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Abstract 

This paper aims to study the wind flow characteristics and to analyze the wind pressure distribution on the surfaces 

around an irregular octagonal plan shape building model. There is a central open space in plan to provide more surface 

area around the building for natural ventilation. Plan area of the building is 300 m2 (excluding the open space) and height 

is 50 m. Steady state flow of wind with 5% turbulence (moderate turbulence) under atmospheric boundary layer has been 

taken in the study. Numerical simulation with standard k- model using ANSYS (CFX) software has been used for the 

purpose. Flow characteristics has been studied in terms of flow separation, reattachment of flow, creation of wakes and 

vortices. The surface pressure generated around the model has been studied in terms of coefficient of pressure. The 

model is symmetrical about both the axes in plan. Hence, study for different wind angle of attacks from 0° to 90° @ 30° 

interval has been conducted. The flow characteristics and unusual or critical coefficient of pressure on surfaces of the 

model observed have been discussed. 

Keywords: Oval plan-Shape Building; ANSYS (CFX); Wind Pressure Coefficient; k-𝜀 model. 

 

1. Introduction 

Wind pressure is an important factor governing the natural ventilation, pedestrian comfort and design of tall 

buildings. Computational Fluid Dynamics (CFD) modelling is a convenient, economic and faster solution to access the 

wind pressure in tall buildings of various architectural shapes specially during the preliminary stage of finalization of 

any project. Through numerical simulation, wind response on tall buildings for structural variables like moments, 

loads, pressure etc. can be calculated up to a level of acceptable accuracy. For understanding the natural ventilation in 

buildings wind pressure is the primary characteristic whereas the force and moment it exerts on structure may be 

utilized for structural resistance and stability. ANSYS (CFX) is one of the numerical simulation tools that is used for 

analysing the wind pressure on tall buildings. In ANSYS (CFX) complex geometry of buildings can be easily 

modelled and discretization of geometry into smaller elements for numerical analysis with good quality meshing can 

be achieved with full control. Changes in the geometry and meshing can also be easily done for parametric studies.  

Wind flow is a complex phenomenon and it has a typical behavior to exert differential velocity and pressure 

around any bluff body coming in its way of flow direction. Though, for ease in analysis a time averaged steady state of 

uniform flow condition is taken, wind does not flow with a uniform speed and in a constant direction. Wind speed 

                                                           
* Corresponding author: rituraj@dtu.ac.in 

 
http://dx.doi.org/10.28991/cej-2021-03091760 

 

© 2021 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 7, No. 10, October, 2021 

1788 

 

consists of series of turbulences in the form of gusts which vary both in magnitude and direction very widely. Even the 

phenomenon of uniform and steady wind is not that much simple. The load produced by the wind depends upon the 

form of the structure too. It becomes more relevant with the increase in height of the structure due to atmospheric 

boundary layer effect (ABL) and in high rise buildings due to cantilever effect with fixed end at the ground. It has 

been observed that above the height of 62 m, the height factor is so pronounced that the effect of wind becomes more 

prominent than the seismic effect while considering the horizontal load on the building [1]. 

When wind is at rest, the normal atmospheric pressure is acting all around any structure and the load on the 

structure is balanced in totality. As the wind starts its motion, at some point on the obstacle there is increase in 

pressure and at others decrease in pressure. The magnitude of these changes is usually less than 2 % of the normal 

pressure. These change in pressure distribution on the structure are converted into a single load/force as a resultant of 

them during the analysis of the structure. The maximum increase in pressure produced by the wind is, where is the 

density of air and the wind speed encountered by the obstacle/structure. This is termed as velocity pressure or impact 

pressure. The change in pressure differences is generally expressed as a dimensionless coefficient of pressure (Cpe) 

which is ratio of the pressure difference to the velocity pressure represented as: 

CPe =
∆P

ρu2 2⁄
                                             (1) 

where, ∆𝑃 = 𝑃 − 𝑃𝑜, 𝑃 being pressure at any point and 𝑃𝑜 the reference pressure (atmospheric pressure in natural wind 

condition), is density of air and , the uniform velocity field.  

In a boundary layer flow where gradient velocity field exists, it is not so simple to define the uniform velocity 

field. As such, is chosen at a reference height or velocity at the level at which the pressure is measured. All values in 

the present study have been worked out based on the velocity at the level of the roof top of the model where velocity is 

found to be maximum. In this way points corresponding to the maximum can be identified where wind pressure is 

maximum. Although the maximum increase in pressure at any point is equal to the velocity pressure, the fluctuating 

wind produces pressure decrease of greater amount at any point on the surface and hence the average wind pressure 

resulting from the surface distribution over an area becomes greater than the velocity pressure. The coefficient thus 

obtained is independent of the wind speed and scale of the model. However, it is influenced by form of the structure, 

size of the structure, direction of the wind, terrain characteristic and location of surrounding structures. Various 

international codes for design of structure have provided values but, the available data are for regular plan shapes in 

orthogonal directions only. Structural design of structure based on these data increases the cost of construction. As 

such, experiments must be performed for every individual structure to appropriately investigate the wind stresses to 

incorporate it in the structural design. Baines (1952) [2] firstly depicted the effect of velocity distribution due to wind 

and its flow pattern on tall buildings. The contour of the mean wind pressure was intuitively demonstrated as positive 

pressure on upwind side and negative pressures on sides, top and back surfaces of a square shaped building. Various 

research papers in the field of wind engineering on different shape of high-rise buildings have been published by 

researchers.  

Gomes et al. (2005) [3] investigated wind pressure distribution on the faces of ‘L’ and ‘U’ plan shape tall buildings 

by using Wind Tunnel Test as well as Computational Fluid Dynamics (CFD) models. Mohotti et al. (2014) [4] studied 

the interference effect as well as along wind & across wind effects for tall buildings using Wind Tunnel Tests and 

CFD. Zhao & Lam (2008) [5] investigated the interference effects between five square tall buildings arranged in L-

shape and T- shape pattern, arranging them in in the wind tunnel testing. It was found that strong interference effect 

does exist on all member buildings. The wind loads were significantly modified due to the interference effect as 

compared to the single isolated buildings. Amin & Ahuja (2011) [6] studied wind induced pressure on buildings of 

various geometries. Tanaka et al. (2012) [7] presented aerodynamic characteristics of different irregular plan shaped 

tall buildings by wind tunnel tests. Amin & Ahuja (2013) [8] investigated the effect of different side ratios on a 

rectangular building model of same plan area and height. Chakraborty and Dalui (2013) [9] presented a paper on 

numerical study of pressure distribution on different faces of square plan shaped tall buildings under 0°, 30° and 45° 

wind angles using ANSYS (Fluent). Bhattacharyya et al. (2014) [10] studied pressure distribution of various faces of 

‘E’ plan shaped tall building through physical and analytical wind tunnel for various wind angles. Kheyari and Dalui 

(2015) [11] have studied the wind load on a tall building under interference effects through CFD. Roy and Bairagi 

(2016) [12] studied wind pressure and velocity pattern around stepped tall building comprising of rectangular, square 

and triangular shape placed one above each other. Study of wind pressure and velocity pattern around ‘N’ plan shaped 

tall building was conducted by Mukherjee and Bairagi (2017) [13].  

Bairagi & Dalui (2020) [14] studied the pressure distribution of square tall building with 20% setback at h/2 and 

10 % setback each at h/3 and 2h/3. Pal and Raj (2021) [15] studied the effect of interference of square plan shape and 

remodel triangular shape building having same plan area for 100 % blockage condition. It has been revealed that 

model geometry and orientation of duplicate building models have a significant role on pressure and force generated 

on the principal building. Raj and Ahuja (2013) [16] studied rigid model tall buildings of same plan area on square and 
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plus shape having varying wing lengths through open circuit boundary layer experiments and reported that the base 

shear, base moments and twisting moments depends not only on wind directions but also on cross sectional shapes. 

Raj et al. (2020)[17] studied numerical simulation of ANSYS (CFX) on H plan shaped tall buildings under isolated 

and interference conditions by similar plan shape model at different locations. Pal et al. (2021) [18] have reported their 

comparative study conducted through open wind tunnel test for wind induced mutual interference on twin square and 

fish plan shape tall buildings placed at a distance of 10% height of building with different combination of orientation 

between front and back. They have reported induced pressure and base shear in their study. Nagar et al. (2020) [19] 

studied pressure coefficient and IF for different interference conditions of square and H plan shaped tall buildings 

having same plan area and reported that H plan shape is subjected to higher pressure than the square model. Proximity 

effects on an existing target tall building due to proposed super tall building with a pair of similar buildings adjacent to 

the target building has been studied by Quan et al. (2020) [20]. It was reported that the aerodynamic response of the 

target building increased considerably when the proposed super building exists in the flow direction upstream the 

target building. 

In this paper a brief description is being presented to understand the wind flow characteristics under atmospheric 

boundary layer (ABL) condition and the surface pressure distribution on the surfaces of an irregular octagonal plan 

oval-shaped building of height 50 m and plan area 300 m2 (Figure 1) with a central opening and to evaluate values on 

the faces through ANSYS (CFX). Standard k- model for simulation has been used for the analysis.  

Information about wind environmental analysis on irregular plan shaped building model with a central vertical 

opening duct is not available in literature. The central opening provides more surface area around the building. This 

will improve natural ventilation and allow more sun light inside the building leading to energy saving for thermal 

comfort and better lighting. Variation of pressure distribution on the faces for varied wind incident angles studied in 

the present study is useful for designing cladding units on the surfaces of such buildings for safety under wind loads. 

  
Figure 1. Oval Plan-Shape Model Figure 2. Rectangular Plan-Shape Model 

2. Research Methodology 

The flowchart (Figure 3) shows the systematic procedure of numerical study carried out with model of rectangular 

building (Figure 2) having plan area (300 m2) and height (50 m) as that of the irregular octagonal building under study.  

It is done to validate the results by comparing the values with different code of practices (Table 1). The same CFX 

parameters was applied for study of irregular octagonal plan shape model. Other plan shape models have also been 

studied but they are beyond the scope of this paper. 

3. Validation 

The validity of the numerical approach studied was done by simulating a rectangular plan shape model (Figure 2) 

of same plan area and height as that of the octagonal plan oval-shaped model in the same wind flow and boundary 

conditions. The results of the coefficient of pressure on the faces of the rectangular model were compared with 

different international code of practices (Table 1) and found to be within acceptable limit, especially for the windward 

and leeward wind faces. Some larger differences are apparent on the side faces due to three-dimensional unsteady 

nature of turbulence and eddy viscosity of flow. However, the numerical simulation has captured the main flow 

characteristics discussed later on and supports the reasonability of the approach for further study on octagonal plan 

oval-shaped model. 
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Figure 3. Flow Chart of ANAYS CFX Simulation of Model 

Table 1. Comparison of on Faces of Rectangular Model 

As per Wind Angle 
𝑪𝑷𝒆 Face A 

(Windward Face) 

𝑪𝑷𝒆 Face B 

(Leeward Face) 

𝑪𝑷𝒆 Face C 

(Side Face) 

𝑪𝑷𝒆 Face D 

(Side Face) 

ANSYX (CFX) 
0° + 0.71 - 0.23 - 0.44 - 0.43 

90° - 0.48 -0.48 + 0.68 - 0.28 

IS: 875 (Part 3): 2015 
0° + 0.8 - 0.25 - 0.8 - 0.8 

90° - 0.8 - 0.8 + 0.8 - 0.25 

ASCE/SEI 7-10 
0° + 0.8 - 0.5 - 0.7 - 0.7 

90° - 0.7 - 0.7 + 0.8 - 0.5 

AS/NZS- 1170.2 (2002) 
0° + 0.8 - 0.5 - 0.65 - 0.65 

90° - 0.65 - 0.65 + 0.8 - 0.5 

EN: 1991-1-4 
0° + 0.8 - 0.55 - 0.8 - 0.8 

90° - 0.8 - 0.8 + 0.8 - 0.55 

BS: 6399-2 
0° + 0.76 - 0.5 - 0.8 - 0.8 

90° - 0.8 - 0.8 + 0.76 - 0.5 

Building Geometry (rectangular model) and domain 

Development using Design Modular. 

 

Discretization of Domain Volume, ground surface and model 

surfaces for appropriate solution of the flow parameters- 

Meshing in ANSYS CFX. 

Defining boundaries, boundary conditions, fluid environment 

interaction (Power Law) with the model for static analysis and 

using k- model (CFX-PRE). 

Initialization of solution and iterations till convergence of 

solution up to defined limits. 

Utilization of CFX result (CFX-POST) for further analysis  

𝐶𝑃𝑒 Results compared 

with standards of various 

countries. If within 

acceptable limit (20-25%) 

 

Yes 

No 
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4. Numerical Analysis 

Three-dimensional unsteady flow of any fluid is defined by the Navier-Stokes Equations of Continuity and 

Momentum. The velocity and pressure in the fluid flow environment is governed by them. Computational Fluid 

Dynamics (CFD) models attempt to resolve the flow of the fluid around any bluff body by simulating the flow at finite 

grid locations. Based on the continuity and momentum equations various mathematical models, researchers have 

developed, to know the flow characteristics and the effect of turbulence in a fluid flow. Different models have been 

developed to match the near real scenario occurring in the nature. However, no model has been developed so far to 

know the exact turbulence flow characteristics. Among them k- epsilon (k-) model is the most commonly used model 

in CFD simulation for environmental wind flow conditions. The exact k- model equation contains many variables and 

unknowns which are unmeasurable. In the standard k- model applied in the present study using ANSYS (CFX) 

software description of turbulence is defined by two transport equations in partial differential form. The first transport 

equation is in terms of the variable ‘Turbulence Kinetic Energy (k)’ and the second equation is in terms of the variable 

‘Dissipation of Turbulence Kinetic Energy ()’. It is the simplest model for which only initial and/or boundary 

conditions needs to be supplied. Turbulence Kinetic Energy (TKE) is produced by shear, friction or buoyancy or by 

small eddies developed by fluid flow. It is the mean kinetic energy per unit mass associated with eddies in turbulent 

flow having dimension of [L2T2]. Physically, the TKE is characterized by root mean square (RMS) velocity 

fluctuations. TKE is transferred into turbulence energy which is dissipated, (turbulent eddy dissipation,, by viscous 

forces at microscale (Kolmogorov scale) producing heat.  has the dimension of [L2T3] i.e., turbulent kinetic energy 

per unit time. In ANSYS (CFX) [21] the Navier-Stokes equations of continuity and momentum for fluid flow and the 

differential transport equations of turbulent kinetic energy and turbulent eddy dissipation have been taken as in 

Equations 2 to 9 [4]. 

Continuity Equation  

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗) = 0                       (2) 

Momentum Equation 

𝜕𝜌𝑈𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑖𝑈𝑗) = −

𝜕𝑝′

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇𝑒𝑓𝑓 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)] + 𝑆𝑀                                (3) 

Where 𝑆𝑀  is sum of body forces, 𝜇𝑒𝑓𝑓 is effective viscosity accounting for turbulence and 𝑝′ is the modified pressure 

defined as below. Rest symbols are carrying usual meanings. 

𝑝′ = 𝑝 +
2

3
𝑝𝑘 + 

2

3
𝜇𝑒𝑓𝑓

𝜕𝑈𝑘

𝜕𝑥𝑘
                      (4) 

𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡                                     (5) 

where 𝜇𝑡 is the turbulent viscosity which is linked to the turbulence kinetic energy and dissipation by the flowing 

equation: 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
                                       (6) 

where 𝐶𝜇 = 0.09, a constant called k- turbulence model constant. 

On the basis of differential transport equations of continuity and momentum above, turbulence kinetic energy and 

rate of turbulence eddy dissipation are expressed respectively as: 

Turbulent Kinetic Energy Equation: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝑘) =

𝜕

𝜕𝑥𝑗
 [(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌𝜀 + 𝑃𝑘𝑏                                 (7) 

Turbulent Eddy Dissipation Equation: 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜀) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] +

𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝜀 + 𝐶𝜀1𝑃𝜀𝑏)                        (8) 

where, 𝐶𝜀1, 𝐶𝜀2, 𝜎𝑘 and 𝜎𝜀  are k- turbulent model constants, the values of whom have been arrived after numerous 

iterations of data fitting for a wide range of turbulence flows as: 

𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1.0 and, 𝜎𝜀 = 1.3 

𝑃𝑘  is turbulence production due to viscous forces and 𝑃𝑘𝑏  & 𝑃𝜀𝑏  represents the buoyancy production term. For 

incompressible flow, 

 𝑃𝑘 = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)

𝜕𝑈𝑖

𝜕𝑥𝑗
                       (9) 
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5. Mean Velocity Characteristics 

In nature wind does not flow uniformly.  In the ABL profile, speed of wind increases as height from earth 

increases due to lesser friction exerted by roughness created by vegetation and structures at ground. As such, in high 

rise building the wind flow encountered is not uniform across the height of the building. The governing empirical 

equations of ABL wind flow are: 

(1) Parabolic Law:  

𝑢 = 𝑢𝑅𝑒𝑓√
𝑍+22

𝑍𝑅𝑒𝑓+22
                     (10) 

where, 𝑢𝑅𝑒𝑓= Reference Wind Speed in m/s; 𝑍𝑅𝑒𝑓  = Reference height 10 m; and 𝑢 = Time averaged longitudinal 

velocity at heigh 𝑍 above ground. 

(2) Power Law: 

𝑢 = 𝑢𝑅𝑒𝑓 (
𝑍

𝑍𝑅𝑒𝑓
)

𝛼

                      (11) 

where, 𝛼 is a function of terrain roughness. 

While power Law is an improvement in the Parabolic Law, it is not analytically correct for the bottom 10 m of 

ABL. Still, it is widely used for its simplicity. 

(3) Logarithmic Law: 

𝑢 =
1

𝑘
𝑢0𝐿𝑛 (

𝑍−𝑍𝑑

𝑍0
)                     (12) 

Where, 𝑘 = 0.4 (Von Karman Constant); 𝑢0 = Friction Velocity; 𝑢0 = √
𝜏𝑤

𝜌
𝜏𝑤  = Wall Shear Stress = 𝜇 (

𝑑𝑢

𝑑𝑦
)

𝑦=0
 and 

𝜌Density of Air; 𝑍0 = Aerodynamic roughness length; 𝑍𝑑 = Zero plane displacement. 

Logarithmic Law is applicable to lower 10 m height from the ground. 

6. Model and Computational Domain 

In the present study the building model is placed within the domain, which is analogous to a wind tunnel. Domain 

size is selected such that its boundaries are not affected by the model placed in it or in other words the computational 

domain is kept large enough to avoid reflection of fluid streams to avoid  

Abnormal fluid pressure field around the model and also to keep the blockage ratio less than 3%. At the same time 

velocity fluctuations, uplift force and backwash, vortex generation in the wake region etc. should be effectively 

created during the simulation. Recommendations of Revuz et al. (2012) [22] in the matter have been adopted in the 

present study. The domain size should also not be large otherwise it will require a larger number of computational 

cells for analysis which needs more time and higher computational facility for the solution to converge. The size of the 

computational domain in the flow direction and the side domain walls are kept equal to 5H each from the respective 

faces of the model, H being the height of the model. The distance behind the model is kept as 15H so that proper wake 

and vortex is generated behind the model. The height of the domain above the domain floor is kept as 6H. In the 

present study the domain of size L =10.3 m, B = 5.3 m and H = 3.0 m with the model (1:100 scale) kept within from 

the respective domain boundaries are taken as shown in Figure 4. Steady state wind flow under ABL for terrain 

category-II [6] at the inlet using the power law index as 0.143 and with 5% turbulence intensity (to provide the 

gustiness effect) has been adopted. Reference velocity equal to 0.63 m/s at the roof height of the model has been 

provided. The velocity profile at inlet achieved is shown in Figure 5. 
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(a) Plan (b) Elevation 

Figure 4. Schemetic Diagram of Domain 

  

Figure 5. Velocity Profile Figure 6. Meshing 

7. Computational Grid, Boundary Conditions 

The result of the simulation depends significantly on the discretized grid of the computational domain and the 

model. The resolution of the grid is specified to capture important physical parameters such as pressure on the model 

surface, vortices created, separation and reattachment of the flow etc. to a precise extent. The discretization of 

geometry of the model is kept finer than that of the computational grid. Greater the number of cells, better the CFD 

results. But, increase in number of cells increases the calculation time and also enhanced computing resource is 

required [24]. In the present study, after some trials with the meshing techniques and the boundary conditions, the 

final meshing was done with automatic method having element size 90 mm for the domain volume, 40 mm for the 

ground surface and 20 mm for the model walls and roof. Smooth inflation for the model is given so that the grid from 

the domain touches the walls orthogonally for smooth transition of simulation on the building surfaces. Meshing is 

shown in Figure 5. The total no of nodes created are in the order of 465000. The total number of elements are in the 

order of 2550000. The domain side, top walls and the roof top wall were defined as free slip walls (𝜏𝑤𝑎𝑙𝑙 = 0; 𝑢𝑤𝑎𝑙𝑙 =
0) where 𝜏𝑤𝑎𝑙𝑙  the wall shear stress is and 𝑢𝑤𝑎𝑙𝑙  is velocity normal to the wall. Meaning thereby that the velocity 

component parallel to the wall has a finite value and it is computed during the simulation. But, the velocity normal to 

the wall and the wall shear stress both are zero. The faces of the model and the ground have been defined as no slip 

wall (𝑢𝑤𝑎𝑙𝑙 = 0) i.e., the velocity of the fluid at wall boundary is zero and there is no wall velocity. For the oblique 

wind flow, the model is rotated rather than rotating the flow field, the boundary and flow parameters being the same. 

For 0° wind incident angle the solution was achieved at 108 Nos of iterations probably due to aerodynamic complied 

octagonal oval-shaped model. The simulation graph for momentum and mass and, that for turbulent kinetic energy and 

its dissipation are presented in Figures 6(a) and 6(b) respectively for perusal. 
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8. Result and Discussion 

8.1. Flow Characteristics 

As wind impinges on upwind surface of the model, airflow separates at the edges of the face and generates 

recirculation zones over side surfaces, roof and downwind surfaces extending into downwind wake. 

 

Figure 7 (a). Convergence of Moment and Mass 

 

Figure 7 (b). Convergence of Turbulent KE 

Streamline patterns at height Z 165 mm and Z 335 mm around the model for all the wind angles are shown in 

Figures 8(a) to 8(d). The streamline patterns are different for different wind angles. To understand the flow 

characteristics thoroughly let us discuss the flow pattern for 0° wind incident angle. A typical diagram of flow 

separation and recirculation at 0° wind incident angles is shown in Figure 9 and that of the wind flow pattern striking 

on windward face at 0° wind angle is shown in Figure 10. In Figure 9 it is seen that the size and pattern of flow 

separation and recirculation on the surfaces which are symmetrical along the flow direction are not similar over the 

surfaces. It is due to the turbulence or gustiness of the approaching wind and the unsteady three-dimensional character 

of flow; whereas time averaged steady flow condition has been taken in the study. 
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Figure 8 (a). Streamline Pattern at Z 165 and Z 335 at 0° Wind Angle 

  

Figure 8 (b). Streamline Pattern at Z 165 and Z 335 at 30° Wind Angle 

 
 

Figure 8 (c). Streamline Pattern at Z 165 and Z 335 at 60° Wind Angle 

  

Figure 8 (d). Streamline Pattern at Z 165 and Z 335 at 90° Wind Angle 

 

Figure 9. Flow Separation and Recirculation 0° Wind Angle 
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In the ABL condition the mean wind speed approaching the model increases with height above the ground level. 

As such, the upper part of the upwind face is experiencing higher wind speed than near the ground. As a result of this, 

a downwash on approximately the lower one half of the model is being created (Figure 10). On the upper one quarter 

(approximately) of the face there is an up wash i.e., wind flow is directed upward over the roof. An intermediate 

stagnation zone is also observed between up wash and downwash region where surface streamlines are passing 

horizontally around the building. With the change in incident angle from 0° to 90° this stagnation zone is 

progressively reducing and it is almost nil at 90° wind angle. This can be seen in the Figure 11 in which streamline 

along wind direction on a central vertical plane for different angles are shown. Downwash on the lower surface of the 

upwind face is separating from the model before it reaches the ground level and moves upwind to form a vortex as 

shown in Figure 10. This is generating high velocity near the ground. This ground level upwind vortex is carried 

around the sides of the model in U shape. Referring Figure 8 again, the flow is reattaching and generating regions of 

wake where flow recirculation with high turbulence is created forming two distinct vortices. These vortices are 

continuously hitting the side and downwind surfaces.  

The reattachment of flow and formation of vortices for different wind angles and also along the height are different 

(Figures 8 and 9). The recirculation with high turbulence in the wake region causes low average velocity on the 

downwind faces (Figure 12). The pattern of flow separation and the velocity magnitudes for different angle of wind 

are quite evident from these diagrams. It is seen that the flow is separated from the meeting edge of the slant/inclined 

side face A1 and near end of side face C on one side and meeting edge of slant/inclined face A2 and near end of face 

D on another side for 0° wind incident angle and, velocity is maximum at these locations. For 30° wind angle it is at 

the meeting edges of face C and B2 at one side and face A and A2 on another side. For 60° wind angle flow velocity is 

maximum at the edge of face C and B2 on one side and face A and A2 on another side. For 90° wind angle it is at the 

edge of face B2 and B on one side and edge A1 and A on another side. Referring Figure 11, it is seen that an upward 

flow exists over most part of the downwind faces for the respective wind directions. Inside the central opening the 

surface pressure is suction (negative pressure) throughout the height of the model and is almost same on all the four 

faces up to the height of about 0.35 m of the model. Again, after about 0.45 m height of the model to the roof top this 

change is noticeably large. The face, orthogonal to the wind flow and facing the upwind direction experiences higher 

suction pressure. The face, orthogonal to wind flow but facing the down wind direction suction reduces considerably 

at the top. It can be observed in Figures 16(a) and 16(d). This may be attributed to recirculation cavity and the 

influence of shear layer created by the separating wind at the roof top of the central opening. It is more or less similar 

for all wind angles but, at 90° wind angle this recirculation cavity is projecting above the roof considerably (Figure 11) 

suggesting high turbulence and creation of vortex resembling S shape. As such, it is important to design the cladding 

units in this height properly. 

 

Figure 10. Flow Pattern at 0 Wind Angle 
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(a): 0° Wind Angle 

  

(b): 30° Wind Angle 

  

(c): 60° Wind Angle 

  

(d): 90° Wind Angle 

Figure 11. Streamline Along Central Vertical Plane 
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(a): 0° Wind Angles 

   

(b): 30° Wind Angles 

   

(c): 60° Wind Angles 

   

(d): 90° Wind Angles 

Figure 12. Velocity Magnitude at Z 165, Z 335 & Z 450 

8.2. Pressure/ Pressure Coefficient 

The variation of face averaged value of surface pressure coefficients (𝐶𝑃𝑒) for different faces of the model from 0° 

to 90° @ 30° wind angle are presented in Figure 13. It is clear from the figure that positive pressure decreases with the 

increase of wind incident angles on the upwind face A. Negative pressure is experienced on this face when wind 

incident angle becomes around more than 33°. Mean 𝐶𝑃𝑒 on this face varies between +0.68 and -1.40. The 𝐶𝑃𝑒 values 

on faces of the model for different wind angles have been shown in Figures 14(a) to 14(d). Positive 𝐶𝑃𝑒  at the 

windward faces is due to wind energy dissipation and drag force by the incident wind, whereas negative 𝐶𝑃𝑒 at the 

leeward faces is due to vortex generation & backwash. The side faces are subjected to negative 𝐶𝑃𝑒 due to uplift force 

and the side wash. Either positive or negative 𝐶𝑃𝑒 on inclined faces exists depending upon their orientation with the 

direction of flow. Referring to Figure 14 (a), face A, being the windward face, is subjected to maximum positive𝐶𝑃𝑒. It 

is more pronounced in the upper middle level of the face and centered from the edges due to greater drag force. The 

pattern of the 𝐶𝑃𝑒 contour is symmetrical about the vertical axis as the wind is impinging perpendicularly on the face. 

It is also seen that the 𝐶𝑃𝑒 contour of higher magnitude exists along the height due to increase in impact pressure as 

discussed earlier (ABL condition). At the roof level it becomes negative due to uplift force and separation of flow. The 

slant/inclined upwind faces A1 and A2 are experiencing positive pressure at the near end and progressively reducing 

to negative towards the far end as the wind accelerates and reaches maximum velocity at the far end of these faces. 



Civil Engineering Journal         Vol. 7, No. 10, October, 2021 

1799 

 

Face A1 Face A Face A2 Face D 

Face B1 Face B Face B2 Face C 

Incident Wind Angle (°)

0 30 60 90

C
P

e 
V

a
ri

a
ti

o
n

 W
it

h
 W

in
d

 A
n

g
le

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

Figure 13. Variation of 𝑪𝑷𝒆 With Wind Angle 

Though, the faces are symmetrical for this direction of wind (0°), the pressure on faces are not identical as 

recirculation of flow is not constant over the surfaces due to unsymmetrical flow around the three-dimensional model 

and local turbulences and eddies. Face C & D being the side faces are subjected to negative pressure due to flow 

separation from the edges of faces A1 and A2 respectively. The negative pressure on these faces increases from the 

near end junction of the inclined upwind faces A1 and A2 respectively towards the far end of the respective faces. At 

the near end the pattern of thermal diagram (blue colour) of 𝐶𝑃𝑒 contours on Face C and D suggests high turbulence 

and creation of local micro level vortices there. The variation of 𝐶𝑃𝑒 along the central vertical lines on faces C & D are 

almost similar, Figure 15 (a). Face B being the downwind face, is subjected to suction pressure due to creation of 

vortex in the wake region and the back wash. The suction pressure is increasing along the height of face B due to 

generation of greater uplift force from the backwash created by the vortex. The inclined downwind faces B1 and B2 

are facing suction pressure due to backwash and creation of vortices. The suction pressure is decreasing from the edge 

of face B towards the edges of side faces C & D respectively. With the change in wind direction different faces change 

their orientation with respect to the direction of impinging wind experiencing different pressure on the same logic 

explained above. The thermal images of 𝐶𝑃𝑒 contours as obtained from post-CFX for different angles of wind have 

been shown in Figures 14(a) to 14(d). 

  

Figure 14 (a). 𝑪𝑷𝒆 Contour on Faces 0° Wind Angle 
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Figure 14 (b): 𝑪𝑷𝒆 Contour on Faces 30° Wind Angle 

  

Figure 14 (c).  𝑪𝑷𝒆 Contour on Faces 60° Wind Angle 

  

Figure 14 (d): 𝑪𝑷𝒆 Contour on Faces 90° Wind Angle 

8.3. Central Vertical Pressure Coefficient on Faces 

The central vertical 𝐶𝑃𝑒 on faces of the model are shown in Figures 15(a) to 15(d). The faces on which the flow is 

impinging perpendicularly are having positive value of 𝐶𝑃𝑒 along the central vertical line. At 0° wind angle upwind 

face (face A) is having maximum positive 𝐶𝑃𝑒 values along the central vertical line compared to that for other wind 

angles. Maximum positive 𝐶𝑃𝑒 (1.25) is at height 0.45 m (95 %) at vertical center line on the face (Figure 15(a)). At 

30° wind incident angle almost 1/3rd value (0.4) is noticed at the same location. The inclined upwind faces A1 and A2 

are having negative value of 𝐶𝑃𝑒 close to zero throughout the height but suddenly grows to sharp positive value due to 

greater uplift force at that height and again drastically to negative due to flow separation at roof level which reduces 

the pressure value. Other faces are having almost constant negative values along their respective heights. Some local 

fluctuations in 𝐶𝑃𝑒 line is observed due to unsymmetrical flow pattern around the three-dimensional model and the 

effect of upwash, downwash and stagnation zones on the upwind face.  

At 30° wind angle the fluctuations in values along the central vertical line on face B2 is more pronounced 

seemingly due to turbulence of flow created by the reattachment of flow on face B2 as well as the recirculation of flow 

by the downwind vortex. At 600 wind angle the central vertical 𝐶𝑃𝑒 value on faces C and A1 are positive throughout 

having sharp changes to negative nearer to the roof height due to flow separation at roof. All other faces are having 

negative 𝐶𝑃𝑒 values. Local fluctuations are seen on face A2 due to reasons explained above. At 900 wind angle the 

central vertical 𝐶𝑃𝑒 on upwind face C is positive and on other faces it is negative. Effect of local eddies is seen on the 

downwind inclined faces A1 and B2 on which 𝐶𝑃𝑒 values are fluctuating. On the inner faces the central vertical 𝐶𝑃𝑒 is 

negative in nature and constant on most part of the height for all directions of wind. But it changes its magnitude in 

between the height from 0.35 to 0.4 m up to the roof for different wind angles. The average central vertical suction 𝐶𝑃𝑒 

values on the inner faces are progressively increasing as the wind angle increases. The graph of central vertical 

pressure on inner faces for different wind angles are shown in Figures 16(a) to 16(d). 
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(a). 0° Wind Angle (b). 30° Wind Angle 
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(c): 60° Wind Angle (d): 90° Wind Angle 

Figure 15. 𝑪𝑷𝒆 Central Vertical on Outer Faces 
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(a): 0° Wind Angle (b): 30° Wind Angle 
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(c): 60° Wind Angle (d): 90° Wind Angle 

Figure 16. 𝑪𝑷𝒆 Central Vertical on Inner Faces 

8.4. Pressure Coefficient along Perimeter 

The variation of wind pressure coefficients (𝐶𝑃𝑒) along the perimeter at Z =165 mm and Z = 335 mm height for all 

the wind incident angles are shown in Figures 17(a) to 17(d). This portrays the overall understanding of the pressure 

developed on the faces due to different wind angles. Referring to Figure 17 (a), for 0° wind angle, it is seen that the 

pressure is positive for the entire face of upwind face A and increasing with height. The inclined upwind faces A1 & 

A2 are facing positive and negative pressure both. The interesting thing is that the for 0° wind angle minimum and 

maximum 𝐶𝑃𝑒 values on these faces are -1.55 & + 0.74 for face A1 and -1.61 & + 0.72 for face A2 respectively, but 

the face average values are lowest negative (-0.14) for both faces. For 30° wind angle, face A2 is experiencing high 

fluctuating 𝐶𝑃𝑒. Large variation of 𝐶𝑃𝑒 is also observed on face C. This indicated existence of high velocity gradient 

across the width. The pressure is negative towards the edge B2. It is recovering and becoming positive towards the 

edge A1. For 60° wind angle face A1 and C are experiencing positive pressure on their major portions. The pressure 

on face A, A2, B and B2 are though negative but fluctuating across their width. The variation of pressure on face B1 

and D are almost nil. For 90° wind angle face C is experiencing positive pressure and rest all other faces are 

experiencing negative pressure. Face D has very little variation of pressure on its entire face. On face A, A1, B and B2 

variation of pressure across their width are large in comparison to A2 and B1. 
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(a): 0° Wind Angle 
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(b): 30° Wind Angle 
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(c): 60° Wind Angle 
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Figure 17. 𝑪𝑷𝒆 Along Perimeter on Faces 



Civil Engineering Journal         Vol. 7, No. 10, October, 2021 

1804 

 

9. Conclusions 

Natural ventilation in any building improves the air quality, thermal comfort of the inhabitants and reduce energy 

consumption. Natural cross ventilation is induced by differential pressure difference between different zones of the 

building. The wind pressure measurements represented herein lead to identification of wind pressure distribution, and 

hence the pressure differential zones, of an irregular octagonal plan oval-shape building having a central opening and 

is summarized below. 

 For all wind directions the central opening is subjected to negative pressure (suction). It is almost constant for 

most part of the height of the faces but suddenly reduces in between 0.35 to 0.4 m height of the model due to 

recirculation cavity and shear layer created by high turbulence. This way it is behaving as a vertical duct for air 

flow. More sunlight is supposed to enter within the building due to this opening.  

 The gradient of pressure across the width on the inclined surfaces for all the wind angles are more pronounced 

than on the other faces. 

 The length/width (side ratio) influences the formation of upwash, downwash and stagnation zone on the upwind 

faces. The phenomenon widely influences the flow characteristics around the model.  

 The ground level upwind vortex which is carried around the model is responsible for deposition of dust and 

debris close to the ground level, thus contaminating the air environment.  

 While the average pressure distribution on the faces (windward, leeward and side faces) are the key to find out 

the stresses on the structure for structural design, pressure distribution on the faces can be used in better natural 

ventilation and lighting planning by the architects in the prototype building. Natural ventilation in any building 

depends upon the wind pressure difference between the openings. Higher the pressure difference, better the 

ventilation.  

 The results presented in this paper for irregular orthogonal plan shape building can be used by the Structural 

Designers for designing buildings of similar shape for wind loads at any part of the world. Since these 

coefficients are unitless, no modifications are needed. The only requirement is that the proposed building should 

have similar height to width ratio and length to width ratio. 

 Further study for different irregular octagonal plan oval-shaped buildings with varying height, but with same 

total floor area may be taken up to optimize the natural ventilation and lighting in such buildings. 

 The results of numerical simulation are of great importance at the preliminary stage of project. The exact 

numerical model for the wind, actually occurring in nature, has not yet been developed by the researchers. 

However, the results can be relied upon to a greater extent. 
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