

situations. Many industrial and agricultural waste products are now being employed as SCMs on a global scale. Fly ash 

(FA), rice husk ash (RHA), volcanic ash (VA), electric arc furnace slag (EAFS), zeolite (ZLT), metakaolin (MK), and 

silica fume (SF) are the most frequently utilized SCMs [63, 64]. Different industrial wastes have been employed to 

enhance the mechanical and durability qualities of concrete throughout the years. This also contributes to reducing 

reliance on OPC. Among the many types of industrial waste, FA is widely utilized and has been seen as a viable 

substitute for OPC [65–67]. FA is a coal combustion byproduct that is also collected from coal-fired thermal power 

plants. It has been used in place of OPC or clinker cement as a partial substitute for a long period of time. The amount 

of FA in the combination is limited to 15%–20% by weight of the OPC [68–70]. The concrete produced with high-

volume FA has such a low per-unit cost of manufacture. Attributed to the prevalence of SiO2 and Al2O3, FA has a 

unique pozzolana characteristic. SiO2 and Al2O3 combine with calcium hydroxide during the hydration process, 

generating additional calcium silicate hydrate (CSH) and calcium aluminate hydrate (CAH). The concrete appears to be 

getting denser when CSH and CAH are present. Additionally, it plugs voids in the concrete and strengthens the matrix. 

It contributes to the reduction of the difficulties associated with sustainable building, including its environmental effects 

[71]. 
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Alternatively, it should be mentioned that RHA has grown to become one of the most important SCMs in the world. 

Among the SCMs derived from rice crop agricultural waste is RHA, which is derived from the waste of the rice crop 

[72, 73]. Rice grains are wrapped with rice husks (RH), which are then used as a fuel in rice mills to boil the paddy that 

has been harvested. As a silica-containing material, it has the potential to be utilized effectively as an SCM in the 

production of concrete [74]. As a result, RHA may be used as a cementitious material with efficiency in certain 

applications. RHA does not emit a significant quantity of carbon dioxide into the atmosphere. It has the potential to be 

employed as a structural concrete. Not only does it add to the overall strength of the concrete, but it also contributes to 

the long-term durability of the concrete's qualities [75]. 

2.2. Machine Learning Approach 

2.2.1. Evolutionary Polynomial Regression (EPR) 

Genetic Algorithm (GA) is famous optimization technique depends on simulating the evolution process of biological 

creatures. It depends on one simple rule “The most fitting creature will survive”. To apply this principal on optimization, 

there must be a pool of solutions for the considered problem, a fitting criterion and a procedure to generate new solutions 

by mixing the existing ones. Biological creatures transfer their data to the next generation as an arranged series of genes 

called “Chromosome”, similarly, (GA) presents the solution (chromosome) as an arranged list of steps (genes). (EPR) 

is a direct application of (GA), it depends on optimizing the number of terms of the “Traditional Polynomial Regression 

(TPR)”. (TPR) is a well-known mathematical regression technique uses “Least Squared Error” principal to find the 

optimum coefficient values of a certain polynomial function to fit a certain dataset. The considered polynomial may be 

single or multi variables depending on the considered problem configuration (dataset). The chosen polynomial degree 

(its highest power) depends on the complexity of the considered problem, first degree polynomial (linear) may be used 

for simple problems, for more complicated ones, second degree (quadratic), third degree (cubic) of higher degrees may 

be required. The number of polynomial terms dramatically increases with increasing the variable numbers and 

polynomial degree, for example, a two variables second degree polynomial have only six terms (X2+Y2+ XY+X+Y+C), 

while three variables third degree polynomial have 20 terms and four variables forth degree polynomial have 70 terms 

and so on. As the number of polynomial terms increases, it becomes more difficult to apply less practical. Hence, (EPR) 

technique aims to optimize the (TPR) by eliminating the less important terms and keep only the most effective ones 

using (GA) technique. So, the population (solutions) consists of a set of polynomials, the fitting criteria is the “Sum of 

Squared Errors (SSE)” and the chromosome consists of a list of polynomial terms, the length of the chromosome is the 

chosen number of terms. Cycles after cycle, the most important terms accumulate in the survival chromosomes and the 

less important ones deleted. 

2.2.2. Artificial Neural Network (ANN) 

(ANN) is an umbrella of a wide range of (AI) techniques that depends of mimicking the behavior of biological 

neurons. They all consist of nodes (cells or neurons) and links to connect the nodes, but they have different neurons 

arrangement and connection patterns. “Multi-Layer Perceptron (MLP)” is one of the earliest and most (ANN) types. It 

is the commonly used type for regression problems. It consists of a number of nodes arranged in layers, the first layer is 

called “Input layer” and it is used to receive the input values, while the last layer is called “Output layer” and it is used 

to deliver outputs values. Between the input and the output layers there are a number of intermediate layers called 

“Hidden layers”, they are responsible of predicting the outputs from the inputs. (MLP) must have one hidden layer at 

least. Each node in a certain layer is connected to all the nodes in the previous and the next layers by links, but the nodes 

of each layer are not connected to each other. Each link has an importance factor called “Weight” and each node has a 

triggering formula called “Activation Function”, this could be any nonlinear function, but the most popular ones are the 

sigmoid, the hyper-tan and the ramp functions, they are responsible of the nonlinear capability of the (ANN). Due to the 

variation in ranges of input values, all inputs must be scaled to a unified range, this process is called “Standardization” 

if the input variance is divided by its standard deviation (SD) and called “Normalization” if the inputs are scaled between 

(0 to 1) and called “Hyper normalization” if the inputs are scaled between (-1 to 1). The scaled inputs propagate from 

the input layer to the output layer through the hidden layers. The output of certain node is the result of applying its 

activation function on the summation the node inputs multiplied by corresponding links’ weights. After the output layer, 

the outputs must be de-scaled to its original renege. Any (ANN) model must be trained using a given dataset, during the 

training process the weight values of the model’s links are adjusted to predict the correct outputs from the inputs. There 

many training techniques could be used to find the optimum values for links’ weights such as “Back Propagation (BP)”, 

“Gradually Reduced Gradient (GRG)” and “Genetic Algorithm (GA)”. 

2.3. Life Cycle Assessment 

Climate change is attributed to the increase in greenhouse gas emissions (GHG) in the atmosphere. Approximately 

54 giga-tons of carbon dioxide (CO2-eq) were recorded as the total annual GHGs emissions in 2017. Concrete is one of 

the main contributors to these emissions and concrete usage and demand for cement in the construction industry is 
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expected to be increased in the future due to the rapid urban development in emerging countries. Annually about 20 

billion tons of concrete are produced worldwide, and Portland Cement (PC) production is responsible for 7–10% of total 

CO2 emissions. When considering the construction and building sector, approximately 80% of the GHG emissions and 

energy consumption are generated during the operation phase of the buildings. Many studies have been conducted and 

introduced new technologies, policies, and mitigation measures/techniques to reduce GHG emissions during the 

operation stages [76]. However, around 10–20% of GHG emission and energy consumption is from material 

manufacturing, construction, and demolition, with limited studies reported related to reducing GHG emissions and other 

environmental impacts during material production and construction stages [77]. Life Cycle Assessment (LCA) is an 

established and well-known method that can evaluate the environmental impacts of products throughout its life cycle. 

To date, limited studies have been conducted to compare the detailed environmental impact of using blended alkali-

activated binders against PC binders in the construction industry. Adapting the waste products (fly ash and RHA) by 

replacing cement in the construction industry reduces the environmental impact and cost obtained from source material 

manufacturing and solves problems associated with landfill disposal activities [78, 79]. The utilization of such industrial 

and agricultural waste could be a massive benefit to the environment. Hence this study investigates the GHG emissions 

from cradle to end of building construction stage (cradle to end of construction), a life cycle impact and benefit 

assessment of the manufacturing stage (cradle to gate) and initial cost analysis of fly ash geopolymer concrete (100FA), 

alkali-activated fly ash-RHA blended concrete (hereafter, used as blended alkali-activated concrete) and comparing with 

PC concrete. The outcomes of this study will useful when adapting feasible, sustainable alternatives in alkali activated 

concrete manufacturing and construction considering the environmental and economic aspects [59, 80]. 

As previously stated, the substitution of OPC with SCMs has long been considered as one of the most efficient 

methods of reducing greenhouse gas emissions. Additionally, it is essential mentioning that the amount of cement in the 

mix has a direct correlation with the concrete's durability, environmental impact, quality, and other characteristics. 

Scholars employed experimental methods to investigate the effect of SCMs on the mechanical properties of green 

concrete. Pitroda et al. [81] examined the mechanical properties of concrete by varying the fly-ash concentration. The 

fly-ash content was tested by substituting fly-ash for cement. When the qualities of conventional strength concrete were 

compared to those of concrete containing 10% fly ash, it was determined that the latter possessed superior properties. 

Once the fly-ash concentration approached ten percent, the concrete's mechanical properties deteriorated as the fly-ash 

amount grew. Saha [82] studied the use of class F fly ash as a partly cement replacement in concrete. Compared with 

the control samples, the fly ash specimens had an exceedingly low early compressive strength. Nonetheless, the 

pozzolanic activity improved the specimens' strength over time, whereas the reference samples' strength paused after 56 

days of curing. Increasing the fly ash content in the mix reduced drying shrinkage. Using fly ash as a binder reduced the 

porosity of the concrete. As a result, the fly ash concrete's water sorptivity and chloride permeability were lowered. 

Giaccio & Malhotra and Feldman et al. [83, 84] conducted extensive study on high-volume FA concrete. The 

experimental findings indicated that concrete containing a high proportion of Class F FA enhanced mechanical qualities, 

had extremely little chloride ion penetration, exhibits adequate resistance to repeated freezing and thawing cycles, and 

had no adverse effect when reactive aggregate was added. Bouzoubaâ et al. [85] observed that test results of concrete 

comprising class C and class F FA were equivalent to or superior to those achieved using ordinary concrete. As a 

consequence, FA concrete offers equivalent or superior properties in comparison with ordinary concrete while being 

less costly. Over the course of 28 days, Poon et al. [86] explored the compressive strength of concrete comprising 45% 

FA and discovered that the concrete attained a compressive strength of 80 MPa and exhibited lesser heat of hydration 

and chloride diffusivity when compared to OPC. The influence of plastic waste (PW) and graphene nanoplatelets (GNP) 

on the characteristics of high-volume fly ash (HVFA) concrete was explored by Adamu et al. [68], and the outcomes 

indicated that the response surface methodology was utilized for experiment design, data modeling, and process 

optimization. PW, HVFA, and GNP were used as variables, and the materials' strength and water absorption were used 

as responses. PW and HVFA both diminish strength and absorption, but GNP strengthens both of these features. Each 

suggested model was statistically substantial and had a high level of correlation [85-87].  

Rice husk is among the most common agricultural wastes, obtained from the outer coating of rice grains throughout 

the milling operation. It is one of the most common crop wastes. Twenty percent of the 500 million tons of paddy 

produced across the globe comes from this region. More academics have thus concentrated their efforts on the impact 

of this ecologically friendly substance on the qualities of concrete as a result. For example, in 2005 Bui et al. [64] 

evaluated the effect of particle size on the strength of blended gap-graded Portland cement concrete made with RHA. 

This study investigated the strength activity index of mortars including residual RHA created during the burning of rice 

husk pellets and RHA derived via grinding residual RHA. The compressive strength and durability of concrete were 

examined when ground RHA was partially substituted for cement. Ameri et al. [87] implemented a study about concrete 

including RHA. According to the findings, concrete with RHA exhibited a significant increase in early compressive 

strength. Increases in RHA concentrations greater than 15% resulted in a decrease in compressive strength. This is due 

to the presence of an overabundance of silica in RHA which was not been reacted with other components. Iqtidar et al. 

[88] employed machine learning to forecast the qualities of RHA-containing concrete. This research evaluated the 

compressive strength of rice husk ash mixed concrete using 192 data points. Age, quantity of cement, RHA, 
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superplasticizer, water, and aggregates were all input factors. This study used four approaches of soft computing and 

machine learning, including artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), multiple 

nonlinear regression (NLR), and linear regression. The acquired data were evaluated using sensitivity analysis, 

parametric analysis, and the correlation factor (R2). The findings indicated that ANN and ANFIS outperformed other 

approaches. Amin et al. [63] employed sophisticated machine learning approaches to estimate the compressive strength 

of RHA. Six inputs were chosen based on the available literature: specimen age, percentage of rice husk ash, percentage 

of superplasticizer, aggregates, water, and quantity of cement. The results of machine learning techniques were 

compared to those of more conventional techniques such as linear and non-linear regressions. The performance of 

machine learning approaches was shown to be superior to that of conventional methods for calculating the compressive 

strength of RHA. Iftikhar et al. [89] used machine learning methods to anticipate and establish an empirical formula for 

the compressive strength of concrete containing RHA. Gene expression programming (GEP) and Random Forest 

Regression (RFR) were used in this investigation. The models were developed using a dependable database of 192 data 

points. The most significant factors in the creation of RHA-based concrete models were age, cement, RHA, water, 

superplasticizer, and aggregate. Models were evaluated using a variety of statistical variables. 

 

Figure 1. The structural and environmental benefits of FA and RHA in concrete 

2.4. Novelty and Innovation 

In an effort to propose models; analytical and numerical in order to solve the problems of sustainability in concrete 

production and also those of repeated visits to laboratories prior to design and construction activities, databases of 

various sizes have been explored as well as different artificial intelligent techniques. In this present research work, an 

extensive literature search was done to collect a rich database comprising of concrete constituents, which include rice 

husk ash (RHA) and fly ash (FA), which form the focus of this work in terms of sustainable concrete devoid of or with 

less amount of greenhouse emission footprint. Also, these concrete constituents were reduced to ratios, which make 

easier unlike in previous works to handle and predict more accurate functions. In addition, the evaluation of the 

environmental impact of the concrete constituents was conducted to determine the life cycle assessment potential, which 

was incorporated into further research considerations in this work. Moreover, multiple AI techniques have been 

deployed in this research work to a step further to propose concrete design tools/charts, which works in synergy with 

the closed-form AI models to predict concrete design mixes of desirable strength and accompanying reduced 

environmental impact. With all these innovative considerations, this research work stands out from what has been 

researched previously in this field of sustainable and artificial intelligence applications. 

3. Methodology 

3.1. Collection of Concrete Experimental Data 

An extensive literature study was conducted, which gave rise to multiple points of concrete mixes containing the 

following; cement, rice husk ash, fly ash, water, plasticizer, fine aggregates, and coarse aggregates [90]. The following 

concrete hydraulic and mechanical properties were studied; air content, slump, hydraulic conductivity, compressive 

strength, splitting tensile strength, flexural strength, bonding strength and elastic modulus. In Figure 2, the theoretical 

framework of the research methodology and modelling operations are presented. 
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Figure 2. The theoretical framework of the research methodology and modeling 

3.2. Collected Database and Statistical Analysis 

At the end of the literature study, 105 records were collected for experimental tested concrete mixtures with different 

components’ ratios. Each record contains the following data: cement to binder ratio (C/B), aggregates (coarse plus fine) 

to binder ratio (Ag/B), super-plasticizer to binder ratio (PL/B), concrete mix slump (S) mm, cylinder compressive 

strength of concrete after 3, 7, 28, 60 & 90 days (Fc03, Fc07, Fc28, Fc60 & Fc90) MPa, splitting tensile strength after 

28 days (Ft28) MPa, flexural tensile strength after 28 days (Ff28) MPa, bond strength after 28 days (Fb28) MPa, modulus 

of elasticity after 28 days (Ec28) GPa, water permeability after 28 days (K28) pico-meter/sec (10-12 m/sec) and 

environmental impact factor (P). 

Where (B) is binder content (cement content + fly ash or rice husk ash content). For all collected concrete mixes, the 

additional cementitious material was either fly ash (FA) or rice husk ash (RHA) but not a combination of them. Also, 
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the ratio between coarse and fine aggregates (CAg/FAg) is constant and equals to 2.0 in all collected design mixes, 

hence, both of them are equivalent to only one independent variable presented by total aggregate content (Ag). The 

collected records were divided into training set (85 records) and validation set (20 records). Table 1 includes the 

complete combinatorial dataset, while Tables 2 and 3 summarize their statistical characteristics and the Pearson 

correlation matrix. Finally, Figure 3 shows the histograms for both inputs and outputs. This presents the internal 

consistency of the studied parameters, which shows their distribution frequency in the array of the concrete mix points. 

It can be observed that C/B and Ag/B have the more central distribution within the central bin of the database for the 

inputs while S has the most central distribution bin for the outputs. 

Table 1. Combinatorial utilized database 

C/B Ag/B PL/B S Fc03 Fc07 Fc28 Fc60 Fc90 Ft28 Ff28 Fb28 Ec28 K28 P 

(--) (--) (--) (mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (GPa) (pm/s) (--) 

Training dataset 

0.68 4.71 0.03 115 36.05 62.43 66.22 96.95 92.51 7.10 10.70 11.18 39.15 4.07 8.38 

1.00 5.10 0.00 85 12.40 23.30 31.10 32.90 34.50 3.10 4.50 5.00 22.40 8.50 6.36 

1.00 4.10 0.03 90 37.10 55.20 73.50 78.60 82.30 6.70 10.80 12.20 41.00 5.20 8.90 

0.66 4.01 0.03 104 40.28 53.22 86.79 73.60 101.78 7.85 11.83 11.14 36.38 3.17 3.48 

0.90 3.32 0.03 110 45.10 65.60 86.80 93.80 98.10 7.70 12.80 14.40 43.90 4.20 8.95 

0.90 2.83 0.03 119 47.41 75.65 82.63 89.01 116.96 7.83 15.26 13.55 52.21 3.81 11.40 

0.70 4.72 0.00 66 11.74 21.54 27.29 35.23 31.86 2.91 4.75 4.47 21.71 4.85 2.69 

1.00 4.80 0.00 74 11.28 23.07 32.34 33.56 38.64 2.91 4.68 5.00 19.04 8.93 6.53 

0.88 5.66 0.00 76 16.07 28.30 30.71 41.03 36.36 3.16 4.60 6.16 21.84 5.55 6.15 

0.79 4.44 0.03 124 48.92 71.28 81.87 97.14 84.91 9.09 11.35 12.33 39.25 3.76 5.30 

0.70 3.32 0.03 127 46.27 66.10 77.16 81.52 100.88 8.14 11.74 15.88 45.22 2.70 10.90 

0.82 4.68 0.00 80 15.84 26.90 35.70 42.07 36.52 3.40 5.41 5.30 29.04 5.19 4.41 

0.89 4.51 0.03 92 40.28 76.95 80.37 104.31 87.09 8.10 11.66 12.58 47.57 4.10 6.83 

0.66 4.26 0.03 128 42.33 68.77 78.90 75.29 88.50 7.20 12.76 11.92 44.84 3.49 3.37 

1.00 3.62 0.03 96 31.91 55.20 72.03 75.46 75.72 5.96 10.58 14.03 45.10 5.67 9.77 

0.80 4.13 0.03 110 45.30 66.00 87.10 93.40 97.60 7.90 12.90 14.50 44.10 3.80 5.65 

0.79 4.52 0.03 94 49.83 66.66 92.33 103.67 85.89 6.72 13.93 13.49 44.54 4.14 5.18 

0.67 5.50 0.00 68 11.39 24.38 27.26 38.99 36.57 2.88 5.20 4.34 23.94 5.20 6.07 

0.70 2.78 0.03 132 53.42 62.80 96.24 87.14 85.05 6.19 13.80 14.70 41.71 2.76 12.10 

0.89 5.45 0.00 72 12.92 25.10 42.38 39.80 47.96 3.96 5.28 5.58 27.81 6.22 4.72 

0.64 4.40 0.03 136 45.36 57.72 86.47 79.24 100.43 6.67 10.01 14.56 42.94 3.57 8.94 

0.77 3.15 0.03 103 51.31 61.42 97.73 100.60 100.03 6.62 12.33 17.58 52.67 2.94 5.94 

0.70 3.38 0.03 150 50.02 59.45 81.10 101.84 112.40 6.72 11.70 13.17 45.39 2.67 4.50 

0.69 3.36 0.03 122 41.50 62.13 78.03 104.01 91.98 7.78 14.71 15.88 39.95 3.33 10.70 

0.80 5.13 0.00 75 14.60 27.20 36.10 38.80 40.50 3.50 5.30 5.80 26.00 5.50 6.52 

0.88 3.66 0.03 106 46.45 57.73 97.22 90.05 106.93 8.09 13.57 12.38 47.85 3.70 8.00 

0.73 3.98 0.03 127 42.12 63.02 72.45 93.57 81.05 6.46 10.47 13.52 45.47 4.26 9.52 

0.70 3.75 0.03 112 45.70 68.80 78.48 99.02 90.71 7.67 11.96 16.58 43.17 2.38 4.12 

0.89 5.06 0.00 79 14.59 25.38 39.38 41.79 46.70 3.96 6.27 5.10 28.08 5.38 4.82 

0.75 4.07 0.03 112 42.33 55.61 84.42 82.06 95.58 7.99 12.30 13.62 44.42 3.46 4.92 

0.90 3.10 0.03 120 49.90 69.40 90.80 98.90 103.50 7.60 13.50 15.40 45.40 3.40 10.90 

0.89 5.36 0.00 68 13.07 25.38 38.25 35.42 35.86 3.85 4.90 5.46 23.49 5.54 4.95 

1.00 3.09 0.03 95 43.00 61.10 80.80 87.20 91.20 6.90 11.90 13.70 42.40 4.20 10.80 

0.83 2.97 0.03 115 43.69 71.31 97.73 104.58 105.24 6.78 14.80 13.35 50.84 2.55 7.69 

0.91 2.79 0.03 121 45.85 82.15 101.33 110.59 111.28 6.87 15.93 16.10 41.39 2.58 9.56 

0.72 5.12 0.00 68 12.03 27.01 30.12 34.92 36.57 3.32 4.37 5.10 25.76 5.30 6.81 

0.90 3.05 0.03 121 39.24 61.01 80.72 90.05 95.16 6.85 14.59 13.10 39.07 3.95 9.77 

0.80 3.84 0.03 115 48.79 72.49 100.21 81.79 104.37 7.44 11.31 14.75 42.02 3.88 9.47 

0.81 4.58 0.00 71 15.62 29.65 40.43 42.68 35.24 3.54 6.10 6.21 25.48 5.83 7.14 

0.90 3.87 0.03 99 51.86 62.78 83.94 89.96 89.09 7.53 14.41 13.32 43.94 4.45 7.87 
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0.82 4.90 0.00 73 13.54 24.48 36.77 33.73 41.29 3.82 5.62 6.50 25.70 5.83 4.16 

0.76 3.42 0.03 118 45.99 75.05 101.26 89.14 109.08 8.97 12.42 17.06 47.02 2.91 10.50 

0.67 3.42 0.03 153 40.55 66.76 98.84 98.39 88.02 6.34 14.06 12.64 46.53 2.88 10.60 

0.90 3.10 0.03 115 52.10 72.70 94.70 102.40 107.00 7.90 14.10 16.10 46.50 3.00 8.79 

0.89 3.31 0.03 123 57.31 67.61 82.39 94.21 107.00 8.06 13.82 14.81 51.62 2.91 8.34 

0.88 5.38 0.00 82 17.18 31.02 39.75 42.98 42.12 3.70 5.50 5.10 23.76 4.93 4.79 

0.90 5.13 0.00 75 15.20 28.20 37.50 39.80 41.70 3.70 5.50 6.00 27.00 5.60 5.10 

0.80 4.12 0.03 115 45.60 66.50 87.90 95.10 99.40 8.00 13.00 14.60 44.70 4.00 9.11 

0.73 4.93 0.00 73 11.26 24.62 36.14 37.63 37.28 2.82 4.46 5.25 25.54 5.05 6.54 

0.70 4.14 0.03 115 41.10 59.80 78.90 84.60 88.50 7.20 11.60 13.10 42.30 3.60 4.03 

0.91 4.40 0.00 87 14.24 24.89 39.44 35.06 40.66 3.71 5.35 6.05 28.11 6.02 7.17 

1.00 2.99 0.03 101 44.72 67.21 70.30 77.61 82.08 7.73 11.31 15.62 41.55 3.86 11.20 

1.00 4.56 0.03 100 40.07 57.41 72.03 70.74 74.89 6.03 10.58 10.49 41.00 5.30 8.32 

0.79 3.06 0.03 113 58.25 70.09 99.40 104.34 103.78 8.27 13.11 13.90 52.55 2.70 10.90 

0.70 2.72 0.03 137 46.18 73.48 82.84 80.16 85.78 6.79 11.18 15.39 41.39 2.73 5.36 

1.00 2.69 0.03 84 36.98 66.60 71.91 92.43 91.20 5.87 13.45 15.48 43.25 3.57 11.90 

0.78 4.61 0.03 102 48.34 57.19 80.87 97.00 109.34 9.04 14.43 12.85 45.59 3.88 8.27 

0.90 2.94 0.03 112 48.40 61.77 97.16 112.75 104.54 6.84 13.64 16.94 43.13 3.57 11.10 

0.64 5.57 0.00 68 13.16 21.78 33.38 34.20 34.01 3.14 4.61 4.73 20.56 4.80 1.68 

1.00 3.12 0.03 98 38.70 64.77 82.42 95.05 78.43 7.80 13.45 14.25 36.89 4.79 10.80 

0.80 4.84 0.03 99 45.14 73.15 77.35 83.69 88.47 7.04 13.26 14.16 39.78 4.60 7.94 

0.82 4.81 0.00 69 12.67 29.86 37.84 40.17 34.54 3.64 4.78 6.50 22.87 5.19 4.39 

1.00 4.00 0.03 100 37.47 49.68 69.83 88.82 86.42 7.71 9.18 12.08 35.67 5.30 9.18 

0.80 4.58 0.00 67 14.75 31.28 38.63 38.02 35.64 3.57 5.14 5.92 23.92 6.22 7.11 

0.80 4.71 0.03 104 45.14 72.49 81.75 101.76 109.34 8.32 12.22 12.99 48.72 3.96 8.34 

0.70 4.57 0.00 62 13.57 24.14 34.55 29.49 37.99 2.91 5.24 5.61 24.85 4.85 7.49 

0.68 3.19 0.03 129 54.35 58.78 97.66 87.70 107.47 7.15 13.65 13.47 41.83 2.43 4.48 

0.92 3.20 0.03 109 44.65 64.29 77.25 97.55 106.93 6.85 10.88 15.41 37.75 4.79 9.34 

0.70 5.14 0.00 70 12.80 23.90 31.70 33.90 35.50 3.10 4.60 5.10 22.80 5.10 6.61 

0.70 4.13 0.03 120 40.50 58.90 77.90 84.30 88.10 7.10 11.50 13.00 42.10 3.80 9.22 

0.82 3.12 0.03 133 51.31 62.13 83.90 93.62 107.33 6.55 11.65 16.96 48.55 2.66 7.09 

0.79 3.22 0.03 104 43.69 74.13 83.90 101.59 103.16 7.24 15.76 17.11 52.21 3.11 6.64 

0.70 3.12 0.03 130 48.10 66.80 87.20 94.30 98.60 7.30 13.00 14.80 44.50 2.70 4.82 

0.81 2.78 0.03 124 49.06 67.26 90.11 96.24 100.61 7.80 15.59 16.12 49.33 2.70 12.10 

0.70 3.11 0.03 135 47.70 66.10 86.70 93.70 98.90 7.20 12.90 14.70 43.90 3.00 11.20 

0.90 3.57 0.03 127 44.81 75.61 82.39 103.42 99.51 8.85 12.13 16.26 40.92 3.36 7.73 

0.88 3.63 0.03 121 51.40 67.32 86.26 87.03 90.05 7.07 12.42 14.32 44.49 3.06 9.92 

0.89 4.20 0.03 107 50.96 74.78 91.14 90.05 90.25 8.70 11.78 12.82 49.17 4.83 7.83 

0.78 5.60 0.00 65 13.29 28.56 38.99 36.08 42.12 3.68 6.04 6.03 22.36 5.50 6.22 

0.90 5.04 0.03 92 39.82 68.85 92.87 105.27 100.10 8.83 12.84 14.95 45.75 3.90 6.22 

Validation dataset 

0.90 4.12 0.03 100 46.30 67.50 89.30 95.70 100.10 8.10 13.10 14.80 45.30 3.90 7.28 

1.00 4.60 0.03 84 34.87 51.34 63.21 83.32 75.72 6.90 9.83 11.83 36.49 5.36 8.00 

0.67 4.29 0.03 133 40.91 51.24 77.12 77.56 98.67 6.46 10.24 13.39 46.31 4.18 8.89 

0.88 3.37 0.03 125 53.39 74.26 79.00 91.98 92.12 7.45 14.99 15.55 47.22 3.91 10.40 

0.80 4.23 0.03 94 41.22 69.30 80.13 99.00 105.41 7.43 12.64 15.81 48.07 4.10 5.71 

0.82 2.98 0.03 136 46.50 80.71 92.90 111.43 98.49 7.57 13.94 14.54 52.09 2.73 11.10 

0.89 4.77 0.00 90 15.09 23.58 32.46 38.79 42.23 3.16 5.60 6.33 23.09 6.43 6.62 

1.00 5.09 0.00 82 11.78 24.93 32.66 34.87 31.40 2.85 4.77 4.75 24.19 8.59 6.29 

1.00 3.68 0.03 90 42.57 69.04 84.03 82.84 92.11 7.94 10.95 12.74 39.86 4.28 9.55 

0.70 4.65 0.00 62 10.97 25.17 34.35 31.12 33.65 2.78 4.23 5.67 21.25 4.85 2.71 

1.00 5.49 0.00 89 13.76 20.27 32.66 28.95 31.74 3.04 3.87 4.75 19.26 8.50 5.87 
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0.80 3.11 0.03 120 50.80 70.60 92.20 99.60 104.20 7.70 13.70 15.70 45.80 2.80 6.81 

0.70 5.15 0.00 65 12.90 24.20 32.10 34.20 35.80 3.20 4.70 5.20 23.10 4.80 2.57 

0.75 3.90 0.03 114 38.63 54.42 69.43 82.91 83.19 7.42 12.99 11.40 36.38 4.07 5.23 

0.80 5.21 0.00 67 13.82 29.86 40.34 33.35 35.73 3.01 5.82 5.07 26.21 5.30 3.69 

0.89 5.31 0.00 88 11.99 27.51 32.11 36.93 37.54 3.91 5.20 5.77 27.11 5.78 6.43 

0.89 2.99 0.03 102 57.31 73.43 90.91 105.47 119.84 9.09 14.10 18.19 40.46 3.03 8.92 

0.80 3.11 0.03 125 51.10 70.80 92.90 101.30 105.90 7.80 13.80 15.80 46.10 3.10 11.00 

0.81 4.35 0.03 117 49.83 69.96 79.26 85.93 94.67 7.19 12.90 14.79 40.57 4.14 5.65 

0.90 5.12 0.00 80 14.10 26.20 34.90 37.30 39.10 3.40 5.00 5.60 25.10 5.90 6.44 

0.75 4.95 0.00 57 13.42 25.65 30.50 36.59 32.94 3.39 5.17 4.52 25.64 5.23 3.40 

0.89 4.35 0.03 87 39.82 72.23 92.87 91.87 96.10 7.21 11.79 12.58 45.75 3.78 6.77 

0.80 5.14 0.00 70 14.40 26.90 35.70 37.90 39.70 3.50 5.20 5.70 25.70 5.30 3.83 

1.00 5.26 0.00 98 14.01 26.56 30.79 29.61 29.33 2.73 4.01 5.15 19.71 9.52 6.37 

0.83 4.42 0.00 69 15.04 27.20 36.46 41.90 38.07 3.71 4.66 5.45 29.64 4.90 7.11 

Table 2. Statistical analysis of collected database 

 Mean Median Mode S.D. Variance Skewness Kurtosis Range Minimum Maximum 

C/B 0.83 0.81 1.00 0.11 0.01 0.11 -0.98 0.36 0.64 1.00 

Ag/B 4.12 4.14 3.11 0.86 0.73 -0.02 -1.28 2.97 2.69 5.66 

PL/B 0.02 0.03 0.03 0.01 0.00 -0.72 -1.51 0.03 0.00 0.03 

S 100.30 101.00 115.00 23.12 534.6 -0.01 -0.99 96.00 57.00 153.00 

Fc03 34.83 41.10 39.82 15.80 249.7 -0.47 -1.47 47.28 10.97 58.25 

Fc07 52.59 61.10 25.38 19.88 395.2 -0.47 -1.47 61.88 20.27 82.15 

Fc28 68.04 78.90 32.66 24.80 614.9 -0.47 -1.43 74.07 27.26 101.33 

Fc60 73.86 84.60 90.05 27.74 769.3 -0.49 -1.46 83.80 28.95 112.75 

Fc90 76.71 88.50 36.57 29.26 856.1 -0.49 -1.46 90.51 29.33 119.84 

Ft28 6.08 6.85 2.91 2.05 4.22 -0.46 -1.38 6.36 2.73 9.09 

Ff28 10.13 11.65 5.20 3.84 14.71 -0.42 -1.43 12.06 3.87 15.93 

Fb28 11.32 13.00 5.10 4.41 19.48 -0.43 -1.44 13.85 4.34 18.19 

Ec28 37.55 41.39 25.70 10.11 102.1 -0.44 -1.27 33.63 19.04 52.67 

K28 4.40 4.10 5.30 1.44 2.09 1.24 2.19 7.14 2.38 9.52 

P 7.33 7.11 10.90 2.50 6.27 0.02 -0.82 10.42 1.68 12.10 

Table 3. Pearson correlation matrix 

 C/B Ag/B PL/B S Fc03 Fc07 Fc28 Fc60 Fc90 Ft28 Ff28 Fb28 Ec28 K28 P 

C/B 1.00               

Ag/B -0.02 1.00              

PL/B -0.03 -0.75 1.00             

S -0.21 -0.73 0.80 1.00            

Fc03 -0.05 -0.80 0.95 0.83 1.00           

Fc07 0.00 -0.78 0.94 0.79 0.95 1.00          

Fc28 -0.06 -0.80 0.94 0.81 0.96 0.95 1.00         

Fc60 -0.01 -0.78 0.94 0.78 0.94 0.96 0.95 1.00        

Fc90 -0.06 -0.79 0.95 0.81 0.96 0.94 0.96 0.95 1.00       

Ft28 0.00 -0.70 0.95 0.74 0.93 0.94 0.92 0.93 0.94 1.00      

Ff28 -0.03 -0.81 0.94 0.79 0.94 0.94 0.95 0.95 0.95 0.91 1.00     

Fb28 -0.01 -0.84 0.94 0.79 0.95 0.95 0.94 0.95 0.95 0.91 0.93 1.00    

Ec28 -0.06 -0.77 0.92 0.78 0.93 0.93 0.93 0.93 0.94 0.90 0.92 0.91 1.00   

K28 0.45 0.72 -0.72 -0.66 -0.78 -0.76 -0.78 -0.77 -0.78 -0.73 -0.78 -0.77 -0.78 1.00  

P 0.30 -0.63 0.54 0.49 0.53 0.55 0.53 0.54 0.52 0.49 0.55 0.57 0.53 -0.31 1.00 
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Figure 3. Distribution histograms for inputs (in blue) and outputs (in green) 

3.3. Research Program 

Two different models were used to predict the twelve outputs of concrete mix using the gathered dataset. The 

implemented techniques are “Artificial Neural Network (ANN)” and “Evolutionary Polynomial Regression (EPR)”. 

Each implemented technique is based on different approach mimicking human brain for ANN, optimization of 

mathematical regression for EPR and simulating evolution of natural creatures for GA. However, for all techniques, 

their accuracies were evaluated in terms of “Sum of Squared Errors (SSE)”, “Root of Mean of Squared Errors (RMSE)” 

and “Determination Coefficient (R2)”. 

The values listed in Table 2 illustrated the different correlations between considering inputs and outputs, based on 

these values the predicting models were constructed as shown in Figure 4. Where the concrete strengths (Fc03, Fc07, 

Fc28, Fc60, Fc90, Ft28, Ff28 & Fb28) were predicted using the design mix ratios (C/B), (Ag/B) & (PL/B), while the 

predicted Fc28 is used besides the design mix ratios to predict the values of (S, Ec28 & K28). Finally, the predicted 
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Fc28, S, Ec28 in addition to the design mix ratios are used to predict (P) values. The next sections present the results of 

each technique and its accuracy metrics.  

 

Figure 4. Theoretical framework for concrete design mix and models development and predicting 

4. Results and Discussions 

4.1. General Remarks on the Concrete Mixes’ Strength and Environmental Impact 

The concrete mixes collected from literature was reduced to the following ratios; cement to binder (cement + fly ash 

+ rice husk ash) ratio (C/B), aggregate (FAg + CAg) to binder ratio (Ag/B), and plasticizer to binder ratio (PL/B) and 

the behaviour of the hydro-mechanical properties of the concrete were observed under life cycle assessment (P) 

considerations. It can be observed that none of the concrete constituents’ ratios reacted independent of the other. But 

more emphasis is placed on the binders and their ratios (C/B and PL/B) as they constitute the contribution to the global 

warming potential (GWP) of cement use in concrete production, transportation and utilization during construction 

activities. It is observed that a reduction in the C/B ratio brings about an equivalent reduction in P, though it is not 

consistent with all the points of the database. This indicates that there is a portion of environmental impact contribution 

from the Ag/B ratio [35, 85]. This further implies that aggregates (Ag) equally consume energy and release considerable 

amount of greenhouse emission during the production process (quarrying) and transportation. However, closed-form 

equations, intelligent models and intelligent mix design tools have been proposed for fly ash/rice husk ash blend in 

concrete to solve this optimal materials selection and sampling riddles. Furthermore, this development can be employed 

to solve infrastructural design and problems dealing with concrete structures as well as concrete containment liner 

systems which need a compressive strength as low as 0.2MPa and hydraulic conductivity (k) of 1E-09m/s for singles 

liner systems and 1E-07 for double liner systems [25]. It can also be noted that air content was not considered in the 

parametric study and the models’ execution. This was because voids have minor effect on concrete strength, for normal 

weight, non-air-entrained concrete; the void ratio is ranged between 0.5% and 2.5% with average value of 1.5+/-1%, 

that affect the strength by +/-5% as per ACI-212 and E4-12. 

4.2. Prediction of Outputs 

4.2.1. Using ANN Technique 

As shown in Figure 4, the predictive model consists of three sub-models. The first is for concrete strengths; the 

second is for concrete physical properties; and the third is for environmental impact factor. The three sub-models were 

developed using the ANN technique with a layout of (3:8:8), (4:8:3), and (6:8:1), respectively. All the sub-models used 

the traditional "Back Propagation (BP)" training algorithm, standardization method (Var/S.D.), and activation function 

(Hyper Tan). The used network layout is illustrated in Figures 5 to 7, while the weight matrices of each model are shown 

in Tables 4 to 6. The prediction error % values of the first sub-models were ranged between 6.9% and 9.4% with an 

average value of 8.2%, and the error % of the second sub-model were ranged between 5.9% and 7.6% with an average 

value of 7.0%, while the error % of the third sub-model was 6.8%. On the other hand, the R2 values of the first sub-

model were ranged between 0.925 and 0.965 with an average value of 0.945, and for the second sub-model, the R2 

values were ranged between 0.878 and 0.949 with an average value of 0.894, and finally, the R2 value of the third sub-

model was 0.960. This compares well with previous research works which utilized fly ash-silica combination and fly 

ash alone in concrete production [91-96], and had used other intelligent methods in their prediction of the concrete 

mechanical properties. 
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Figure 5. Structure layout for sub-model (1) to predict concrete strengths 

 

Figure 6. Structure layout for sub-model (2) to predict concrete physical properties 
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Figure 7. Structure layout for sub-model (3) to predict the environmental impact factor 

Table 4. Weights matrix for the developed sub-model (1) 

  Hidden Layer  

  H1 H2 H3 H4 H5 H6 H7 H8  

In
p

u
ts

 

Bias 1.66 1.70 -2.61 -1.59 -4.07 -5.80 1.47 1.99  

C/B 0.74 3.91 -1.54 10.34 2.70 9.90 -1.10 -2.12  

Ag/B 1.11 0.93 -3.63 -1.55 0.88 4.91 -2.21 0.96  

PL/B -0.34 9.26 -1.20 11.06 0.94 -5.67 -5.39 6.68  

  Hidden Layer 

  H1 H2 H3 H4 H5 H6 H7 H8 Bias 

O
u

tp
u

ts
 

Fc03 -0.57 -0.78 -0.25 0.26 -0.26 0.01 0.08 1.56 -0.37 

Fc07 0.09 0.94 0.08 0.16 -0.42 0.14 0.09 -0.06 -0.63 

Fc28 -1.33 -6.01 0.78 0.33 -0.55 0.30 -1.62 5.11 1.39 

Fc60 2.02 0.19 0.05 -0.10 -0.54 0.20 1.47 2.48 -2.60 

Fc90 0.07 -3.59 0.89 0.05 -0.46 0.17 -0.90 3.63 0.14 

Ft28 1.07 1.21 -0.76 0.03 -0.61 0.31 1.57 1.48 -2.51 

Ff28 0.29 0.72 0.30 0.10 -0.45 0.15 0.05 0.15 -0.65 

Fb28 -2.39 3.01 1.53 0.27 -0.41 0.26 -3.21 -5.56 3.09 
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Table 5. Weights matrix for the developed sub-model (2) 

  Hidden Layer  

  H1 H2 H3 H4 H5 H6 H7 H8  

In
p

u
ts

 

Bias -1.41 1.70 -0.99 -3.24 0.78 -1.74 5.63 1.18  

C/B 0.83 0.33 -0.66 6.94 -2.39 -0.23 9.43 -1.07  

Ag/B -0.25 0.15 -0.13 8.32 1.28 -0.22 -5.07 0.39  

PL/B 0.31 -1.88 1.36 10.16 0.09 1.45 -4.11 -0.16  

Fc28 -0.18 -0.49 -0.51 5.24 1.00 0.78 10.89 0.39  

  Hidden Layer 

  H1 H2 H3 H4 H5 H6 H7 H8 Bias 

O
u

tp
u

ts
 S 0.20 -1.12 0.41 -0.06 -0.41 -0.66 0.18 0.45 0.08 

Ec28 4.15 -8.99 -2.41 -0.55 -0.63 -6.95 0.43 3.50 0.10 

K28 -3.11 -2.38 -1.02 0.13 0.47 -2.11 -0.25 -3.00 -1.64 

Table 6. Weights matrix for the developed sub-model (3) 

  Hidden Layer  

  H1 H2 H3 H4 H5 H6 H7 H8  

In
p

u
ts

 

Bias -2.32 1.24 -10.05 -1.11 1.59 2.73 1.44 1.76  

C/B 1.06 1.69 -5.68 0.40 -0.79 7.84 1.62 -0.27  

Ag/B 2.48 -0.04 -4.41 -2.87 3.77 0.04 7.32 0.39  

PL/B -1.24 0.94 2.55 -1.56 2.89 2.67 16.07 -2.18  

Fc28 -0.61 -2.57 8.47 1.15 -2.76 -8.81 0.24 -0.38  

S 0.75 3.26 -11.13 -2.05 2.37 12.36 1.87 1.34  

Ec28 -0.38 -3.53 -5.13 0.56 -0.11 -12.45 -2.61 -1.77  

  Hidden Layer 

  H1 H2 H3 H4 H5 H6 H7 H8 Bias 

Outputs P -2.55 2.43 -1.14 -3.59 -3.06 -1.49 -2.73 -1.50 -1.48 

Figure 8 illustrates the relative importance values of each input parameter for P and it indicates that all input 

parameters have almost the same importance level except (Ag/B) which has a slightly higher importance. This 

conclusion confirms the proposed theoretical framework shown in Figure 4. 

 

Figure 8. Relative importance of input parameters for (P) 

4.2.2. Using EPR Technique 

Similarly, the developed EPR model was divided into three sub-models as per Figure 4. The first sub-model was 

concerned in predicting the concrete strengths using a set of eight optimized cubic polynomials. All polynomials have 

the same three inputs (C/B, Ag/B & PL/B), hence, each polynomial have 20 possible terms (10+6+3+1=20) as follows: 

14%
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∑ ∑ ∑ 𝑋𝑖 . 𝑋𝑗 . 𝑋𝑘
𝑘=3
𝑘=1

𝑗=3
𝑗=1

𝑖=3
𝑖=1 + ∑ ∑ 𝑋𝑖

𝑗=3
𝑗=1

𝑖=3
𝑖=1 . 𝑋𝑗 + ∑ 𝑋𝑖

𝑖=3
𝑖=1 + 𝐶  (1) 

GA technique was applied on these polynomials to select the most effective five terms of each polynomial to predict 

(Fc03, Fc07, Fc28, Fc60, Fc90, Ft28, Ff28 and Fb28). The outputs are illustrated in Equations 2 to 9 and its fitness is 

shown in Figure 9. The error% values were ranged between 9.2% and 10.9% with average value of 9.7%, while (R2) 

values were ranged between 0.917 and 0.938 with average value of 0.928. This also compares well with previous 

research works, which utilized fly ash-silica fume combination and fly ash alone in concrete production [91, 96], and 

had used other intelligent methods in their prediction of the concrete mechanical properties. 

Fc03 = 13.8 − 7785 (
C

B
) (

PL

B
) − 5000 (

B

C
) (

PL

B
) − 131 (

Ag

B
) (

PL

B
) + 14100 (

PL

B
)  (2) 

Fc07 = 26.2 − 10280 (
C

B
) (

PL

B
) − 6960 (

B

C
) (

PL

B
) + 1595 (

B

Ag
) (

PL

B
) + 17915 (

PL

B
)  (3) 

Fc28 = −241 + 612 (
C

B
) − 356 (

C

B
)

2

+ 73 (
B

C
) (

B

Ag
) + 1378 (

PL

B
)  (4) 

Fc60 = −233 + 656 (
C

B
) − 395 (

C

B
)

2

+ 4132 (
PL

B
) − 74600 (

PL

B
)

2

  (5) 

Fc90 = 21 + 101 (
C

B
) (

B

Ag
) − 14240 (

C

B
) (

PL

B
) − 8486 (

B

C
) (

PL

B
) + 23905 (

PL

B
)  (6) 

Ft28 = −18.1 + 52 (
C

B
) − 31 (

C

B
)

2

+ 0.5 (
B

C
) (

PL

B
) + 135 (

PL

B
)  (7) 

Ff28 = −35.4 + 100 (
C

B
) − 60 (

C

B
)

2

+ 12.5 (
Ag

B
) (

PL

B
) + 730 (

B

Ag
) (

PL

B
)  (8) 

Fb28 = 1.2 − 158 (
C

B
) (

B

Ag
) − 106 (

B

C
) (

B

Ag
) + 283 (

B

Ag
) + 230 (

PL

B
)  (9) 

The second sub-model was concerned in predicting the physical properties of concrete using a set of three optimized 

cubic polynomials. All polynomials have the same four inputs (C/B, Ag/B, PL/B & Fc28), hence, each polynomial have 

35 possible terms (20+10+4+1=35) as follows: 

∑ ∑ ∑ 𝑋𝑖 . 𝑋𝑗 . 𝑋𝑘
𝑘=4
𝑘=1

𝑗=4
𝑗=1

𝑖=4
𝑖=1 + ∑ ∑ 𝑋𝑖

𝑗=4
𝑗=1

𝑖=4
𝑖=1 . 𝑋𝑗 + ∑ 𝑋𝑖

𝑖=4
𝑖=1 + 𝐶  (10) 

GA technique was applied on these polynomials to select the most effective seven terms of each polynomial to 

predict (S, Ec28 & K28). The outputs are illustrated in Equations 11 to 13 and its fitness is shown in Figure 9. The error 

% values were ranged between 8.6% and 10.5% with average value of 9.3%, while R2 values were ranged between 

0.831& 0.887 with average value of 0.868. 

S = 22 + 42 (
C

B
) + 4.2 (

C

B
) (

Ag

B
) − 5015 (

C

B
) (

PL

B
) − 465 (

Ag

B
) (

PL

B
) + 8570 (

PL

B
) − 41510 (

PL

B
)

2

  (11) 

Ec28 = −333 + 570 (
C

B
) − 300 (

C

B
)

2

+ 60 (
B

C
) + 64 (

B

C
) (

PL

B
) + 106 (

Ag

B
) (

PL

B
) + 66 (

B

Ag
)  (12) 

K28 = 309 − 388 (
C

B
) − 154 (

C

B
) (

PL

B
) + 168 (

C

B
)

2

− 79 (
B

C
) − 9.5 (

B

Ag
) + 2595 (

PL

B
)

2

  (13) 

Finally, the third sub-model was concerned in predicting the environmental impact factor using six inputs cubic 

polynomials, which are (C/B, Ag/B, PL/B, Fc28, S and K28), hence, the polynomial has 84 possible terms 

(56+21+6+1=84) as follows: 

∑ ∑ ∑ 𝑋𝑖 . 𝑋𝑗 . 𝑋𝑘
𝑘=6
𝑘=1

𝑗=6
𝑗=1

𝑖=6
𝑖=1 + ∑ ∑ 𝑋𝑖

𝑗=6
𝑗=1

𝑖=6
𝑖=1 . 𝑋𝑗 + ∑ 𝑋𝑖

𝑖=6
𝑖=1 + 𝐶  (14) 

GA technique was applied on these polynomials to select the most effective nine terms of each polynomial to predict 

P. The output is illustrated in Equation 15 and its fitness is shown in Figure 9. The error% and (R2) values were (21.4% 

- 0.371).  

P = −40.5 + 66 (
C

B
) − 9.8 K28 (

C

B
) − 0.22 S (

C

B
) − 4.3 (

Ag

B
) + 0.53 K28 (

Ag

B
) + 2358 (

PL

B
)

2

+ 7.6 K28 + 0.21 S  (15) 

The results of all developed models are summarized in Table 7. Figure 9 compare the accuracies of the developed 

models graphically. 
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Table 7. Accuracies of developed models 

Item Technique Model SSE Error % R2 

Fc03 
ANN Figure 5, Table 4 1123 9.4 0.955 

EPR Equation 2 1527 10.9 0.938 

Fc07 
ANN Figure 5, Table 4 2093 8.5 0.947 

EPR Equation 3 2837 9.9 0.926 

Fc28 
ANN Figure 5, Table 4 2493 7.2 0.960 

EPR Equation 4 4954 10.1 0.917 

Fc60 
ANN Figure 5, Table 4 2740 6.9 0.965 

EPR Equation 5 4817 9.2 0.936 

Fc90 
ANN Figure 5, Table 4 3590 7.6 0.958 

EPR Equation 6 5548 9.5 0.934 

Ft28 
ANN Figure 5, Table 4 31 8.9 0.925 

EPR Equation 7 33 9.2 0.920 

Ff28 
ANN Figure 5, Table 4 81 8.7 0.944 

EPR Equation 8 93 9.3 0.936 

Fb28 
ANN Figure 5, Table 4 90 8.2 0.954 

EPR Equation 9 131 9.9 0.931 

S 
ANN Figure 6, Table 5 6026 7.6 0.878 

EPR Equation 11 8068 8.7 0.831 

Ec28 
ANN Figure 6, Table 5 516 5.9 0.949 

EPR Equation 12 1088 8.6 0.887 

K28 
ANN Figure 6, Table 5 11 7.4 0.946 

EPR Equation 13 22 10.5 0.887 

P 
ANN Figure 7, Table 6 26 6.8 0.960 

EPR Equation 15 258 21.4 0.371 
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Figure 9. Relation between predicted and calculated values using the developed models 

4.3. The Developed Mix Design Aid 

Although the developed predicting models for (Fc28) using (ANN) and (EPR) are accurate enough, they are still 

hard to implement in practical mix designs, especially for manual calculations [91–96]. Hence, concrete mix design 

tools were developed by substituting in the developed ANN model different combinations of input parameter values that 

varied at constant intervals. Figure 10 presents the corresponding binder content (B) and water-binder ratio (W/B) for 

each input parameter combination, while the calculated (Fc28) values were plotted on the contour charts shown in Figure 

11. The key chart indicates the changes in mix design when moving toward each side of the design chart; moving 

vertically changes the concrete strength and plasticizer-binder ratio, while moving horizontally changes the binder 

content and water-binder ratio. 

 

Figure 10. Concrete mix design aid, corresponding binder content (B) and water-binder ratio (W/B) for diffident 

combinations of (PL/B), (Ag/B) 
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Figure 11. Concrete mix design aid, key chat, (Fc28) for diffident combinations of (PL/B), (Ag/B) & (C/B) 

Using this tool is very simple, requiring only the desire (Fc28) and cement-binder ratio (C/B). Just select the correct 

chart in Figure 11 based on the (C/B) value, then locate the required (Fc28) on the selected chart to determine both 

(Ag/B) and (PL/B). From the corresponded cells in Figure 10, both binder content (B) (ton/m3) and water-binder ratio 

(W/B) could be determined. Finally, the absolute values of water, plasticizer, cement, (fly ash or rich husk ash), and fine 

and coarse aggregates [92, 94] could be calculated by multiplying their ratios by the binder content, considering that the 

coarse aggregate content is twice the fine aggregate content. 
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0.030 88 80 74 69 66 63 61 0.030 96 89 84 80 77 75 73
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0.020 74 66 60 56 52 50 47 0.020 82 75 70 66 63 61 59

0.015 67 59 53 49 45 43 41 0.015 75 68 63 59 56 54 52

0.010 60 52 46 42 39 36 34 0.010 68 61 56 52 50 47 45

0.005 53 45 39 35 32 29 27 0.005 61 54 49 46 43 40 38

0.000 46 38 32 28 25 22 20 0.000 54 47 42 39 36 33 32
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For example, to design a concrete mix with (Fc28=60MPa) and (C/B=80%), the middle left chart in Figure 11 will 

be used, (Ag/B) is 3.5 and (PL/B) is 1%. From Figure 10, the binder content is 0.49 t/m3 and (W/B) is 40%. Hence, 1.0 

m3 of this mix contains 390kg cement, 100kg fly ash or rice husk ash, 195 litter of water, 4.9kg plasticizer, 570kg fine 

aggregate (sand) and 1140kg coarse aggregate. 

5. Conclusions 

This research presents three models using two techniques (ANN, and EPR) to predict concrete compressive strength 

at different ages (Fc03, Fc07, Fc28, Fc60, Fc90), splitting, flexural and bond strengths after 28 days (Ft28, Ff28 and 

Fb28), slump, elastic modulus and permeability after 28 days (S, Ec28 and K28) besides the environmental impact factor 

(P) using cement-binder ratio (C/B), total aggregate-binder ratio (Ag/B) and super-plasticizer-binder ratio (PL/B). Also, 

the research presented a concrete mix design tool developed based on the developed predictive models. The results of 

comparing the accuracies of the developed models could be concluded in the following points: 

 Based on the correlations between the considered variables, the two developed models were constructed using 

three sub-models, the first to predict the strengths, the second to estimate the physical properties, and the third to 

evaluate the environmental impact factor. 

 ANN models showed the best accuracy, with average values of 91.8%, 93.0%, and 93.2% for the three sub-models, 

respectively. The total average accuracy was 92.3%. In spate of its high accuracy, it is too difficult to implement 

manually. The developed mix design tool provides a quick and easy alternative to the long and complicated 

calculations of ANN. 

 The EPR model presented a less complicated and also less accurate alternative for the ANN, where its accuracies 

were 90.3%, 90.7%, and 78.6% for the three sub-models, respectively. The total average accuracy was 89.4%. 

 The limited accuracy of the third EPR sub-model indicated that the relation between P and the considered inputs 

is too complicated to be captured by polynomial regression, even for the optimized one. On the other hand, the 

highly complicated third ANN sub-model was capable of capturing this relationship accurately. 

 The sum of the absolute weights of each neuron in the input layer of the developed third ANN sub-model indicated 

that P is almost equally affected by all input values, which is confirmed by the developed formula in the third EPR 

sub-model that contains all the considered inputs. 

 The GA technique successfully reduced the 20, 35, and 84 terms of the conventional polynomial regression cubic 

formula to only 5, 7, and 9 terms for the three sub-models, respectively, without having a significant impact on its 

accuracy. 

 Like any other regression technique, the generated formulas are valid within the considered range of parameter 

values; beyond this range, the prediction accuracy should be verified. 

 Figures 10 and 11 present the mapping for (Fc28) values corresponding to all possible mix combinations (within 

the limits of the available dataset). Studying these charts leads to the following additional remarks. 

 This tool (charts) is limited to the following ranges: 

o Binder content, 340 to 630 kg/m3; 

o Water-binder ratio, 31% to 54%; 

o Fly ash or rice husk ash– binder ratio, 0.0% to 40%; 

o Total aggregate – binder ratio, 2.5 to 5.5; 

o Coarse –fine aggregate ratio is constant and equals to 2.0; 

o Fc28, 20 to 105 MPa. 

 The maximum Fc28 values occur when the cement-binder ratio is 80%. 

 Decreasing the aggregate-binder ratio increases the (Fc28) due to increased binder content and reduces the water-

binder ratio, and vice versa. 

 Increasing the plasticizer–binder ratio increases the concrete strength (Fc28) regardless of the cement-binder ratio. 

 Further studies may be carried out to predict the same outputs using a wider range of databases that include high- 

and ultra-high-performance concrete, besides special types of concrete such as self-healing concrete. 
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