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Abstract 

The need to meet society's demands for road infrastructure while minimizing the resulting environmental impacts is a 

source of great complications. In this context, Life Cycle Assessment (LCA) can be useful by applying a set of rules and 

processes for the environmental assessment of projects. The objectives of this study were to present the main environmental 

impact categories associated with emissions from the life cycle phases of a road pavement and how to estimate them. In 

addition, this paper provides examples of LCA applications on these infrastructures. In view of the evolution of research 

on LCA, a compilation was made on: the main categories of environmental impact associated with emissions; phases of 

life cycle impact assessment; and procedures and methods of impact estimation. The impact categories presented are 

associated with climate change, acidification, ozone depletion, tropospheric ozone formation, eutrophication, and 

Particulate Matter Formation. Not all methods are able to generate indicators for all types of impact and, depending on the 

type of materials and services that make up the inventory of the alternatives analyzed, one specific method may be more 

appropriate to use. The conclusions are that for each environmental impact, the results depend on the input parameters, 

such as energy flows and materials, along with their processing by methods of life cycle impact assessment. Besides this, 

despite the great diversity of the databases for the steps of life cycle assessment of roadway pavement, there is a general 

consensus about the nature of these steps. 
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1. Introduction 

Because there is a limit on the ability of the biosphere to absorb the effects of human activities, and because these 

actions are mutable and subordinated to the degree of technological development and social, economic, and cultural 

organization, the concept of sustainable development has emerged. It consists of the idea that it is possible, through the 

combination of supply and demand management of productive resources and incentives for technological improvements, 

to generate economic growth for the current generation without compromising the ability of future generations to meet 

their needs [1]. 

Life cycle assessment (LCA) is inserted in this context. The processes and rules for conducting LCA were originally 

defined by the International Organization for Standardization (ISO) in its family of standardization [2]. The criteria for 

carrying out LCA are general since the objective is to guide analysis of any type of undertaking. Therefore, its application 

in pavement projects requires very precise specifications. The orientation is generally developed by the relevant 

industries and other stakeholders, such as researchers and public agencies [3]. 
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Interest has been growing among transportation planners to determine the environmental impacts generated by all 

the steps of the life cycle of transportation infrastructure, from extraction until final disposal or recycling of materials. 

In this respect, although the environmental impact of products or services could be determined by other methods, LCA 

has gained space as the most appropriate tool to accomplish this type of task since it is able to qualify, quantify, and 

compare the repercussions of the structures studied. Finally, this type of capacity allows determining how a project can 

be implemented while minimizing the negative impacts on the environment [4, 5]. According to Alshehry & Belloumi, 

2017 [6], 20% of global energy resource consumption and 25% of global GHG emissions are associated with 

transportation systems. However, 75% of those emissions come from road systems. In addition, pavement construction 

is recognized as one of the three most relevant activities in terms of natural resource consumption and, specifically 

within the road pavement life cycle, pavement construction can emit up to twice as many pollutants as motor vehicle 

operation [7, 8]. 

A road pavement is a layered structure that is generally sub-base, sub-base, base and surface course. As the layers 

underlying the surface course generally do not exert much influence on design processes, one of the main ways of 

classifying pavement is associated with the material that makes up this layer, which can be asphalt concrete and 

conventional concrete mixes [9, 10]. In Brazil, 65% of freight transport and 95% of passenger transport is carried out 

by road mode. Brazilian's road density if about 25,1 km/1000 km², with 99% asphalt-paved. In comparison, to other 

countries like China, USA, Russia, Argentina and Canada they have, respectively, 452,1 km/1000 km², 437,8 km/1000 

km², 54,3 km/1000 km², 42,3 km/1000 km² and 41,6 km/1000 km² with some type of surface course, Brazil have much 

to expand [11]. 

Since asphalt-paved roads are more common, this study may focus on this type of pavement. Therefore, it is 

necessary to point out that asphalt mixtures are usually composed of aggregates, fillers, binders, and sometimes 

additives. Approximately 85% to 95% of the mix is composed of aggregate and fillers, the rest is filled by asphalt [9, 

10, 12]. 

Chen et al. 2021 [13] analyzed the effect of global warming on asphalt-paved roadway deterioration. In this regard, 

they used a mechanistic-empirical pavement design method to simulate the effect of temperature. They concluded that 

an increase in global temperature would accelerate the deterioration of asphalt pavement leading to an escalation in 

maintenance demand, which would consequently require more raw material, plant production, transportation, and field 

construction. This growth in the amount of services generates an increase in the amount of CO2 emitted over the life 

cycle of the pavement, which, although it performs better in the use phase, does not pay off. It is evident then, that the 

life cycle of road pavement influence and are affected by climate change. In addition to these impacts such as 

acidification and particulate matter emissions are widely analyzed [14]. 

As a contribution to less environmentally offensive roadway, this article presents a short review of concepts and 

paradigms for conducting life cycle assessment, focused on roadway infrastructure. The objectives were to present the 

main midpoint environmental impact category associated to emissions, the main methods used to translate the effects of 

human activities into the units generally used for each environmental impact and the life cycle stages usually adopted 

in life cycle assessment of a roadway pavement. In addition, this paper brings some examples of LCA searches with 

their combinations of sources inventories bases, stapes of life cycle considered, methods to estimate impacts. The article 

is organized into five sections including this introduction. Section 2 defines the general concepts for conducting life 

cycle assessment for any type of product or service; section 3 identifies some specifications necessary to apply LCA to 

roadway pavement products; section 4 summarizes some examples of studies that have applied LCA for this purpose; 

and section 5 contains our conclusions and some proposals for future works. 

2. Life Cycle Assessment 

Life cycle assessment can be subdivided into four steps: objectives and scope; life cycle inventory; environmental 

impact assessment; and interpretation. Figure 1 depicts a graphic representation of the LCA steps and their 

interdependence. The step of defining the objectives and scope consists of determining parameters, such as: (1) 

functional units, which are connected to a specific input or output, to enable comparison between different projects, such 

as kilometers of road constructed per CO2 equivalent emitted; (2) frontiers of the system, among them the life cycle 

phases of the product or service and the types of impacts considered; (3) period of evaluation of the product, which in 

the case of pavement can extend beyond the service life; and (4) general specifications, such as a complete description 

of the data sources, methods and tools used to guarantee the reproducibility, replicability and auditing of the studies and 

evaluations [15, 16]. 
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Figure 1. Structure of a Life Cycle Analysis- Source (adopted from [17, 18]) 

A life cycle inventory (LCI) is basically a list of inputs and outputs associated with all the steps of the LCA of a 

determined product [19]. There are three approaches most often applied for LCI. The first is known as process analysis 

or the bottom-up approach, in which the life cycle of the product is segmented into various production subsystems. The 

second is the top-down approach, which is based on macroeconomic diagnoses through input-output analysis. The third 

method incorporates characteristics of the first two procedures [20, 16]. 

Different substances may have the ability to generate the same environmental effects, but with different potentials. 

In view of this, standardization is necessary. In most cases, the intensity of the effects that a given quantity of a given 

substance causes on an environmental quality parameter is taken as the basis. Each effect then has its own basic 

substance of comparison. In addition, the same substance can contribute to several negative impacts. For a deeper 

understanding of the theory adopted by the life cycle assessment it is important to note that each environmental impact 

will have consequences on areas of protection. Usually, but not exclusively, these areas are: usually human health; 

ecosystem quality or natural environment; natural resources and ecosystem services. It is evident that each intermediate 

impact can affect more than one area of protection [19]. In this respect, Table 1 reports some of the main midpoint 

environmental impact category associated to emissions and Ecosystem quality or natural environment. 

Table 1. Main midpoint environmental impact category associated to emissions *  

Midpoint Environmental Impact 
Characterization 

Factor 
Unit Area of Protection References 

Climate Change Global Warming Potential (GWP) kg CO2-eq 

Ecosystem quality 
or natural 

environment 

IPCC, 2014 [21] 

Stratospheric Ozone Depletion 
Ozone Degradation Potential 

(ODP) 
kg CFC-11-eq Hauschild et al. 2018 [19] 

Photochemical Ozone Formation 
Photochemical Formation 

Potential (POPC) 
kg NOx-eq Van Zelm et al. 2016 [22] 

Acidification Acidification Potential (TAP) kg SO2-eq Roy et al. 2014 [23] 

Eutrophication 
Freshwater Eutrophication 

Potential (FEP) 
kg PO4-eq Helmes et al. 2012 [24] 

Particulate Matter Formation 
Particulate Matter Formation 

Potential (PMFP) 
kg PM2,5-eq Van Zelm et al. 2016 [22] 

* Source: Adapted from [25-28]. 

Life cycle impact assessment phase apply procedures that transform different emissions in a cause-effect chain into 

different estimates of environmental impacts of interest susceptible to assessment. An example is the conversion of 

direct emissions of one ton of any gas into a carbon dioxide equivalent (CO2eq) to determine the potential contribution 

to the greenhouse effect, such as methane gas (CH4). This conversion enables comparing different substances from the 

standpoint of global warming potential. This step tends to be highly automated, having a great amount of different 

computer programs available, depending on the product analyzed and the impacts targeted for estimation [19]. Table 2 

exhibits the methods developed to translate the effects of human activities into the units generally used for each 

environmental impact. It is pertinent to point out that for each midpoint environmental impact there is a diversity of 

models and considerations. For this reason, but not only, comparisons between different studies should be made with 

caution, as each method may use different procedure to estimate each midpoint environmental impact. In addition, it is 

important to note that not all methods are able to generate indicators for all types of impact. Another important issue is 

that, depending on the type of materials and services that make up the inventory of the alternatives analyzed, one specific 

method may be more appropriate to use [15, 19]. 
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Table 2. Methods developed to translate the effects of human activities into the units generally used for each environmental impact* 

Method Name Description Developer Year Source 

TRACI 

Tool for Reduction and 

Assessment of Chemical and 

other environmental Impacts 

An LCA program based on SimaPro 

specifically for use in the USA. 

U.S. Environmental 

Protection Agency (EPA) 
1995 Bare, 2002 [29] 

Eco-

indicator 99 
________ 

The methodological procedure adopts a 

combination implementation of the end 

environmental impact-oriented approach. 

Pré Consultants (product 

ecology consultants) 
1997 

Goedkoop et al. 1998 

[30]; Goedkoop & 

Spriensma 2001 [31] 

ERM Elementary Road Modulus 

A parametric environmental assessment tool 

developed by replicating LCA and adapted 

specifically for road structures. 

Laboratoire Central des 

Ponts et Chaussées (LCPC) 
1998 Hoang et al. 2005 [32] 

CML Centrum Milieukunde Leiden 
Developed determination of intermediate 

environmental impacts. 

Institute of Environmental 

Sciences at the University of 

Leiden 

2001 

Guinée et al. 2002 [33]; 

VAN Caneghem et al. 

2010 [34] 

Athena Athena Impact Estimator 

A free LCA software application aimed 
specifically at the construction and 

maintenance stages of highways in Canada 

and the USA. 

Athena Sustainable 
Materials 

Institute 

2002 Stek et al. 2011 [35] 

PaLATE 

Pavement Lifecycle Assessment 

Tool for Environmental and 

economic effects 

An Excel®-based LCA tool focusing on 

economic and environmental effects. 

University of California, 

Berkeley 
2003 

Horvath, 2004 [36]; 

Muench, 2010 [37] 

ROAD-RES 
Road construction and disposal 

of residues 

An LCA tool focused on comparing the 

utilization of waste from incineration 
processes and virgin materials. 

Technical University of 
Denmark 

2005 

Birgisdottir, 2005 [38]; 

Birgisdottir et al. 2007 
[39]; Muench, 2010 [37] 

ReCiPe ________ 

The ReCiPe LCA method was developed to 

provide factors to characterize intermediate 

and final environmental impacts. 

RIVM, Radboud University 

Nijmegen, Leiden University 

and Pré Consultants. 

2008; 

updated 

2016 

Goedkoop et al. 2009 

[40]; Goedkoop et al. 

2013 [41]; Huijbregts et 

al. 2016 [42] 

ECORCE 

ECO-comparator applied to 

Road Construction and 
Maintenance 

A JAVA®-based LCA tool dedicated to road 

pavement for the construction and 
maintenance phases with a focus on material, 

water and energy reduction. 

French Institute of Science 

and Technology in 
Transportation, Planning and 

Networks 

1.0 (2008); 

2.0 (2013); 

M (2014) 

Jullien et al. 2015 [43] 

CHANGER 

Calculator for Harmonised 

Assessment and Normalisation 

of Greenhouse-gas Emissions 

for Roads 

A calculation tool for monitoring, 

estimations, evaluation and normalization of 

GHG emissions from road construction. 

International Road 

Federation (IRF) 
2009 Huang et al. 2013 [44] 

Roadprint ________ 

A free LCA software for evaluating new and 

rehabilitated road pavement, which can be 
considered as an evolution of PaLATE. 

University of Washington 2012 Muench et al. 2014 [45] 

AsPECT 
Asphalt Pavement Embodied 

Carbon Tool 

An LCA tool for calculating carbon dioxide 

equivalent emissions from asphalt mixtures. 

Transport Research 

Laboratory 
2009 Nicuță, 2011 [46] 

PE-2 Project Emission Estimator 
Pavement GHG emissions monitoring 

program. 

Michigan Technological 

University 
2012 

Mukherjee & Cass, 

2012 [47]; Mukherjee et 

al. 2013 [48] 

EcoConcrete Eco-friendly Concrete 

Interactive Excel®-based tool specially 

designed for quantifying the life cycle 
environmental impacts of concrete products. 

Joint Project Group (JPG) ____ 
Evangelista & De Brito, 

2007 [49] 

IMPACT 

2002+ 
________ 

The methodological procedure adopts an 

implementation through a combination of 

the approach to intermediate and final 

environmental impacts. 

Swiss Federal Institute of 

Technology Lausanne 

(EPFL), currently 

maintained and improved by 

IMPACT Modeling Team. 

_____ 

Jolliet et al. 2003 [50]; 

 Humbert et al. 2012 
[51] 

* Source: Adapted from [15, 25, 28, 52, 53]. 

Hoxha et al. 2021 [54] reviewed Life cycle assessment of roads exploring research trends and harmonization 

challenges. They concluded that, although theoretically unexpected, the software used for analysis affects the results 

and possible comparisons between studies, even if they contain the same databases and methods. In addition, they noted 

that most studies estimated impacts on climate change, leaving other impacts relegated to the background. Furthermore, 

they pointed out that publicizing the impacts that road infrastructure can generate for climate change is important as it 

can raise awareness. 

Finally, the objective of the interpretation step is to summarize, identify and evaluate the results of the LCI and 

LCIA, and to draw some conclusions regarding the project of interest. This step generally consists of three elements: 

identification of relevant questions based on the results of the LCI and LCIA; evaluation of the sensitivity of the 

problems identified and verification of the consistency and completeness of the results; conclusions, limitations of the 

study and recommendations for future research [15]. 
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3. Life Cycle Assessment on Pavement 

LCA is a structured method to determine the types and quantities of impacts generated during the life cycle of a 

supply chain, by examining the inputs and outputs of a product or system. In the case of roadway pavement, the life 

cycle can cover the following phases: (1) extraction of raw materials (virgin inputs); (2) transport of inputs; (3) milling 

or other processing of the input materials; (4) transport of the processed paving materials; (5) construction of the 

pavement; (6) maintenance and recuperation; (7) operation; (8) recycling; (9) demolition; and (10) reconstruction [3, 

16, 55]. 

Figure 2 (adapted from [15, 18, 55]) contains a representation of a roadway pavement life cycle phases connection 

and the processes customarily allocated to them. It is possible to note the phases chronological order of linkage and the 

contribution of a single phase to multiple other phases (e.g., the production of materials feeds the construction and 

maintenance phases). Another observation is the participation of transport in all the phases, although with different 

relevance levels. Finally, the phases of use/operation and maintenance/recuperation, although occurring in the same 

period (during the life cycle of the pavement), are considered separately, in attempt to rationalize organization, since the 

desire is to verify the effects of different processes that in final analysis are associated with the users or managers of the 

road. The reason is that the flows of materials and energy that feed each phase have different levels, and hence different 

environmental impacts. 

 

Figure 2. Life cycle stages Illustration of a highway pavement 

According to Xiao et al. 2019 [15], a LCA of a pavement have different designations depending on the steps life of 

cycle included into the analysis, namely: (i) from cradle to gate, when the phases of extraction, processing of inputs and 

construction are considered; (ii) from cradle to grave, when the phases of use/operation, maintenance/recuperation and 

end of life are added to those mentioned in (i), without considering total recycling of the elements composing the 

pavement; and (iii) from cradle to cradle, when the study covers all the phases plus the recycling of the elements that 

compose the pavement, to start the chain again. 

There are at each stage of the pavement life cycle a number of processes. Figure 3 attempts to illustrate the fact that 

each process requires different types and amounts of materials and energy to complete them. For example, to prepare 

the asphalt mixture it is necessary to have asphalt, aggregates and additives, which need to be heated and mixed together. 

The result is not only the desired product, but also substances that can affect the soil, land and air [19, 56]. 

 

Figure 3. Generic procedural unit illustration regarding its inputs and outputs from an environmental point of view 
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The stage of extraction and supplies production includes the processes of extraction and beneficiation of raw 

materials to produce the materials that will be used in the phases of construction, maintenance and recuperation of the 

pavement. These mainly consist of mixtures of aggregates with a wide granulometric range and asphaltic binders [3, 

57]. 

The phase of materials production has the objective of gathering the different inputs from the extraction phase and 

processing. With regard to asphaltic mixtures, the typical steps are: (1) drying and heating of the aggregates; (2) heating 

of the binder; and (3) mixture of the aggregates with binder. With regard to the materials composing the other pavements 

layers namely, base, sub-base and subgrade, the following steps occur: (4) granulometric stabilization; and (5) chemical 

stabilization [18]. The transport of materials is involved in all the other steps of the life cycle of a roadway pavement. 

For example, in the case of the construction of a new pavement or maintenance/recuperation of an old one, it will be 

necessary to transport the binder and different aggregates to the worksite. In the case of maintenance/recuperation, it 

will also be necessary to transport old material for recycling or final disposal. The environmental impacts of this transport 

will be mainly influenced by: engine technology of the transport vehicle; load capacity of the vehicle; shifting distances; 

transportation speed and weight of the materials to be carried [57]. 

The environmental impacts usually considered in construction phase and maintenance/recuperation phase depends 

on equipment combustion: (1) of the fuel used by the construction equipment at the site and vehicles that carry the 

materials; and (2) the extra fuel consumed by vehicles that must wait idling, travel at reduced speed and/or take detours 

around the construction site [3, 57]. Some of the main aspects that directly interfere in the intensities of environmental 

impacts in practically all stages are: service life, with several methods for estimation; frequency and type of maintenance, 

which also has a great diversity of possibilities and effects [58]. During pavement use stage, impacts are normally 

associated to vehicles consumption affected by vehicles-pavement interactions. Fuel consumption can vary due to: 

conditions and characteristics of vehicles (shock absorbers, brakes, tire tread, engine); preservation or deterioration of 

the surface of pavement, that increases or decreases rolling resistance (roughness, macrotexture); geometric 

characteristics of the road, such as curves and ascending and descending ramps; pavement such as albedo or reflectance, 

heating capacity and thermal conductivity [3, 57]. 

Table 3 presents some pavement life cycle assessment studies. Consensus can be observed on phases definitions, but 

there is no agreement on which steps to be taken account. This seems to corroborates that, these aspects must be 

determined by the team of researchers according to the objectives and scope of the study. Other aspect to note is that the 

majority decided to estimate climate change, acidification contributions and energy consumption. Those aspects are in 

line with Meijer et al. (2018) [14]. 

Table 3. Papers Collection that applied LCA in highway pavement studies, showing the steps considered and the 

environmental impact indicators used* 

Studies 

Life cycle steps Environmental Impact Indicators 
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Huang et al. (2009) [59] X X X     X X   X X    

Yu et al. (2012) [60] X X X X X X   X X X X X X X  

Yu et al. (2013) [61]  X X X X X X X X X X X X    

Chou et al. (2013) [62] X    X    X X   X X   

Yu et al. (2014) [63]  X X X  X   X        

Araújo et al. (2014) [64] X X X X X X  X         

Santos et al. (2015a) [57] X X X X X X X X X X X X X  X  

Santos et al. (2015b) [65] X X X X X X X X X X X X X    

Liu et al. (2015) [66] X X X X X X X          

Mauro et al. (2016) [67] X X X X X X  X X X  X X X   

Chen et al. (2016) [68] X  X X  X   X X X X X X   

Chong & Wang (2017) [52] X X X X X X X X         

Santos et al. (2017b) [69] X X X X X X X          

Moretti et al. (2017) [70] X X     X X    X     

Liu et al. (2018) [71] X  X    X          

Hong et al. (2018) [72] X X X X X X  X         

Gulotta et al. (2019) [73] X X X  X X  X         
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Wang et al. (2019) [74] X X X X X   X X  X      

Cong et al. (2020) [56] X X X  X X  X X X X X X  X  

Huang et al. (2021) [75] X X X X X  X X  X X X X X X X 

Total 18 17 18 14 15 14 8 13 11 9 8 10 10 5 4 1 

*Source: Adapted from [76]. 

4. Life Cycle Assessment on Pavement Applications 

Table 4 presents a compilation of pavements life cycle assessments studies exposing: objectives and scopes; sources 

of data used; LCIA method adopted. Objectives includes comparison of asphalt mills versus asphalt plants and virgin 

aggregates versus recycled aggregates. The majority of works estimated contributions made on climate change, 

acidification, degradation of the ozone layer, formation of tropospheric ozone and eutrophication. Regarding to data 

inventories, there was no consensus on national and international databases use. About LCIA method, no particular 

preference was observed. 

Table 4. Databases, LCA methods, software and estimated impacts when performing road pavements LCA*  

Objectives Life cycle Steps Database Source LCIA Methods Software 
Environmental 

Impact Indicators 
References 

Comparison of the environmental 

impacts associated with the 

production of HMA with virgin 

and recycled aggregates. 

Cradle-to-site: 

Transportation; extraction 

& machining; construction 

Regional data; 

Ecoinvent v.3 e USLCI 

(United States life cycle 

inventory) 

TRACI SimaPro 

ODP, GWP, POPC, 

TAP, FEP, Ecotoxicity, 

Fossil Fuel Depletion, 

Human Health Damage 

Vega et al. 

2020 [28] 

Comparison of the economic and 

environmental impacts of using 

different materials for pavement 

layers. 

Cradle-to-site: 

Transportation; extraction 

& machining; construction 

Regional data, 

Ecoinvent v.3, literature 

review 

CML Baseline SimaPro 
GWP, Fossil Fuel 

Depletion 

Nascimento 

et al. 2020 

[76] 

Comparison of the environmental 

impacts associated with the 

production of HMA with virgin 

and recycled aggregates. 

Cradle-to-gate:  

Extraction; crushing (RCA); 

transport to storage 

Regional data e 

Ecoinvent v.3 
IMPACT 2002+ SimaPro 

GWP, TAP, ODP, 

FEP, Human Health 

Damage, Ecotoxicity, 

Fossil Fuel Depletion 

Martinez-

Arguelles et 

al. 2019 [27] 

Comparison of the economic, 
social, and environmental impacts 

associated with the use of RCA on 

the base paving (PCC) with 

conventional ones. 

Cradle-to-grave: 

Machining; construction; 

use; maintenance; end-of-

life 

Regional data; 

Oklahoma DOT AADT 

Traffic Counts 

TRACI 

EIO-LCA 

model 

developed 

by CMU 

GWP, TAP, ODP, 

POPC, FEP, Danos a 

saúde humana, 

Ecotoxicity 

Shi et al. 

2019 [77] 

Comparison of the environmental 
impacts associated with the 

production of HMA with virgin 

and recycled aggregates. 

Cradle-to-site:  
Demolition site transportation 
(RCA); extraction and 

machining; disposal (RCA); 
concrete plant transportation; 
transportation 

Regional data; 

Ecoinvent v.3 e USLCI 

(United States life cycle 

inventory) 

IMPACT 2002+ SimaPro 

GWP, Human Health 

Damage, Ecotoxicity, 

Fossil Fuel Depletion 

Rosado et 

al. 2017 [78] 

Comparison of the environmental 
impacts associated with the 

production of HMA with virgin 

and recycled aggregates. 

Cradle-to-gate:  

Extraction and machining; 

transportation to the mill; 

production at the mill. 

literature review, 

Ecoinvent v.3 e ELCD 

(European life cycle 

database) 

CML baseline 

method and 

Cumulative 

Energy Demand 

SimaPro 
ADP, GWP, ODP, 

POPC, TAP, FEP 

Braga et al. 

2017 [79] 

Compare the differences between 
the environmental impacts 

generated by recycled and virgin 

aggregates. 

Cradle-to-site: 

Extraction of materials; 

crushing; transportation 

through all stages until 

construction. 

CLP (Chinese Light and 

Power), CLCD (Chinese 

life cycle database) e 

ELCD (European life 

cycle database) 

IMPACT 2002+ SimaPro 

GWP, TAP, ODP, 
POPC, FEP, Ecotoxicity, 
Fossil Fuel Depletion 

Human Health Damage 

Hossain et 

al. 2016 [80] 

Compare the environmental 
impacts associated aggregates for 

asphalt mixtures: (i) virgin; (ii) 

recycled in a mill plant; (iii) 

recycled in a mobile plant. 

Cradle-to-site:  

Transport from demolition 
site (RCA); quarrying and 

machining; cradle-to-grave 

(RCA); transport from 

concrete plant; transport to 

construction site. 

Regional data 

Eco-indicator 99, 
CML Baseline 

and Cumulative 

Energy Demand 

SimaPro 

GWP, TAP, ODP, 
FEP, Human Health 

Damage, Ecotoxicity, 

Fossil Fuel Depletion. 

Estanqueiro 

et al. 2016 

[81] 

*Source: Adapted from [28]. 

5. Conclusion 

Transport infrastructure affects the environment in several ways. Directly, by demanding natural resources that will 

form the materials used in the construction and conservation of pavements. Indirectly, by demanding fuel to operate 

vehicles and construction equipment. To decrease the negative environmental effects of infrastructure, it is necessary to 

compare which alternative designs cause the lowest environmental impacts. That is the context of the application of life 

cycle assessment. This article presented a short review of concepts and paradigms for conducting life cycle assessments, 

focusing on highway infrastructure. 



Civil Engineering Journal         Vol. 8, No. 06, June, 2022 

1311 

 

A compilation of the main midpoint environmental impact category associated with emissions was shown. As 
discussed, different substances may have the ability to generate the same environmental effects but with different 
potentials. Each effect then has its own basic substance of comparison. The impact categories presented are associated 
with climate change, acidification, ozone depletion, tropospheric ozone formation, eutrophication, and Particulate 
Matter Formation. 

The life cycle impact assessment phase applies procedures that transform different emissions in a cause-effect chain 

into different estimates of environmental impacts of interest susceptible to assessment. This step tends to be highly 

automated, with a greater number of different computer programs available depending on the product analyzed and the 

impacts targeted for estimation. Not all methods are able to generate indicators for all types of impact and, depending 

on the type of materials and services that make up the inventory of the alternatives analyzed, one specific method may 

be more appropriate to use. Comparisons between different studies should be made with caution, as each method may 

use a different procedure to estimate each midpoint environmental impact. In addition, the methods used to determine 

these indicators vary widely in the sample analyzed, indicating lack of consensus about it and constant technology 

update. 

There is no way to indicate the best database to use is to recommend the adoption of a database that best represents 

the alternatives, since the precision of the results of LCA depends on the reliability of the data employed for 

characterization of the inputs. The diversity of selections that have to be made by researchers to apply the LCA 

methodology and the inherent diversity of the infrastructure project alternatives being compared makes quantitative 

comparisons difficult, because the final analysis will correspond to the characteristics of the chosen parameters for the 

inventory. In order to use LCA as a reliable and replicable tool to evaluate the environmental impacts that highways can 

generate, all the parameters and considerations adopted to perform the analysis must be established and made evident. 

Finally, a proposal for future studies would be to evaluate the effects on the LCA of a pavement that would suffer under 

the variation of construction materials, construction techniques, and pavement management strategies. 
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