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Abstract 

Estimation of rainfall quantile is an important step in regional frequency analysis for planning and design of any water 

resources project. Related evaluations of accuracy and uncertainty help to further assist in enhancing the reliability of 

design estimates. In this study, therefore, we investigate the accuracy and uncertainty of regional frequency analysis of 

extreme rainfall computed from genetic algorithm-based clustering. Uncertainty assessment is explored with prediction of 

quantiles with a new spatial Information Transfer Index (ITI) and Monte Carlo simulation framework. And, accuracy 

assessment is done with the comparison of regional growth curves to at-site analysis for each homogenous region. Further, 

uncertainty assessment with the ITI method is compared with Maximum Likelihood Estimation (MLE) optimized by a 

Genetic Algorithm (GA) to check the suitability of the method. Results obtained suggest the ITI-based uncertainty 

assessment for regional estimates outperformed those of at-site estimates. The MLE-GA method based on at-site estimates 

was found to be better than at-site estimates based on L-moments, suggesting the former as a better alternative to compare 

with regional frequency estimates. Moreover, minimal bias and least deviation of the regional growth curve were obtained 

in the rainfall regions. The confidence intervals of regional estimates were seen to be well within the bounds of normality 

assumptions. 
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1. Introduction 

The Brahmaputra and Barak basins in northeastern India are among the country's most disaster-prone locations, with 

severe rainstorms and cloud bursts occurring annually during the monsoon season. The frequency of extremely heavy 

downpours in the basins has been shown to fluctuate widely over the region. As a result, human life and property are 

seriously damaged, which has an impact on the region's total socioeconomic activity. With a limited network of rain 

gauge stations, flood related information and mitigation measures have always been insufficient in the region. Methods 

such as Regional Frequency Analysis (RFA) have been frequently employed in such situations that transfer data from 

gauged locations to places with little or no data [1, 2]. Several studies can be found with the application of the RFA 

technique in the region [3-7]. Regional frequency analysis of extreme rainfall for any region aims to provide a detailed 

description of the distribution of rainfall events and predict probable estimates for a given return time. However, the 
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application of the RFA technique is always associated with some amount of uncertainty. Quality of data, number of 

available records, and processes involved in any regional frequency analysis (RFA) are important sources of uncertainty, 

and so is crucial to analyse the uncertainty inherent in their applications. The fitting of the probability distribution and 

parameter estimation is an important factor affecting RFA analysis [8, 9]. With uncertainty and suitability involved in 

the selection of an appropriate probability distribution for any regional frequency analysis, it is crucial to have a 

performance comparison of fitted distributions against at-site analysis for the region. Numerous works on uncertainty 

analysis in regional frequency analysis of rainfall [10-13] have been published. Notable recent studies on the comparison 

of uncertainty analysis of rainfall from regional and at-site analysis can be found in the studies of [14-16], but very 

scarce studies are available for north east India. The available studies are limited to only selection of probability 

distribution and estimation of quantiles [3, 5]. Resulting quantiles from RFA with small sample sizes are speculative, 

and constructing confidence intervals has been the simplest and most widely used approach to evaluate the uncertainty. 

There is rarely any comparison study of uncertainties associated with at-site and regional analysis in the study region, 

which is a necessary area to be explored. The study will give an assessment of the extreme rainfall behaviour with 

respect to fitted distributions both at regional and at-site levels.  

Besides evaluating confidence intervals based on Monte Carlo simulation, several other approaches for analysing 

uncertainty have been developed, including generalised likelihood uncertainty estimation (GLUE), the Bayesian 

method, and Markov chain Monte Carlo (MCMC), among others [17-21]. The majority of them were used to quantify 

uncertainty in hydrological models. But the approach for analysing uncertainty for at-site and regional frequency 

analysis using the Monte Carlo simulation and entropy-based information transfer index (ITI) framework till date has 

not been explored. In this study, the uncertainty is performed with generation of new samples using Monte Carlo 

simulation from entropy dependent weights at an unmeasured site for rainfall estimates. Compared to other uncertainty 

methods, there is rarely any study of the present approach in frequency analysis. The entropy concept has been used in 

many hydrological studies [22-25], but its application in uncertainty analysis in RFA has not been done. The proposed 

method is based on the idea that information at a new station is more accurately generated from nearby stations when 

stations with a higher amount of shared information are selected rather than stations based on proximity or distance.  

The majority of the regional frequency analysis studies conducted in India's northeast area concentrated on the 

Brahmaputra basin or important chosen stations from the whole northeast region. However, relatively little research on 

regional frequency studies of yearly extreme rainfall, including rain gauge stations from the Barak basin, is available. 

During the monsoons, the Barak basin is severely prone to flooding, producing flood issues comparable to those seen in 

the Brahmaputra basin. So, with the inclusion of stations from the Barak basin in the study, will provide a more 

comprehensive and enlarged perspective of the extreme rainfall scenario in the northeast area. Moreover, to the best of 

our knowledge, research on the uncertainty of regional rainfall quantiles for homogenous rainfall regions in the 

Brahmaputra and Barak basins is scarce. The study therefore aims to assess the uncertainty of extreme rainfall estimates 

derived from regional frequency analysis and to perform a comparison with at-site analysis. To assess the suitability of 

design quantiles, two approaches are investigated: (i) uncertainty estimation using coefficient of variation of rainfall 

estimates and the development of confidence intervals; and (ii) using the framework of ITI and Monte Carlo simulation 

and comparing it to at-site frequency. Furthermore, to investigate the applicability of ITI-based weight determination 

with different parameter estimation methods, MLE estimation optimised by a genetic algorithm (GA) is investigated. 

2. Study Area and Rainfall Data 

The study region in northeast India concentrates on the southern part of the Brahmaputra basin and the Barak basin. 

The Barak basin, just beside the Brahmaputra basin, has active floodplains with vast marshy regions that are annually 

inundated by severe floods. The altitudinal pattern in the north east changes drastically from location to location, 

resulting in erratic rainfall occurrences. During the monsoon season, heavy rains and cloud bursts are common, wreaking 

havoc on the region and causing widespread landslides and erosion. Amount of precipitation is particularly unpredictable 

in the region, making future rainfall scenarios highly vulnerable. For the study, annual maximum daily rainfall data for 

33 stations is collected from the Regional Meteorological Centre, Guwahati, for a period of 20 years, and their locations 

in the research region are given in Figure 1. The list of stations included in the study are Silchar (1), Dholai (2), Goalpara 

(3), Guwahati (4), North Lakimpur (5), Choudhoughat (6), Batadighat (7), Kampur (8), Sibsagar (9), Beki Rd. Bridge 

(10), Dibrugarh (11), Jorhat (12), Neamatighat (13), Kherunighat (14), Bokajan (15), Gossaigaon (16), Kokrajhar (17), 

Tezpur (18), Mellabazar (19) Aie NH.Xing(20), Dharamtul(21), Golaghat(22), Dhollabazar (23), Margherita (24), 

Gharmura (25), Shillong (26), Cherrapunjee (27), Mawsynram (28), Kohima (29), Imphal (30), Aizwal (31), Agartala 

(32), and Kailashahar (33).  
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Figure 1. Location of gauging stations in study area of Brahmaputra and Barak basin 

3. Research Methodology 

3.1. Formation of Homogenous Regions and Heterogeneity Measurements 

The study used genetic algorithm-based clustering to designate homogeneous rainfall areas, with the Davies-Bouldin 

index as the fitness function. Based on the multi-criteria decision technique and heterogeneity measures proposed in [2], 

three optimal station groups were determined and found to be homogeneous. Clustering was done using seven station 

characteristics: latitude, longitude, altitude, annual daily maximum average, greatest annual daily maximum, lowest 

annual daily maximum, and annual maximum series coefficient of variation. Prior to clustering, the variables were 

standardised using the max-min transformation. Verification of the homogeneity of identified homogenous regions in 

regional frequency analysis is very important and is done in the present study using the heterogeneity measure [2]. 

According to Tasker et al. (1998) [2], a region is declared acceptably homogenous when H<1, a possibly heterogenous 

when 1≤H<2 and definitely heterogenous if H ≥ 2. More information about the procedure can be obtained from [2]; 

And, the study framework for comparing regional and at-site precipitation frequency analyses is summarised in Figure 

2, which addresses the steps followed in determining uncertainty. 

3.2. Choosing Best Fit Distribution and Accuracy of Quantiles 

The best-fit probability distribution for all three regions was determined by testing five three-parameter candidate 

distributions: generalised normal (GNO), generalised Pareto (GPA), generalised extreme value (GEV), generalised 

logistic (GLO), and Pearson type 3 (PE3). The goodness-of-fit metric as suggested in [2] for homogenous regions is 

considered to find the best distribution and is calculated as 

|𝑍𝑑𝑖𝑠𝑡|  = (𝜏4
𝑑𝑖𝑠𝑡𝛽 − 𝜏4

𝑅 + 𝛽4)/𝜎4                                                                                                       (1) 

where “dist” is the candidate distribution; 𝜏4 the regional average L-kurtosis value calculated in simulation; 𝛽4 and 𝜎4 

the bias and standard deviation respectively of regional average L-kurtosis (𝜏4
𝑅 ) of Monte Carlo simulation samples 

performed by Kappa distribution. For all values of |𝑍𝑑𝑖𝑠𝑡| ≤ 1.64 , the corresponding candidate distributions are 

considered fit and acceptable at 90 % confidence level. And to decide on the best-fit distribution, the candidate 

distribution with lowest |𝑍𝑑𝑖𝑠𝑡| is selected as the best distribution for the region. The annual maximum rainfall quantiles 

for different probabilities of non-exceedance F are then calculated with selected fitted distributions using the method of 

index flood approach.  
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Figure 2. An overview of study framework for estimation of uncertainty 

To evaluate robustness of the regional quantiles for each region, the procedure mentioned by Tasker et al. (1998) [2] 

involving generation of regional average L-moments from Monte Carlo simulations is used. The simulation involves 

generation of quantile estimates for various return periods, and at a given mth repetition, the estimated quantiles for a 

given non-exceedance probability F, �̂�𝑖
[𝑚]

(𝐹) is estimated and compared with true values of Qi(F). The relative error of 

this estimate at a given site i and for a non-exceedance probability F is expressed as; 

�̂�𝑖
[𝑚]

(𝐹)−�̂�𝑖(𝐹)

�̂�𝑖(𝐹)
                                                                                                                                             (2) 

This quantity is squared and averaged for M repetitions to obtain the relative bias and mean relative quadratic error 

as; 
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𝐵𝑖(𝐹) = 𝑀−1 ∑
�̂�𝑖

[𝑚]
(𝐹)−�̂�𝑖(𝐹)

�̂�𝑖(𝐹)
𝑀
𝑚=1                                                                                                                        (3) 

𝑅𝑖(𝐹) = [𝑀−1 ∑ {
�̂�𝑖

[𝑚]
(𝐹)−�̂�𝑖(𝐹)

�̂�𝑖(𝐹)
}

2

𝑀
𝑚=1 ]

1/2

                                                                                                                 (4) 

And the summary performance of all stations in a region, is expressed by regional relative bias and relative root mean 

square error as; 

𝐵𝑅(𝐹) = 𝑁−1 ∑ 𝐵𝑖(𝐹)𝑁
𝑖=1                                                                                                                                   (5) 

𝐴𝑅(𝐹) = 𝑁−1 ∑ |𝐵𝑖(𝐹)|𝑁
𝑖=1                                                                                                                                  (6) 

𝑅𝑅(𝐹) = 𝑁−1 ∑ 𝑅𝑖(𝐹)𝑁
𝑖=1                                                                                                                                   (7) 

3.3. Uncertainty Analysis of Fitted Distribution Parameters and Quantiles  

For higher return periods, the quantiles computed have a higher degree of uncertainty. Uncertainty in parameter 

estimation and its stability are two important types of uncertainty associated with any given quantile prediction. These 

uncertainties will be examined in the present study for both regional and at-site analysis with the help of a Monte Carlo 

simulation framework. Furthermore, confidence intervals are developed to compare accuracy of computed quantiles 

both from at-site and regional analysis. In the present study, coefficient of variation is used as a measure of uncertainty 

to test the parameter stability of identified distributions. A 𝐶𝑣 for a particular quantile is defined as 𝐶𝑣 = 𝜎/𝜇 where, 𝜎 

and µ are the standard deviation and mean of quantiles estimated from various GEV and PE3 distributions. With 1000 

Monte Carlo simulations, random distinct sample sets is generated each time, having the same distribution with different 

parameters.   

For the comparison of uncertainty in prediction of regional and at-site analysis in each region, a quantitative indicator 

is proposed that takes into account the spread of confidence intervals. For a given quantile prediction, an average relative 

width [26, 27] is used and is given as; 

ARW =  
1

n
∑

Limitupper − Limitlower

q(F)
                                                                                                                                   (8)          

where Limitupper and Limitlower are upper and lower limit of corresponding 95% error bounds, n is the number of stations 

in a region, q(F) is the estimated quantile for probability of non-exceedance, F. Smaller value of ARW indicates a smaller 

uncertainty of the estimated quantile.  

The uncertainty of predicted quantiles for different return periods is assessed by constructing confidence intervals. 

The steps for constructing confidence intervals for each return period of a station are as follows: 

 First, the parameters for fitted distribution of each region is determined using method of L-moments based on 

observed data of each site. 

 A set of generated data having the same sample size as of the site i is obtained. 

 Monte Carlo simulation is then carried out and parameters of the fitted distribution for each generated sample is 

calculated and the precipitation quantiles is estimated.  

 The 2.5 and 97.5 percentile values for 95 percent lower and upper bounds are obtained for each return period from 

each Monte Carlo simulation. Similarly, 95 percent confidence interval boundaries are generated for all other 

return periods of interest. 

The confidence intervals from normality assumption is also constructed for comparision purpose and for a target 

return period with sample mean (µT) and standard deviation (σT), the upper and lower bounds at 95% confidence interval 

is calculated.  

3.4. Uncertainty Analysis of Parameter Estimation using Entropy based Information Transfer Index 

The uncertainty of the parameters identified for probability distributions of clustered regions is assessed using Monte 

Carlo Simulation and entropy dependent weights. The stability of the identified parameters is studied to assess its 

capability in identifying extreme rainfall depth at any ungauged site with the help of nearby surrounding sites. The 

current study differs from previous techniques in [11, 28], in the application of an information transfer index based on 

entropy to generate new time series for an unmeasured site and the weights proposed herein the study is given as; 

1

                (i=1,2,3,.....,k)i
i k

ii

ITI
w

ITI





                                                                                                                    (9) 
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where, wi is the extraction entropy weight from station i, k is the number of sites. The extraction entropy weight depends 

on information transfer index (ITI) as expressed by [22] and is given as; 

( , )
( , )

( , )
T A B

ITI A B
H A B

                                                                                                                  (10) 

( , ) ( ) ( ) ( , )T A B H A H B H A B                                                                                                               (11) 

where; H(A) and H(B) denote the marginal entropies of rain gauge stations A and B, respectively, whereas H(A,B) 

denotes their combined entropy. ITI is a symmetric index that quantifies the exchange of information between two 

stations. The weight value is between 0 and 1, and a greater value suggests a more effective communication of 

information. The new time series at the ungauged site A is generated with; 

1
                    (i=1,2,3,...,k)

k

A i ii
Y w Y


                                                                                                 (12) 

To assess the performance of the new extraction entropy weight based on ITI it is compared to two other weighting 

methods viz. one method based on Euclidean distance [29] and the other method is a combination of ITI and Euclidean 

distance. 

1

1
                      (i=1,2,3,.....,k)i

i k

ii

dist
w

dist







                                                                                       (13) 

1

1
                (i=1,2,3,.....,k)i i

i k

i ii

dist ITI
w

dist ITI







                                                                                          (14) 

New time series samples equal to the number of data length at each site for M extraction sites are generated using 

Monte Carlo simulation using the parameters of the fitted distribution for the site. The new time series samples at an 

ungauged Site A can then be generated using Equation 3. For regional analysis, new time series of all sites in the 

homogeneous region is simulated and taken together. The application of ITI approach in assessing the parameter stability 

of distributions is also extended to application of Maximum Likelihood Estimation (MLE) optimized by genetic 

algorithm. The parameter estimation of distributions of individual sites for use in ITI is done by MLE method and 

optimized by genetic algorithm. And the comparison is done to weighting method based on Euclidean distance. The 

comparison will help us to understand the applicability of ITI method in determining spatial weights for prediction at 

ungauged sites. The uncertainty in estimated design rainfall depth is computed as: 

95 5

50

( )
Uncertainty (%)    100 

P P

P


                                                                                                  (15) 

where P95, P5, and P50 are the expected design rainfall depths at the 95th, 5th, and 50th percentiles, respectively. The 

estimates by the ITI based L-Moment estimates, comparison with MLE to fitting GEV and PE3 distributions is explored. 

Maximum Likelihood Estimation (MLE) is a frequently used technique for estimating parameters of probability 

distributions, in which the parameter estimates generate the highest chance of occurrence for observations. With 

numerous application in extreme value models [12, 30], it is considered in the present study for comparison with 

estimates of ITI based L-Moment estimates. GA was used for optimizing the MLE parameters to arrive at the likelihood 

of the real value. GA are population-based algorithms and have successfully provided near-real value solutions in various 

complex problems. The log-likelihood function of the three parameters of the GEV and PE3 distribution is given as; 

ln [𝐿(𝑥|𝜃1, 𝜃2, 𝜃3) = ∑ 𝑓(𝑥𝑖|(𝜃1, 𝜃2, 𝜃3)𝑛
𝑖=1                                                                                                                 (16)  

where, 𝑓(𝑥|𝜃1, 𝜃2, 𝜃3) is the pdf of GEV or PE3 distribution and 𝑥𝑖 = (𝑥1, … , 𝑥𝑛) are the observations.  

The values of the parameters are then obtained by partially differentiating the log-likelihood function with respect 

to each parameter and equating it to zero. To further assess the performance of ITI, distance-based and MLE-GA 

estimates for both regional and at-site.  

4. Results and Discussion 

The rain gauge stations were tested for trend and randomness of data series using the Mann-Kendall and Ljung Box 

tests [31]. The study results indicate no trend, and the data were serially independent, making them acceptable for 

statistical frequency analysis and fitting of probability distributions. The grouping of gauge stations using genetic 

algorithm based clustering and Euclidean distance measure resulted in three regions. Nine cluster validation measures 

and MCDM analysis gave three homogenous regions and is given in Table 1. Heterogenity test as proposed by [2] was 

applied and the final homogenous regions I , II and III composed of 9, 2 and 20 stations respectively after removal of 
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two discordant stations Golaghat and Goalpara. Applying the goodness of-fit criterion, the fitted frequency distributions 

for the three regions are selected and presented in Table 1.  

Table 1. Homogenous regions obtained from genetic algorithm-based clustering 

Regions 
No. of 

Stations 
Stations 

Heterogeneity Measure Distribution 

function H1 H2 H3 

I 9 
North Lakhimpur, Choudhoughat, Bokajan, Sibsagar, Margherita, 

Dibrugarh, Jorhat, Dhollabazar, Neamatighat 
0.33 0.92 0.37 GEV 

II 2 Cherrapunjee, Mawsynram -0.54 -0.83 -0.15 GEV 

III 20 

Silchar, Dholai, Guwahati, Kampur, Kherunighat, Imphal, Batadighat, 

Gossaigaon, Kokrajhar, Tezpur, Mellabazar, Aie N. H. Xing, Dharamtul, 
Gharmura, Beki Road Bridge, Shillong, Kohima, Aizwal, Agartala, 

Kailashahar 

0.06 -1.11 -1.83 PE3 

4.1. Estimation of Precision of Regional Quantile Estimate 

In this section, the precision of dimensionless regional growth curve q(F) for each homogenous region is calculated 

and shown in Table 3. With 10,000 simulations, Monte Carlo simulations procedure was carried out with the selected 

distribution for each region. In the process, the simulated regional quantiles were compared to the real data for all non-

exceedance probability to obtain the precision measurements. Regional relative root mean square error RR(F) 

computations show that region III has the least deviation in regional growth curve with slightly higher values obtained 

in region II. This is an important criterion as it signifies the overall deviation of difference between computed quantiles 

and true quantiles of all stations in a region. As region II comprises of only two stations and the annual maximum rainfall 

average are comparatively very high, the bias in estimated regional growth curve may be affected by sampling of a 

smaller number of stations. BR(F) and AR(F) also suggests minimal difference between simulated and true quantiles for 

all return periods in all the three regions. AR(F) which gives a measure of bias of estimates of quantiles to be consistently 

high at some stations and low at others [32] is found to be least in region I, and hence the accuracy of quantile estimates 

in this region will be better among the three regions. Overall, from the analysis, the estimated regional quantile growth 

curve in each region is found to be satisfactorily follow the frequency distribution behaviour of all clustered stations in 

each region. 

 Table 2. Summary of accuracy of distribution functions in the three homogenous regions 

Region Dist. 
F = 0.5 0.8 0.9 0.95 0.98 0.99 0.995 0.998 0.999 

RT (years) = 2 5 10 20 50 100 200 500 1000 

I GEV 

q(F) 0.979 1.203 1.332 1.444 1.573 1.659 1.737 1.828 1.889 

(F)RB 0.000 0.000 0.001 0.001 0.003 0.004 0.005 0.007 0.009 

(F)RA 0.044 0.050 0.056 0.063 0.072 0.079 0.085 0.094 0.100 

(F)RR 0.019 0.021 0.024 0.026 0.030 0.033 0.035 0.039 0.042 

II GEV 

q(F) 0.990 1.217 1.339 1.439 1.545 1.612 1.669 1.732 1.771 

(F)RB 0.002 0.000 0.001 0.000 0.003 0.006 0.010 0.016 0.022 

(F)RA 0.048 0.050 0.054 0.060 0.072 0.082 0.093 0.108 0.120 

(F)RR 0.043 0.044 0.048 0.054 0.064 0.073 0.084 0.099 0.112 

III PE3 

q(F) 0.960 1.234 1.401 1.552 1.736 1.868 1.994 2.156 2.275 

(F)RB 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.004 

(F)RA 0.054 0.060 0.069 0.077 0.086 0.093 0.098 0.104 0.108 

(F)RR 0.015 0.017 0.019 0.022 0.024 0.026 0.027 0.029 0.030 

4.2. Estimation of Uncertainty Analysis of Regional Quantiles 

The Monte Carlo simulation procedure for determining the rainfall amounts for different return periods for each site 

in the regions were estimated and the measure for uncertainty was expressed using coefficient of variation. The 

comparison plot of coefficient of variation of regional and at-site analysis results are given in Figures 3 and 4. The GEV 

distribution was selected as at-site frequency distribution for the whole region in accordance with the studies in [6] based 

on L-Moments for yearly extreme rainfall. The standard deviation and mean of the quantiles of 1000 simulations for 

each return period is calculated and the parameter stability of the distributions is assessed using Cv. For return period 10 

and 20 years as seen in Figure 3, coefficient of variation is seen to be nearly at same value for regional estimates in all 
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regions I, II and III, while at-site estimated quantiles are seen to fluctuate with a relatively higher dispersion in regions 

I and III. The sample size generated in each iteration is equal to the original sample size of 20 for each site. The at-site 

quantiles from Figure 3 shows that some sites in the at-site analysis have produced better estimates than regional analysis 

with a lower Cv, while the others were less accurate. For region I, despite both at-site and regional fit GEV distribution, 

parameters of regional GEV distribution seem to be more stable and reliable. The desirable outcome is to have Cv of all 

regional estimates lower than at-site, and the probable reason may be due to small sample size of 20 considered in the 

study. But overall, the Figures 3 and 4 are suggestive of the fact that rainfall depths estimated on regional analysis 

produce more accurate and reliable estimations. The estimations in regional analysis for region II is seen to be quite 

similar to at-site estimations for all return periods. The region comprises of only two stations and so the prediction 

accuracy may not be fully represented for the region. The coefficient of variation is also seen to increase with return 

period for all regions for both regional and at-site estimations, thereby suggesting increase in uncertainty. But the at-site 

estimations increase at a higher rate. For example, region I at-site lowest and highest Cv values increased from 0.039 

and 0.109 to 0.085 and 0.365 respectively; whereas the increase for corresponding regional values are 0.064 and 0.070 

to 0.162 and 0.171 respectively. Comparatively, region III gave very large variations for at-site estimations in all return 

periods. The results thus indicates that the regional estimate of quantiles is much more reliable and accurate compared 

to the at-site estimations.  

(a)  

 (b)  

Figure 3. Uncertainty of extreme rainfall estimations in homogenous rainfall regions for (a) 10 and (b) 20 years return 

period 
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(a)  

(b)  

Figure 4. Uncertainty of extreme rainfall estimations in homogenous rainfall regions for (a) 50 and (b) 200 years return 

period 

4.3. Confidence Interval based Uncertainty Analysis 

To test the confidence intervals for each region, two sites were considered – the lowest and the highest discordant 

stations in each region – to see the effect on these two extremities. The lowest and highest discordant stations in region 

I are Dibrugarh and North Lakhimpur; in region II they are Cherrapunjee and Mawsynram, while in region III they are 

Silchar and Kailasahar. Region II consists of only two stations, and the assessment is made only between them. The 

Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) goodness-of-fit tests are used to examine how well the 

Empirical Cumulative Distribution Function (ECDF) and theoretical CDF fit the observed data. From the results of the 

goodness-of-fit test in Table 3, estimates for at-site and regional analysis for each region are explored, and the p-value 

results indicate that the observed data seems to come from a population with a PE3 distribution for region II and a GEV 

distribution for regions I and II. The p-values obtained further suggest that the highest discordant sites in each region 

seem to have less fit in comparison to the lowest discordancy sites when fitted through either at-site or regional analysis. 

For region II, the relative difference is not clearly distinguishable, but the p-values indicate a good fit in both sites. 
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Table 3. Goodness of-fit tests of lowest and highest discordant stations 

Homogenou

s Region 
Site 

Frequency 

analysis method 
AD test statistic P-value KS test statistic P-value 

I 

Dibrugarh 
At Site 0.273 0.976 0.150 0.983 

Regional 0.332 0.937 0.150 0.983 

North 
Lakhimpur 

At Site 0.373 0.902 0.150 0.983 

Regional 0.552 0.715 0.200 0.832 

II 

Cherrapunjee 
At Site 0.146 1.000 0.100 1.000 

Regional 0.229 0.993 0.150 0.983 

Mawsynram 
At Site 0.192 0.998 0.100 1.000 

Regional 0.213 0.996 0.150 0.983 

III 

Silchar 
At Site 0.206 0.997 0.100 1.000 

Regional 0.194 0.998 0.100 1.000 

Kailasahar 
At Site 0.187 0.999 0.100 1.000 

Regional 0.336 0.934 0.150 0.983 

The confidence intervals evaluated to estimate the uncertainty for the lowest and highest discordant stations in each 

region is presented in Figures 5 to 7. For Dibrugarh station in region I, the empirically determined precipitation quantiles 

all fall within the 95% confidence interval (CI) bounds for both MCS and normality assumptions. Highest discordant 

station of region I i.e., North Lakhimpur in Figure 5 shows wider CI bounds for at-site analysis with the empirical 

quantiles lying on the lower CI bounds of normality assumption. Thus, the 95% CI bounds are found less narrow and 

the uncertainty associated with estimation of at-site quantiles are relatively higher. In this region both the regional growth 

curve and at-site growth curve are well within the MCS CI and normality-based confidence intervals. For Cherrapunjee 

station in Figure 6, the upper limit of MC simulation bounds exceeds than normality assumptions, thereby indicating 

uncertainty of estimates to deviate from normality assumption. But as the regional quantile growth curve for the station 

is found to be well bounded and close to lower limit of both the normality and MCS CI bounds, there is no over-

estimation of rainfall estimates. Whereas, the regional and at-site CI bounds for Mawsynram is well within the normality 

assumption bounds and do not show any significant difference. Thus, the uncertainty in quantiles for Mawsynram is 

least in region II. For station Kailasahar of region III in Figure 7, the confidence interval width was almost similar in 

both regional and at-site estimations. For Silchar with lowest discordancy in region III, the upper limits of MCS CI from 

regional approach have higher values thus providing greater widths for higher return periods. Thus, the uncertainty is 

seen to be more for lowest discordant station in this region. Though the empirical quantiles up to 8-year return periods 

are seen to fall on the lower limit of both the CI bounds, the observation circles are seen to return to position well within 

the MCS and normality CI bounds afterwards.  

The regional estimates remain close to the lower limit of the CI bounds of both MC simulation and normality bounds, 

thereby indicating no overestimation in the quantile growth curve. Figure 5 to 7 overall indicates that the confidence 

intervals for regional quantiles calculated from MC simulation are narrower and follow normality assumptions in all 

three homogenous regions. The uncertainty is explored and presented for the discordant extremes in the regions. In 

comparison to at-site analysis, the regional approach was found to have low uncertainty in most of the stations. 

To have an assessment of overall performance including all stations in a region, the average relative width (ARW) 

of the confidence intervals has been analysed and presented in Table 4. The MC simulation procedure is similarly 

followed for other stations in the region and confidence intervals are computed at each return period. Comparison to at-

site estimates and confidence intervals for corresponding return periods are also done. The results show that, the regional 

analysis of rainfall estimates for region I produced narrower confidence intervals than at-site analysis. For region II, the 

widths of CI’s across all stations in the region were slightly larger than at-site analysis CI’s. But the CI’s obtained for 

region II were relatively the least deviating among the three regions, thereby indicating that the GEV distribution 

satisfactorily describes the rainfall distribution in the region. For region III, the confidence intervals were better than 

those of at-site only for higher return periods of 500 and 1000 years. This indicates that the regional PE3 distribution 

was relatively less appropriate to at-site GEV distribution for the region III in producing accurate rainfall estimates. The 

clustered region III constitutes twenty stations which may be considered large, and the analysis has overestimation of 

regional growth curve from true at-site growth curve for some stations and underestimation on some stations. This may 

be due to the widespread location of the stations in both Brahmaputra and Barak basin. 
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Figure 5. Comparison plot of confidence intervals for (a) lowest and (b) highest discordant stations for region I 

 

 

Figure 6. Comparison plot of confidence intervals for (a) lowest and (b) highest discordant stations for region II 

(b) 

(a) 
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Figure 7. Comparison plot of confidence intervals for (a) lowest and (b) highest discordant stations for region III 

Furthermore, altitude appears to have an impact on the quantile performance among the stations in the cluster regions. 

The region I, II and III has altitudinal difference between stations with highest and lowest altitude as 56, 88 and 1582 

m. Thus, it can be seen that as the altitudinal variation in a cluster group increases, there is seen to observe a reduction 

in the efficiency of regional quantile estimates. Region III has the largest number of stations and constitutes the highest 

and lowest station altitudes in the study area, and hence rainfall estimates is found to vary in the region relatively more, 

leading to more uncertainty. Thus, the results indicate estimates from regional analysis is most accurate in region I, with 

slightly reduced performance in regions II and better performance for only higher return periods in region III. The 

uncertainty in regional analysis estimates is thus explored and with comparison to at-site approach in the delineated 

homogenous regions, is considered preferable.  

Table 4. Average relative width (ARW) for regional and at-site rainfall quantiles 

Region 
No of 

stations 

Frequency 

Analysis method 

ARW for different return periods 

2 5 10 20 50 100 200 500 1000 

Region I 9 
Regional 0.25 0.24 0.26 0.32 0.43 0.54 0.67 0.87 1.05 

At-Site 0.24 0.24 0.26 0.32 0.46 0.58 0.74 0.98 1.19 

Region II 2 
Regional 0.26 0.25 0.26 0.31 0.41 0.50 0.61 0.80 0.95 

At-Site 0.25 0.22 0.22 0.25 0.33 0.40 0.48 0.59 0.66 

Region III 20 
Regional 0.23 0.33 0.44 0.60 0.81 0.97 1.12 1.29 1.43 

At-Site 0.29 0.30 0.33 0.40 0.58 0.75 0.95 1.30 1.56 

4.4. Uncertainty Analysis based on Information Transfer Index and MLE-GA 

For regional analysis, the parameters of the selected distribution determined using L-Moments in each homogenous 

region is taken for lowest and highest discordant sites in each region. For uncertainty determination of the parameters, 

ungauged site (lowest and highest discordant sites of a homogenous region) are considered for assessment. Information 

transfer index (ITI) values were calculated based on equation number 9 to 11, and new random samples at all the sites 

(a) 

(b) 
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in the homogenous region are generated using parameters of the selected regional distribution. Then, random sample 

data of the original sample size as the considered site is generated based on ITI dependent weights using Equation 12. 

The parameters of the ITI based random sample is evaluated using L-Moments method and rainfall depths under 

different return periods (T= 10, 20, 50 and 200 years) is determined. The process is repeated 1000 times using Monte 

Carlo simulation approach, and quantiles under different are obtained. For each return period, estimated rainfall quantiles 

from 1000 Monte Carlo simulation are sorted and ranked and the 5th, 50th and 95th percentile is obtained. Similar 

procedure is applied for the other two types of weights viz. (i) distance-based dependent weights, and (ii) combination 

of ITI and distance-based weights to generate random sample from regional distribution at the considered site. Here, the 

distance is based on Euclidean distance and weights are determined using equation 13 and 14. In the present study, the 

stations of region 2 was not considered in the analysis, as ITI and distance-based weights for only two stations was not 

possible. Two new stations Karimganj and Lengpui was considered in the study for assessing the performance of the 

analyses. The sites were assigned to region III based on the Euclidean distance nearness of station attributes to the 

centroid of region III cluster group.  

4.4.1. Regional Uncertainty 

The ITI based weights gave better results in regional frequency analysis with estimates of rainfall performing better 

than at-site analysis for both least and highest discordant stations in region I; and for least discordancy of region III. 

Despite the fact that the fitted distribution for region I is both GEV distribution in both regional and at-site frequency 

analysis, L-Moment based regional rainfall estimates was found to clearly outperform the at-site estimates for all return 

periods and can be seen in Figure 8. This shows that, stations with least and highest discordancy in the region I gives 

better prediction with regional frequency analysis compared to at-site frequency analysis. The uncertainty in quantile 

estimates for regional analysis was observed the lowest with ITI based weighting and highest for distance-based 

weighting in all return period of the two regions except for highly discordant station in region III. This may be due to 

high regional absolute bias AR(F) of region III as presented in Table 2, as a higher value is suggestive of estimation of 

quantiles to be consistently high at some stations and low at others. The performance of the new method for two new 

stations i.e., Karimganj and Lengpui as in Figure 10, did not provide acceptable results as the regional estimates were 

significantly much higher compared to at-site estimates. One reason for this may be due to the data for the stations may 

not behave as the selected regional distribution for the homogenous group and may need to be included in clustering for 

proper allotment of homogenous group. But the performance of ITI based uncertainty compared to at-site was superior 

for Lengpui station, thereby suggesting the ITI based method of generating station data to be reliable and robust. Overall, 

for homogenous regions with low bias as in region I, the performance of ITI based uncertainty definitely outperformed 

at-site frequency analysis.   

4.4.2. At-site Uncertainty 

The ITI and distance-based weights for application of uncertainty in at-site frequency analysis was done considering 

8 and 16 nearby surrounding stations. The grouping of stations into 8 and 16 stations was done by ranking and sorting 

the stations in terms of higher ITI value shared between the ungauged station (here least and highest discordant stations) 

for ITI dependent weights. For the distance-based and MLE-GA approach, the nearness to the study station of other 

stations was based on Euclidean distance. Figures 8 and 9 shows at-site estimates produced higher uncertainty in 

comparision to regional analysis estimates except for highest discordant station in region III. Applying the ITI based 

dependent weights, the uncertainty of at-site estimates was significantly reduced in comparisons to distance based at-

site estimates. This result is suggestive of the fact that grouping of stations based on ITI yield much more reliable and 

correct information at the ungauged site. The uncertainty in rainfall estimates calculated by at-site estimates for all three 

approaches (ITI, distance-based and MLE-GA) is seen increasing with increase in return period for all stations, which 

is in agreement with the corresponding results of regional estimates. However, the rate of increase is reduced with 

inclusion of more extracted sites from 8 to 16. The uncertainty obtained for MLE-GA based estimates for both ITI and 

distance-based is found to have lower values compared to at-site ITI and distance-based estimates for return period of 

50, 100 and 200 years for all regions. This suggests that the regional analysis comparision to at-sites estimates based on 

MLE method optimized by genetic algorithm estimates are more preferable. Though in many studies, it is generally 

observed that L-Moment method outperforms MLE method in regional frequency analysis, and MLE generally performs 

better with larger sample size. The present work found MLE to perform better than L-Moment method in at-site 

frequency analysis estimates and with low sample size of 20. For the two new sites Karimganj and Lengpui as presented 

in Figure 10, the MLE-GA method also performed better with least value of uncertainty for at-site estimates both for 

ITI and distance-based estimates. This suggests that the at-site estimates based on MLE-GA may serve as a better 

alternative for comparing regional frequency estimates.   
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(a)   

 (b)  

Figure 8. Uncertainty of extreme rainfall estimations for (a) least and (b) highest discordant stations in region I 

(a)   
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(b)  

Figure 9. Uncertainty of extreme rainfall estimations for (a) least and (b) highest discordant stations in region III  

(a)  

(b)  

Figure 10. Uncertainty of extreme rainfall estimations for two ungauged stations (a) Karimganj (b) Lengpui not considered 

in grouping of homogenous regions 
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4.5. Comparison with Previously Done Similar Studies  

Although this is the first study to present a comparison of regional and at-site rainfall estimates in the southern part 

of Brahmaputra and Barak region, some closely related studies in other parts of the world may be related for validation 

of the performance. For at-site analysis in Maryland, USA, Al Kazbaf and Bensi, 2021 [14] found that the choice of 

distribution and method of parameter estimation (LMOM, MLE and MOM) affected the shape and location of 

precipitation estimate hazard curve performance significantly. For regional analysis with GEV and GNO distributions, 

the effect of distribution choice had limited effects. This is in accordance with the results in the present study wherein 

GEV distribution of at-site analysis seems to perform better than regional analysis by PE3 distribution for stations in 

region III. While for region I where both at-site and regional analysis are based on GEV distribution the regional analysis 

performed better in uncertainty. So, the choice of distribution is an important parameter in regional frequency 

analysis. Also, the parameter estimation method MLE-GA was found to perform better for highly discordant site and 

lower to least discordant site in region III compared to regional analysis. Yin et al. 2016 [33] compared the accuracy of 

regional and at-site quantiles of Yangtze River delta region based on RMSE and obtained lower RMSE for regional 

analysis for longer return periods. Li et al. 2019 [15] considered the lowest and highest discordant stations in nine 

homogenous regions of Sichuan province, China and found that stations with lowest discordancy had smaller differences 

of design rainfall values for both regional and at-site frequency analysis compared to stations with highest discordancy 

in the region. This is seen in the study presented, with larger difference for highest discordancy sites in region I and III. 

Zhou et al. 2014 [12] compared the MLE and L-Moment method for annual extreme precipitation estimates in Taihu 

basin of China for GEV and PE3 distribution and found MLE to provide unreasonable higher estimates compared to L-

Moment estimates. In the present study, MLE method optimised using GA gave reasonable estimates for at-site analysis 

using GEV distributions and performed better to at-site estimates based on L-Moments method. But the precipitation 

estimates based on L-Moment regional frequency analysis performed superior to at-site analysis for both L-Moment and 

MLE-GA estimation methods for most stations. The MLE-GA estimates for at-site analysis for the stations in the 

homogenous regions from both ITI and distance-based estimates was accurately estimated with observance of no 

unreasonable result. 

5. Summary and Conclusions 

The study focused on the performance of extreme rainfall quantiles for homogenous regions delineated by genetic 

algorithm-based clustering. Uncertainty and accuracy assessment was investigated for the selected frequency 

distributions of the derived homogenous regions. Two distributions GEV and PE3 were found to satisfactorily define 

the annual extreme rainfall behavior in the study area. Regional growth curves of GEV and PE3 distributions from 

regional frequency analysis gave minimal bias and least deviation in all three regions. The uncertainty associated with 

regional rainfall quantiles is then reported using coefficient of variation Cv, and is found to be consistent and fairly low 

for all considered stations in the regions. Whereas analysis from at-site quantiles for the stations were seen to be highly 

inconsistent and produced higher values of Cv with increase in return periods. Results obtained suggest consistency in 

uncertainty of rainfall estimates for regional analysis, with larger variation in at-site analysis.   

Results of uncertainty for regional quantiles of lowest and highest discordant stations in all three delineated 

homogenous rainfall regions did not seem to differ distinctly, and were within the confidence limits of both Monte Carlo 

simulation and normality assumptions. Whereas the uncertainty of quantiles estimated from at-site analysis increased 

after return period of 100 years in regions I and III. Results also show the uncertainty associated with rainfall quantiles 

derived from Monte Carlo simulation to follow normal distribution, and hence the regional rainfall quantiles were 

satisfactorily accurate. Region III comprised of 20 stations and were widely spread across both Brahmaputra and Barak 

basin. Growth curve in this region gave higher absolute relative bias for return periods up to 200 years, and may be 

attributed to a large number of stations with distinctly varying altitudes. Further, altitude seems to have influence on 

regional frequency analysis in the northeast region. As the altitudinal variation of stations for a cluster group increased, 

reduction in the accuracy of estimated regional quantile estimates was observed.  

An assessment of overall performance of a homogenous region with average relative width of confidence interval 

showed that regional analysis produced narrower confidence intervals than at-site analysis in region I. While the average 

relative width (ARW) of region II and III were not as good as region I and had slightly higher values for regional 

analysis. But, the regional estimates was found to be better at higher return periods of 500 and 100 years in region III. 

Based on the ARW results, genetic algorithm based clustering approach is found to be a robust method in determining 

homogeneous regions and hence can be applied in determining reliable and accurate rainfall estimates for any study 

region.   

The ITI-based weights produced superior results in regional frequency analysis, with rainfall estimates 

outperforming on-site analysis for both the least and most discordant stations in region I, as well as the least discordant 

stations in region III. Except for the most discordant station in area III, the uncertainty was determined to be lowest 

when ITI weighting was applied and highest when distance weighting was utilized. Regional analysis outperformed at-
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site frequency analysis based on ITI-dependent derived weights for homogeneous regions with little bias. For all regions, 

the uncertainty in quantile estimates using at-site analysis was consistently greater than the uncertainty in quantile 

estimates using a distance-based weighting technique. This finding suggests that ITI provides more valuable information 

across sites and can combine sites to provide more accurate information at an ungauged site. Additionally, the 

uncertainty associated with MLE-GA-based at-site estimates of ITI and distance-based estimates is shown to be lower 

and more preferred than that associated with at-site L-Moments-based ITI and distance-based estimates. While the MLE-

GA approach performed best for the two new unmeasured sites Karimganj and Lengpui, it did so with the least 

uncertainty, indicating that at-site estimates based on the MLE-GA method may be a preferable choice for comparison. 

The results of this study will be helpful in promoting the differences between regional and at-site frequency estimates 

in the context of hydrological frequency analysis. At the same time, it will be helpful in assisting decisions related to 

risk and hazard mitigation of extreme rainfall events in the northeast region of India. 
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