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Abstract 

The coastal geoenvironment initiates saline water intrusion into the freshwater aquifers, producing a geohydraulic 

problem. Such intrusion not only contaminates the fresh groundwater resources, making them unsuitable for human use, 

but also alters the hydraulic conductivity of the aquifer materials, which affects the coastal groundwater flow, influencing 

the water resources planning and management. Past investigations reveal that the groundwater flow can be linear or 

nonlinear depending upon the hydraulic gradient. Thus, the coefficients of nonlinear hydraulic conductivities are affected 

by saltwater intrusion. The present study focuses on an in-depth laboratory investigation into the influence of saltwater 

submergence on the nonlinear flow characteristics through granular soil. The fine sand samples have been submerged 

under saline water of specified concentrations for a specific duration, and the alteration in their nonlinear geohydraulic 

properties has been studied. It is observed that the flow characteristics through fine sand are significantly affected by the 

period of submergence and saline concentration. Appropriate analyses of the test results are performed to interpret the 

experimental data, and relevant conclusions are drawn therefrom. The novelty of this study is an in-depth analysis of 

nonlinear flow characterization affected by saline water intrusion. 
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1. Introduction 

The term salinity may be defined as the total concentration of all soluble salts in a specified sample. Seawater 

consists of chlorides, sulphates, and carbonates of sodium, calcium, and magnesium, with the most common salt being 

sodium chloride [1, 2]. The increasing population in coastal localities worldwide demands enhancement of freshwater 

extraction in those regions initiating saltwater interface to advance towards the aquifers, producing saline water 

intrusion [3]. Such intrusion not only contaminates coastal fresh groundwater resources remarkably making it 

unsuitable for consumption for domestic, irrigation, and industry usages, but also alters the geotechnical and 

geohydraulic properties of the aquifer materials affecting their flow characteristics, influencing the pumping and other 

engineering activities [4-11]. 
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Researchers have studied for decades to understand the complexity of saline water intrusion into coastal aquifers 

and to find out the possible solutions for its prevention. Commencing from theoretical analyses [12-16], laboratory 

studies [1, 17-23], and field-based investigations [24-29], the subject has undergone significant advancements. Several 

contributions to coastal groundwater management [5, 30–34] are worthy of note as well. Although the alteration in 

geotechnical and geo-hydraulic properties of aquifer materials due to prolonged saltwater intrusion affects the flow 

characteristics, thereby influencing coastal groundwater management and modelling significantly, the investigations to 

cover this study area have been rather limited [35]. Even a few recent contributions in the last couple of years have not 

covered this important study aspect [36-39]. 

Saline water intrusion into the fresh water aquifers initiated in the coastal environment produces a significant 

alteration in the geotechnical and geohydraulic properties of the aquifer materials, producing a change in the flow 

pattern through the porous media. It is well established that the flow pattern may be linear or nonlinear, depending 

upon the induced hydraulic gradient. The transition from linear to nonlinear occurs whenever the hydraulic gradient 

increases from low to high. Essentially, the linear and nonlinear hydraulic conductivities are affected by the prolonged 

exposure of porous media to saltwater. The current investigation focuses on an in-depth study on the influence of 

saltwater exposure on such linear and nonlinear flow through sand, a natural porous medium. The linear and nonlinear 

hydraulic conductivities, and the critical values of hydraulic gradient and flow velocities were determined from 

graphical analysis of test data, and the important interpretations were found. In the previous publication [11], the 

authors carried out a laboratory-based investigation on the influence of saltwater exposure on several geotechnical 

properties of sand, more specifically specific gravity, dry densities, and linear hydraulic conductivity. Thus, the 

previous study was incomplete due to the absence of nonlinear flow. The current investigation has attempted to 

bridge-up this research gap. In the revised manuscript, the relevant clarification has been added. 

The research methodology adopted in this study includes a review of literature, the establishment of theoretical 

correlations, collection of samples, calibration of test set-up, laboratory experimentations, analysis and interpretations. 

The relevant flowchart of execution is presented in Figure 1. 

 
Figure 1. Flowchart of the research methodology employed in this study 

2. Theoretical Correlations 

The basic mathematical correlations relevant to flow through porous medium have been presented herein. 

Referring to Figure 2, where a steady and uniform fluid flow occurs through a soil mass with a length of L and a cross-

sectional area of A under a net head of h, the net discharge being Q, the flow characteristics may be linear or non-

linear, depending on the magnitude of hydraulic gradient [40]. 
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Figure 2. Steady and uniform flow through granular soil 

For the lower hydraulic gradient, the flow is linear and following the applicability of Darcy’s law of permeability 

Darcy [41], the following conventional correlation holds sound: 

𝑣 =  
𝑄

𝐴
= 𝑘

∆ℎ

∆𝐿
  (1) 

where v is the average flow velocity through the soil mass and k is termed herein as the coefficient of linear hydraulic 

conductivity, the dimension of which is LT-1. Rearranging the terms, the above Equation is re-written in terms of the 

hydraulic gradient i (= h/L) as: 

𝑖 =
1

𝑘
 𝑣  (2) 

For the greater magnitude of hydraulic gradient, on the other hand, the non-linear flow takes place, where 

Forchheimer’s Equation [42] is valid. The relevant correlation is given by: 

𝑖 =
1

𝑘1
 𝑣 + 

1

𝑘2
2 𝑣2  (3) 

where, k1 and k2 are denoted hereby as the first and the second coefficients of non-linear hydraulic conductivities, 

where the dimensions of them are LT-1. 

The linear and non-linear hydraulic conductivities are essentially intrinsic soil parameters. While Equation 2, 

represents a linear correlation between the hydraulic gradient and the average flow velocity, Equation 3 implies a 

parabolic variation. The point of intersection between the straight line and the parabola represents the critical point 

where the flow changes from linear to non-linear and vice versa. Eliminating the parameter i from Equations 2 and 3, 

the critical velocity (vcr) is evaluated as: 

𝑣𝑐𝑟 = 𝑘2
2 (

1

𝑘
−  

1

𝑘1
)  (4) 

3. Experimental Program 

The laboratory investigations have been conducted to study the influence of prolonged saltwater submergence on 

the geo-hydraulic properties of aquifer material relevant to the coastal environment. Locally available fine sand and 

rock salt samples have been used to carry out the tests. 
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3.1. Sand 

Yellowish river sand available in the local market has been used to perform the experiments. The sample passed 

through a 75 µm sieve and retained by 425 µm sieve are used for the tests. Based on the sieve analysis conducted, the 

sample is uniformly graded fine sand [43] with the values of the coefficients of uniformity and curvature as Cu = 1.63 

and Cc = 1.50, respectively. The particle size distribution of this soil is presented in Figure 3. Several routine tests 

were performed in the laboratory to find out the specific gravity, the dry densities, and the shear strength parameters of 

the sample. The appropriate values of these geotechnical properties are summarized in Table 1. 

 

Figure 3. Particle size distribution of the yellowish river sand 

Table 1. Geotechnical properties of fine sand prior to saltwater submergence 

Geotechnical Properties Values 

Uniformity coefficient, Cu 1.63 

Coefficient of curvature, Cc 1.50 

Specific gravity of sand particles, G 2.67 

Maximum dry density (𝛾𝑑
𝑚𝑎𝑥) 18.7kN/m3 

Minimum dry density (𝛾𝑑
𝑚𝑖𝑛) 15.6 kN/m3 

Effective cohesion*, c 0 

Effective friction angle*, ϕ 30 

Coefficient of permeability*, k 1.17 × 10-8 m/s 

* Note: All tests have been conducted at a relative density of 51%. 

3.2. Saline Water 

Locally available rock salt was dissolved in distilled water in appropriate proportion to prepare the saline water 

sample. Chemical analysis conducted specified the predominant presence of Sodium Chloride (98% by weight), with 

traces of sulphates, potassium, and calcium. 

The available literature suggests that the seawater in most places around the world has an average value of the salt 

concentration of 30,000 – 35,000 ppm, although the saline water has been classified as mild (1,000 - 3,000 ppm), 

moderate (3,000 – 10,000 ppm) and high (10,000 – 35,000 ppm), based on its salt concentration [44]. Based on these 

ranges, the standard saline water solution is prepared by dissolving the salt weighing 5 gm in a liter of distilled water, 

the saline concentration being S = 5,000 ppm [45]. This standardization has been used to prepare the saline water 

sample with concentrations of 2S, 4S, 6S, and 8S. 

The dry sand samples have been submerged in saltwater (see Figure 4) at specific concentrations for a specified 

period of submergence (Ts), as denoted in Table 2. At the end of the submergence, the samples were withdrawn from 

the solutions and oven-dried for 24 hours to carry out the experiments. 
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Figure 4. Soil sample submerged in saltwater 

Table 2. Experimental schedule 

 

 

 

 

3.3. Laboratory Tests 

Appropriate laboratory tests were conducted to determine the values of specific gravity, dry densities, shear 

strength parameters, and permeability of the fine sand sample prior to the submergence. The specific gravity of soil 

particles was determined by employing the pycnometric tests [46]. The maximum and minimum dry densities of sand 

were found by the vibratory table method and the rainfall technique [47, 48]. The shear strength parameters of sand 

were found by direct shear test [49]. The locations of sample collection and laboratory tests are from Jorhat, India, 

shown below in the map (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5. Location of the study area 
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The hydraulic conductivity of soil was determined using a falling head permeameter [50]. The diagrams of the 

apparatus are portrayed in Figure 6. The dimensions of the permeameter are as follows: 

Cross-sectional area of the standpipe, a = 314×10-6 m2 

The cross-sectional area of the soil mass in the mould, A = 127×10-4 m2 

Length of the soil mass in the mould, L = 0.127 m 

The shear strength and permeability tests were conducted at a relative density of 51%. 

 
 

 

Figure 6. Falling head permeameter: (a) schematic diagram, and (b) photographic view 
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4. Results and Discussion 

The variation of the coefficients of hydraulic conductivity of the sample with the period of submergence and saline 

concentration with respect to their relevant values prior to submergence have been studied. The experimental results 

and their analyses and interpretations have been presented in this section. 

4.1. Evaluation of Coefficients of Hydraulic Conductivity 

A typical plot of h versus the elapsed time t is depicted by direct use of the test data from the permeameter for the 

pre-submergence stage as shown in Figure 7. The observed curve is found to be hyperbolic with ascending slope and 

the value of h diminished at t = 7200 s. The test data have been utilized to study the variation of the hydraulic gradient 

i versus the average flow velocity v, as presented in Figure 8. The parameter v has been evaluated using the following 

correlation. 

𝑣 =  − 
𝑎

𝐴
(

𝑑ℎ

𝑑𝑡
)  (5) 

where a is the inner cross-sectional area of the inlet standpipe and A is the cross-sectional area of the soil mass in the 

permeameter mould. Expressing Equation 6 in finite difference form, the average flow velocity through the soil mass 

is given by [8]: 

𝑣𝑗 =
𝑎

𝐴
(

ℎ𝑗−1− ℎ𝑗+1

𝑡𝑗+1− 𝑡𝑗−1
)  (6) 

where, vj, hj, and tj are the values of the parameters v, h, and t at the jth time instant respectively 

 

Figure 7. Test data of head versus time for pre-submerged soil 

 

Figure 8. Variation of hydraulic gradient with average flow velocity for pre-submerged soil 
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For lower values of hydraulic gradient, the flow through soil is expected to be linear, hence Equation 2 is 

applicable and the best-fit line passes through the origin. For higher values of hydraulic gradient, on the other hand, 

Equation 3 holds good due to non-linear flow and the best-fit curve is essentially parabolic with ascending slope. From 

the equations of the best-fit line and curve, the values of the coefficients of linear and non-linear hydraulic 

conductivity are estimated as: 

k = 1/tan θ = 1.143× 10-4 m/s 

k1 = 1/7907.3 = 1.265× 10-4 m/s 

k2 = 1/√8.0 × 106 = 3.536× 10-4 m /s 

The values of vcr and icr are evaluated from Equations 4 and 5 as: vcr = 1.05 × 10-4 m/s, icr = 0.919. 

Since the above values correspond to the pre-submerged soil, the parameters are denoted herein as k0, k1
0, k2

0, vcr
0, 

and icr
0. Following the same procedure, the values of the above parameters are determined for the soil submerged in 

saltwater at a specified saline concentration for a specified period of submergence. 

4.2. Influence of Period of Submergence 

The variation of linear coefficient of permeability with the period of submergence is shown in Figure 9, the 

parameter k has been normalized by k0. With the saline concentration varying in the range of 2S– 8S (i.e., 10,000 – 

40,000 ppm) and the period of submergence Ts ranging from1 -28 days, the value of k/k0 is observed to vary in the 

range of 0.9–1.15. Initially, the value of k/k0is found to increase fairly linearly till a peak is attained and thereafter 

decreased following a curvilinear pattern. The peak is observed to attain at Ts = 14 days and the values of k/k0at this 

peak varied from 1.07 to 1.1. Also, a point of contra-flexure is observed at Ts = 21 days. A stabilizing tendency has 

been noted for Ts> 28 days. The possible reason for such variation is the progressive decomposition of sand particles 

at the initial stage, initiating an enhancement of porosity, which in turn increased the flow velocity through the soil 

mass. According to Tchistiakov [51], at the post-peak stage, the probable occurrence of a partial blockage of inter-

particle pore space by the adsorbed saltwater produced an opposite phenomenon). 

 

Figure 9. Variation of normalized permeability coefficient (k/k0) with duration of submergence (Ts) 

The variation of the coefficients of non-linear hydraulic conductivity with the period of submergence is portrayed 

in Fig.10. The plots of k1/k1
0 versus Ts are presented in Figure 10-a. Variation of the coefficients of non-linear 

hydraulic conductivities (k1 and k2) with period of submergence (Ts) is portrayed in Figures 10-a and 10-b, 

respectively. The coefficients are normalized by 𝑘1
0 and 𝑘2

0 , i.e., their relevant values corresponding to freshwater 

flow. As observed, the parameters k1 and k2 varied in the ranges of 0.84 < 𝑘1/𝑘1
0 < 1.13 and 0.7 < 𝑘2/𝑘2

0 < 2.45, as the 

period of submergence and salinity varied in the ranges of 1-28 days and 2S-8S, respectively. The parameter k1 was 

found to increase with Ts, the pattern of variation being curvilinear with descending slope. Also, the curves 

progressively converged with increasing saline concentration. Similarly, the variation of k2/k2
0 with Ts is plotted in 

Figure 10-b. For the submergence period of 1-28 days and saline concentration ranging between 2S to 4S, the second 

coefficient of non-linear hydraulic conductivity is found to vary in the range of 0.74 <k2/k2
0< 2.44. The value of k2 has 

been found to decrease with increasing Ts curvilinearly with ascending slope. A sharp reduction in the value of k2/k2
0is 

observed for Ts ranging between 1-7 days, followed by a stabilizing tendency. 
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Figure 10. Variation of coefficients of non-linear hydraulic conductivity with Ts in case of: (a) the first coefficient, and (b) 

the second coefficient 

Figure 11-a depicts the variation of icr/icr
0 with Ts. As observed, the value of normalized critical hydraulic gradient 

varied in the range of 0.875 < icr/icr
0< 1.58 for the period of submergence varying from 1-28 days and saline 

concentration ranging between 2S to 4S, the pattern of variation being curvilinear. With increasing Ts, the parameter 

icr/icr
0 initially increased with descending slope till a peak is attained and thereafter decreases. The peak is observed at 

Ts = 14 days, with the corresponding value ranging from 1.464 - 1.581. The plots of vcr/vcr
0 versus Ts are shown in 

Figure 11-b. The value of normalized critical flow velocity through the soil mass is observed to vary in the range of 

0.57 < vcr/vcr
0 < 1.4 for the experimental ranges of Ts and saline concentration, the pattern of variation being 

curvilinear. With increasing Ts, the value of vcr/vcr
0decreased with descending slope till a minimum value (ranging 

from 0.57 - 0.918) was attained at Ts = 14 days, after which the parameter increased. 
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Figure 11. Variation of critical flow parameters with Ts for: (a) hydraulic gradient, and (b) flow velocity 

The above observations are justifiable due to the possible two opposing phenomena of chemical decomposition of 

sand particles with prolonged exposure to saline water and the saltwater adsorption creating cementitious bonds at the 

particle contacts. Such action is likely to alter the particle sizes which in turn modifies the effective pore sizes. Since 

the coefficients of hydraulic conductivity alter with the square of pore diameter, a slight variation in the porosity 

initiated by saline water produced a significant alteration to the coefficients [51, 52]. 

4.3. Influence of Saline Concentration 

The variation of k1/k0 with saline concentration is presented in Figure 12. As can be observed, the pattern of 

variation has been curvilinear. Initially, the value of k1 increases up to a peak value and decreased thereafter. The peak 

values have been attained at a saline concentration of 4S and the point of contra-flexure was noted at 8S. 

 

Figure 12. Variation of normalized permeability coefficient (k/k0) with saline concentration 
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converging. Figure13-b depicts the variation of k2/k2
0 with saline concentration. The pattern of variation is observed to 

be curvilinear with descending slope. Initially, the values of k2/k2
0was found to increase till a peak was attained at 

4.3S, followed by a gradual reduction. 
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Figure 13. Variation of the coefficients of non-linear hydraulic conductivity with saline concentration for: (a) k1/k1
0, 

and (b) k2/k2
0 

Figure 14-a shows the variation of icr/icr
0 with saline concentration, which is observed as curvilinear. With 

ascending saline concentration, the critical hydraulic conductivity was initially found to decrease till a minimum value 

was attained at 6S and thereafter increased. Figure 14-b studied the variation of normalized critical velocity (vcr/vcr
0) 

with saline concentration. As observed, vcr/vcr
0 decreases curvilinearly with increasing S with descending slope. 
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Figure 14. Variation of critical flow parameters with saline concentration for: (a) hydraulic gradient, and (b) flow velocity 

The possible reason for the above-mentioned patterns of variation is the complex chemical and electrochemical 

interaction between the sand particles and the saline solution including cation exchange and anion adsorption, apart 

from the effects of fluid concentration and stress on the double-layer [53]. The rate of such interactions are likely to 

alter with the variation of saltwater concentration, due to which the above pattern of variation has been observed. 

4.4. Comparison with Past Studies 

The current laboratory test data has been compared with a past study by Fatahi et al. [1], as shown in Figure 15. As 

observed, a similarity in the pattern of variation of the normalized linear hydraulic conductivity (k/k0) with the period 

of submergence is noted. However, a significant deviation in the magnitudes has been found. The past study was 

conducted with kaolin clay at a saline concentration of 24S, whereas, the current study has been performed with fine 

sand at a saline concentration up to 8S. This is the justified reason for such deviation. 

 

Figure 15. Comparison of current test results with past studies [1] 

5. Summary and Conclusions 

5.1. Summary 

The influence of saltwater intrusion on the flow characteristics through granular soil has been studied in detail 

through laboratory investigation. The study reveals that a gradual increase in hydraulic gradient initiates a transition of 

the flow pattern through soil mass from linear to non-linear and vice versa. For linear flow, Darcy’s law of 

permeability yields reasonable values, whereas, in the case of non-linear flow, the applicability of Forchheimer’s 

Equation comes into play. The period of submergence and the saline concentration were found to influence the 

coefficients of hydraulic conductivity significantly. 
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5.2. Conclusions 

With an increasing period of submergence, the value of the linear coefficient of hydraulic conductivity was found 

to increase up to a peak value and thereafter decreased curvilinearly. The parameter k1 was found to increase with Ts 

following a curvilinear pattern with a descending slope, and the curves progressively converged with increasing saline 

concentration. The second coefficient of non-linear hydraulic conductivity, k2 was found to decrease curvilinearly with 

increasing Ts curvilinearly with ascending slope. The critical hydraulic gradient initially increased curvilinearly with 

ascending Ts up to a peak and thereafter was found to decrease. With increasing Ts, the critical flow velocity decreased 

following a curvilinear pattern with a descending slope till a minimum value was attained, and thereafter the parameter 

was observed to increase. 

With increasing saline concentration, the parameter k was observed to increase curvilinearly up to a peak value and 

then decrease thereafter. The first coefficient of non-linear hydraulic conductivity decreased linearly with increasing 

saline concentration, with a converging trend. The second coefficient of hydraulic conductivity, on the other hand, was 

found to be curvilinear with a descending slope, the values being increasing till a peak is attained, followed by 

reduction. With increasing saline concentration, the parameter icr was initially found to decrease up to a minimum 

value and thereafter increase. The variation of critical velocity with saline concentration was curvilinear with a 

descending slope. 

5.3. Novelty and Importance 

It is well established that the groundwater flow through porous media may be linear or non-linear, depending upon 

the induced hydraulic gradient. Therefore, the linear or non-linear coefficients of hydraulic conductivity are the crucial 

parameters to assess the flow pattern. The coastal environment initiating prolonged exposure to saltwater due to saline 

water intrusion produces alteration in the values of these coefficients, the extent of which has been studied in the 

current laboratory-based investigation. The primary importance of the present investigation is the estimation of 

appropriate values of these coefficients of hydraulic conductivity in the coastal zones, which is useful for conducting 

seepage analysis and flow patterns for quantifying saltwater intrusion and submarine groundwater discharge. Such a 

study is beneficial for coastal groundwater modelling and management [6, 54]. 

5.4. Limitations and Scope of Future Studies 

Although an in-depth laboratory-based investigation has been carried out to quantify the pattern of variation of the 

coefficients of linear and non-linear hydraulic conductivities, the work has few inherent limitations which essentially 

unfold the scope of future studies, as discussed below: 

 The current study is focused on the influence of saltwater intrusion on the hydraulic conductivity of sand. 

However, the aquifer material may sometimes contain silt or gravel [55], in which case the experimental 

observations may be different. Extensive investigations are necessary to cover these study aspects. 

 While the influence of saltwater exposure on the hydraulic conductivities of aquifer material has been studied, 

the linear and non-linear groundwater flow patterns in saline water intrusion and submarine groundwater 

discharge due to such altered flow parameters have yet to be investigated. This would be an interesting area for 

future study. 
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