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Abstract 

Stairs play an important role as an escape way and are considered a source of safety in the building during an earthquake. 

Neglecting the stairs in the 3D analysis model is the main cause of the stairs' failure during the earthquake. Although the 

previous researchers had focused on the behavior of stairs when changing single variables such as height, location, and 

layout under seismic loads, no detailed investigation that gathers these variables together was considered. This research 

studies the effects of changing the number of storeys for a building subjected to an earthquake when considering and 

neglecting stairs in the 3D analysis with and without shear walls. The effect of the volume and location of the shear wall 

has been considered through conducting computational analysis using ETABS software to help the structural engineer 

choose the proper system of stairs and shear walls. Neglecting the staircase in the 3D analysis affects the structure's 

performance, which leads to ignoring many stresses transferred to the stairs, causing several damages to the stairs during 

an earthquake. For the existing building without a shear wall, considering the staircases in the analysis improves the 

performance of the structure under seismic loads. 

Keywords: Stairs; Stiffness; Displacement; Over-strength Factor; Fundamental Period of Vibration; Non-linear Static Analysis. 

 

1. Introduction 

Stairs are important elements of a structure that are required to be operable for escaping during an earthquake and 

post-earthquake events such as reconstruction to ensure occupant evacuation and safety [1, 2]. The interaction between 

the structure and stairs during an earthquake causes damage due to inadequate design, which neglected the unequal 

distribution of lateral load, stiffness, and torsion in the staircase [3-5]. The connections between the structure and the 

stairs are subjected to high stress, and the capacity to maintain the connectivity is important to strengthen the seismic 

performance and to endure the functionality of the stairs [6]. The use of rigid connections attracts high stress, which 

leads to a high potential for connection failure [6]. Changren et al. [7] studied three different connection methods. 

Maxwell mechanical model was combined with a viscoelastic damping bearing to produce an optimized damping 

bearing to be used in staircase modeling [7]. By using the damping bearing, the unequal distribution of stiffness, 

ductility, and seismic performance were improved, and the floor shear force was reduced due to its energy dissipating 

characteristic [7]. Bilal et al. [8] investigated the behavior and effect of the existence of stairs, concluding that the time 
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period was significantly reduced if considering stairs in the analysis. Also, the drift was reduced due to the bracing 

effect. A horizontal bracing effect is developed by the existence of a staircase, leading to a decrease in the vibration 

period and inter-storey displacement [9]. 

The more bracing effect, the more changes in the distribution of straining actions [9]. The straining actions and the 

layer displacement angles are decreased gradually with the increase of the structure height [9-11]. On the other hand, 

the existence of a staircase can produce high torsional eccentricities and attract large seismic loads, leading to the failure 

of supporting elements such as columns and landing beams [12]. The vibration periods and straining actions were 

affected by the location of stairs [9]. According to Bilal et al. [8], the most effective location of a staircase is in the 

middle bay of the building rather than the end bay due to the lower attraction of shear force in the middle bay case. 

The existence of a shear wall leads to a significant increase in the peak lateral shear force and reduces the forces and 

moments in the frame members due to the attraction of these straining actions by shear walls and their behaving as stiff 

members [13]. On the other hand, the asymmetry of the shear wall leads to irregularity in the structure plan, producing 

torsional moments during earthquakes [14-16]. Another approach was studied by Cong et al. [17] for supporting the 

staircase by using a reinforced concrete frame with a separate slab adjacent to the frame columns that carry the floors 

around the staircase. This case led to avoiding the shear failure in the building columns around the staircase and 

achieving a higher lateral stiffness by 53.46% than the ordinary frame model [17]. The current study investigates the 

effect of the changing number of storeys on a building subjected to an earthquake when considering and neglecting stairs 

in the 3D analysis with and without shear wall. Also, the effect of the volume and location of the shear wall can be 

determined through conducting computational analysis using ETABS software. 

2. Modeling and Analysis 

2.1. Geometric and Material Definition 

The main study parameters are the height of the building, the existence and location of stairs and shear walls, whether 

inside or outside the building, and the volume of the shear wall. In each studied case, the relationship between 

displacement of the building and shear force was recorded. Also, each model studied different building heights of 5, 8, 

11, 15, 20, and 25 storeys (Six cases). 

The height of each floor is 3 m, and the span between columns is 5 m in x and y directions. For the material definition 

of slabs, the grade of concrete was 40 N/mm2 and included 25 kN/m3 for weight per unit volume, 28E06 kN/m2 for 

modulus of elasticity, 0.2 for Poisson ratio, 9.900E-06 for coefficient of thermal expansion, 32000 kN/m2 for specified 

concrete compressive strength, and 460000 kN/m2 for bending and shear yield stress of steel. For the material definition 

of columns and shear walls, the grade of concrete was 60 N/mm2 with the same properties as grade 40 N/mm2 except for 

the modulus of elasticity of 32E06 kN/m2 and the specified concrete compressive strength of 48000 kN/m2. The utilized 

columns were 250×800 mm in cross section with cracked section design modifiers of 0.01, 0.7, and 0.7 for torsional 

constant, moment of inertia about the x-axis, and y-axis, respectively. The concrete cover for the columns was 25 mm 

thick and reinforced with 16 bars of 20 mm in diameter. For shear walls, the width was 250 mm and the modifiers were 

adjusted to be 0.7 for all bending modifiers. For the post-tension slabs, the thickness was 220 mm as shell type with no 

modifiers. Table 1 presents the models used in this study with the inclusion of stairs and shear walls and their locations. 

Table 1. The parameters in each model 

Model Case of Model 

Stairs Shear wall 

Existence 
Location in 

the building 
Existence 

Location in 

the building 

B1 Case 1 N.A Inside N.A -- 

B2 Case 2 Included Inside N.A -- 

B3 Case 3 N.A Inside Included Around stair void Inside 

B4 Case 4 Included Inside Included Around stairs void Inside 

B5 Case 5 Included Inside Included Around stairwell Inside 

B6 Case 6 N.A Inside Included Around stairwell Inside 

B7 Case 2 Included Outside N.A -- 

B8 Case 3 N.A Outside Included Around stairs void Outside 

B9 Case 4 Included Outside Included Around stairs void Outside 

B10 Case 1 N.A Outside N.A -- 

N.A refer to not included in the model 
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Six cases of modeling the building concerning the existence and location of stairs and shear walls are being 

investigated. Case 1 neglects stairs in the analysis. Case 2 is taking stairs into consideration in the analysis. Case 3 

includes the shear wall and neglecting the stairs. Case 4 includes the shear wall and stairs in the analysis. Case 5 includes 

the shear wall inside the stairs and neglects the stairs in the analysis. Case 6 includes the shear wall inside the stairs and 

neglects the stairs in the analysis. Models from B1 to B6 study the stairs and shear wall inside the building, while models 

from B7 to B10 study the case of an outside location. Figure 1 presents the applied flow chart in this research. Figure 2 

shows the dimensions of the studied stairs. Figure 3 demonstrates the layout and location of stairs and shear walls in 

each model. Figure 4 shows the main reinforcement of the studied stairs according to the Egyptian code for design and 

construction of reinforced concrete structures [18]. 

 

Figure 1. Flow Chart of the Modeling 

 

Figure 2. Geometric of stairs 

 

Model (1) with no stairs inside the building 

 

Model (2) including the stairs only inside the 

building
 

 

Model (3) including the shear wall only inside 

the building
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Model (4) including stairs and shear wall 

inside the building 

 

Model (5) including stairs and shear wall 

around stairwell 

 

Model (6) including the shear wall only 

around stairwell 

 

Model (7) including the stairs only outside the 

building 

 

Model (8) including the shear wall only 

outside the building 

 

Model (3) including stairs and shear wall 

outside the building 

 

 

 

Model (10) with no stairs outside the building 

 

 

Figure 3. Models Configuration 

 

Figure 4. Main Reinforcement of stairs 

2.2. Load Definition 

Dead load and imposed load were calculated according to Egyptian code for loads [19]. The foundation support was 

assigned to be fixed. For static seismic load, the type of case load in x direction (QX) is auto lateral load UBC97 with 

quake self-weight of zero, time period (Ct) is 0.2, over strength factor (R) is 5.5, zone factor is 0.15, and importance 

factor is 1. For dynamic seismic load, UBC97 spectrum was added with 0.18, and 0.25 as values of seismic coefficient 

parameters Ca and Cv, respectively, the scale factor is 9.81, R is 5.5, eccentricity ratio is 0.05, U1 for X- direction is 
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1.7818 scale factor, and U2 for Y- direction is 1.7818 scale factor. For wind load, the type of case load in x direction 

(WX) is auto lateral load BS6399-95. For the wind exposure parameters, wind direction angle is 90 degree, front 

coefficient is 0.8, rear coefficient is 0.3, effect speed is 30 m/sec, size effect factor is 1, and dynamic augment factor is 

0.25. The relationship between displacement and shear force for various number of storeys for x and y direction are 

shown in Figures 5 and 6, respectively. 

 
(a) 5 storey 

 
(b) 5 storey 

 
(c) 7 storey 

 
(d) 5 storey 

 
(e) 11 storey 

 
(f) 11 storey 

 
(g) 15 storey 

 
(h) 15 storey 

 
(i) 20 storey 

 
(j) 20 storey 

 
(k) 25 store 

 
(l) 25 storey 

 
(m) 15 storey 

 
(n) 20 storey 

 
(o) 25 storey 

Figure 5. Shear force – displacement relation in x-direction a, c, e, g, i, k, m, n, and o figures for shear wall located around 

stairs b, d, f, h, j, k, and l Figures for shear wall located inside stairs 
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(a) 5 storey 

 

(b) 5 storey 

 

(c) 7 storey 

 

(d) 7 storey 

 

(e) 11 storey 

 

(f) 11 storey 

 

(g) 15 storey 

 
(h) 15 storey 

 

Figure 6. Shear force – displacement relation in y-direction a, c, e, and g figures for shear wall located around stairs b, d, f, 

and h figures for shear wall located inside stairs 

3. Result and Analysis 

3.1. Displacement When Changing the Location of Stairs 

The staircase behavior was studied considering the important role that they play as structural seismic connections in 

the response and the behavior in space structures. As shown in Table 2, the case of stairs located inside the building had 

a better displacement reduction than the case of outside location. The staircase located inside the building was supporting 

the high rise building with magnitude about 50% when earthquakes happened and decreased the damage and 

displacement. 

Table 2. Displacements range when changing the location of stairs 

Location of stairs 15 storey 20 storey 25 storey 

Inside Less than 0.05 Less than 0.1 Equal 0.2 

Outside Equal 0.05 more than 0.1 more than 0.2 

3.2. Time Period When Changing the Location of Stairs 

It was observed that placing a staircase outside the building reduces the time period of the structure. The range of 

time period of the first mode of high rise building under seismic loads increased with the increase of the damage level 

due to the reduction of stiffness. The time period increased with the increase of storeys number and depending on the 

shape of the building. Table 3 shows the time periods of the different cases of models with 15, 20, and 25 storeys. 
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Table 3. Time periods of buildings with different number of storeys 

Case of Model Location of Stairs 15 storey 20 storey 25 storey 

Case 1 
Inside 15 sec 7.5 sec Building not safe 

Outside 11 sec Building not safe 10 sec 

Case 2 
Inside 7 sec 11 sec 17 sec 

Outside Building not safe Building not safe Building not safe 

Case 3 
Inside 15 sec 7.5 sec Building not safe 

Outside 11 sec Building not safe 10 sec 

Case 4 
Inside 5 sec 7 sec 10 sec 

Outside 7 sec 6 sec 8 sec 

It was observed that in case of neglecting the stairs in the analysis (case 1), the time period was reduced for outside 

staircase void and the building become unsafe for 20, and 25 storey building in the cases of outside, and inside staircases, 

respectively. The minimum time period was observed in 15 storey building in case of stairs inclusion inside the building 

with shear wall around it with value of 5 sec. The maximum time period was recorded in 25 storey building in case of 

including the stairs only in the analysis inside the building. Tables from 4 to 6 demonstrate the displacements for the 

different cases of models with shear wall located around and inside the stairs. 

Table 4. Displacements in case of stairs is inside building with shear wall inside stairs 

Storeys number Case1 Case2 Case3 Case4 

5 storey 0.006 0.005 0.0001 0.0001 

8 storey 0.033 0.02 0.005 0.005 

11 storey 0.06 0.028 0.005 0.005 

15 storey 0.13 0.08 0.025 0.02 

20 storey 0.4 0.22 0.09 0.06 

25 storey 1 0.5 0.2 0.19 

Table 5. Displacements in case of stairs is outside with shear wall around the stairs 

Storey number Case1 Case2 Case3 Case4 

15 storey 0.08 0.05 0.04 0.03 

20 storey 0.17 0.15 0.13 0.125 

25 storey 0.38 0.32 0.3 0.28 

Table 6. Displacements in case of stairs is outside with shear wall inside the stairs 

Storey number Case1 Case2 Case5 Case6 

5 storey 0.006 0.005 0.0001 0.0001 

8 storey 0.05 0.03 0.007 0.009 

11 storey 0.12 0.05 0.01 0.02 

15 storey 0.15 0.09 0.04 0.05 

20 storey 0.4 0.24 0.08 0.19 

25 storey 1 0.5 0.25 0.4 

The displacement decreased for models with shear wall around stairs and outside the building in cases of modeling 

1 and 2. The effect of shear wall location inside or outside the stairs was recorded. Models with shear wall inside the 

stairs exhibit more displacement than models with shear wall around the stairs. From comparing between the models 

with stairs inside and outside building, the models with stairs inside building have better performance than models with 

stairs outside building when the earthquake occurs. 

The behavior of models with shear wall inside stairs and inside building was similar to models with shear wall 

outside stairs and outside building. The highest displacement was recorded in models which neglected stairs in the 

analysis (case 1). By considering the stairs in the analysis (case 2), the displacement and stiffness of the building was 

improved. Tables from 7 to 9 show the time period when change the location of stairs with respect to the building and 

stairs. 
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Table 7. Time period in case of stairs is outside with shear wall around the stairs 

Storey number Case1 Case2 Case3 Case4 

15 storey 7.50 sec xxx 6.00 sec 5.50 sec 

20 storey 11.00 sec xxx 8.00 sec 7.00 sec 

25 storey 10.00 sec xxx 9.00 sec 7.50 sec 

Table 8. Time period in case of stairs is inside with shear wall around the stairs 

Storey number Case1 Case2 Case3 Case4 

5 storey 3.00 sec 2.50 sec 1.25 sec 1.25 sec 

8 storey 5.00 sec 3.00 sec 2.00 sec 2.00 sec 

11 storey 8.00 sec 4.70 sec 3.00 sec 3.50 sec 

15 storey 14.00 sec 6.50 sec 4.00 sec 4.50 sec 

20 storey xxx 10.00 sec 8.00 sec 7.00 sec 

25 storey xxx 15.20 sec 13.00 sec 10.00 sec 

Table 9. Time period in case of stairs is inside with shear wall inside the stairs 

Storey number Case1 Case2 Case5 Case6 

5 storey 3.00 sec 2.75 sec 1.75 sec 2.00 sec 

8 storey 5.00 sec 3.20 sec 3.00 sec 3.00 sec 

11 storey 8.00 sec 5.00 sec 4.00 sec 4.50 sec 

15 storey 14.50 sec 7.00 sec 6.00 sec 6.50 sec 

20 storey xxx 11.00 sec 9.00 sec 10.00 sec 

25 storey xxx 17.00 sec 14.00 sec 15.00 sec 

3.3. The Effect of Changing Building Height on the Time Period 

In Figure 7, modeling (A) refers to the staircase inside the building with a shear wall around it, modeling (B) refers 

to the staircase inside the building with a shear wall inside the stairs, modeling (C) refers to the stairs outside the building 

with a shear wall around the stairs, and modeling (D) refers to the outside staircase with a shear wall inside the stairs. 

From Figure 7-a, it was observed that the highest time period was recorded for a 15-storey building, with a value of 4.83 

times that of a 5-storey building. This observation indicates that the structure system should be replaced with another 

suitable system. From Figure 7-b, considering stairs in the analysis improved the behavior through all modeled storeys 

due to the produced bracing effect, which increased the global stiffness of the building. Also, the effect of increasing 

the area of shear wall was observed and implied in the decrease of time period when using shear wall around the stairs 

void. From Figure 7-c, including shear wall in the analysis improved the overall behavior when neglecting stairs in the 

model, leading to endure the increase of storeys number achieving time period of 13 sec in case of a 25-storey building, 

which is less than the case of neglecting stairs and shear wall by 13.3 %. From Figure 7, locating the stairs outside the 

building with a shear wall around them increased the time period due to the distance between the center of mass and the 

center of rigidity, producing torsional moments and decreasing the effects of bracing and stiffness for the stairs and 

shear wall, respectively. So, the most proper location of stairs was in the middle of the building, with a shear wall around 

the stairs, which presents a good agreement with previous researchers as Bilal et al. [8]. 

 
(a) The case of neglecting stairs and shear wall in analysis 

 
(b) The case of considering only stairs in analysis 
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(c) The case of including shear wall and neglecting stairs in analysis 

 
(d) The case of including shear wall and stairs in the analysis 

Figure 7. The effect of changing building height on the time period 

4. Conclusions 

One of the main reasons for the failure of stairs is that the designer neglected the stairs in the 3D analysis of the 

building during the earthquake. Some cases studied the position of stairs in the building, and others studied the 

combination of stairs and shear wall. The results and evaluations of this study are summarized as follows: 

 Considering the staircase in the analysis for the existing building, which does not have any shear walls, improves 

the performance of the structure during the earthquake. By neglecting stairs in the analysis, the highest 

displacement and the longest time period were recorded; 

 Considering stairs in the analysis improved the behavior through all modeled storeys due to the produced bracing 

effect, which increased the global stiffness of the building. The building became unsafe for a 20-storey building 

with outside stairs and a 25-storey building with inside stairs; 

 Including shear wall in the analysis improved the overall behavior when neglecting the stairs in the model, leading 

to endure the increase of storeys number achieving time period of 13 seconds in the case of a 25-storey building, 

which is less than the case of neglecting stairs and shear wall by 13.3%; 

 The effect of increasing the area of shear wall was observed and implied in the decrease of time period when using 

shear wall around the stairs void. Models with a shear wall inside the stairs exhibit more displacement than models 

with a shear wall around the stairs; 

 The minimum time period was observed for the inside staircase with a shear wall around it, with a value of 1.25 

sec, and the maximum time period was in a 25-storey building when including the stairs only in the analysis inside 

the building; 

 The displacement was increased in the case of stairs outside the building, with a shear wall around the stairs. 

Therefore, the most proper location for stairs is in the middle of the building, with a shear wall around them. 
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