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Abstract 

The current study aimed at predicting standard penetration resistance (N) of soil using particle sizes and Atterberg's limits. 

The geotechnical database was created subsequent to the field and laboratory testing. The sample collection points were 

distributed in a mesh grid pattern to have uniform sampling consistency. Artificial Neural Networks (ANN) were trained 

on the database to build a knowledge-based understanding of the interrelation of the given soil parameters. To check the 

efficacy of the model, the validation was carried out by predicting standard penetration resistance (N) for another 30 

samples which were not included in the training data (444 samples). The trained ANN model has been found to predict N 

values in close agreement with the N values measured in the field. The novelty of the research work is the standard 

penetration prediction employing basic physical properties of soil. This proves the efficacy of the proposed model for the 

target civil engineering application. 

Keywords: Prediction of SPT; Geotechnical Database; ANN in Geotechnics; SPT Correlation; Soil Gradation. 

 

1. Introduction 

Geotechnical investigations are mandatory for any civil engineering project. These investigations have an important 

role before the project's implementation. Feasibility studies lead to planning, design and finally execution phase. 

Preliminary soil investigations lead to the selection of the most suitable site or route for the proposed development 

project. The current study was aimed at the evaluation of economical primary examination consuming less time with 

equitable accuracy. The standard penetration resistance number (N) has been in the spotlight of researchers. Its numerous 

correlations have been evaluated with soil's physical and engineering properties. The study employed reverse operation 

by predicting N from index properties in contrast to most of the available studies. Like the fame of SPT as a field 

operation, Artificial Neural Networks have also made their place for the establishment of interrelations between 

available parameters. As presented in the literature review section, its applications include slope stability analysis, soil 

classification, design of earth supported and earth retaining structures. Artificial Neural Network (ANN) is a knowledge-

based technique of artificial intelligence that attempts to replicate the human nervous system. ANN technique involves 

the generation and training of models using available data sets. The currents study used the soil gradation and Atterberg's 

limits, as input and the N is the model's output. The optimized ANN model successfully predicted the N values with an 

optimum accuracy yielding a coefficient of determination up to 0.94. 

                                                           
* Corresponding author: usman.arshid@uettaxila.edu.pk 

 
http://dx.doi.org/10.28991/CEJ-SP2021-07-01 

 

© 2021 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms and 
conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 7, Special Issue, 2021 

2 

 

2. Literature Review 

The Standard Penetration Test (SPT) is an in-situ test and is considered one of the most august tests for soil 

investigation. The earliest credits for introducing SPT are attributed to Mohr and Terzaghi, as reported by Davidson [1]. 

Mohr is believed to have introduced the test in 1927 as reported by Hvorsolv, the SPT working Party, who credits 

Terzaghi for the SPT invention. Almost every soil exploration program in Turkey contains SPT as one of its principal 

components [2, 3]. Similarly, it is considered a keystone for soil exploration works in North America [4]. Mori reported 

that more than 90% of preliminary soil investigations are performed using SPT [5]. Inaccessible areas usually require 

the determination of N via indirect methods [6]. A spatially interpolated map for the allowable bearing capacity in a 

region based on SPT N values using GIS software has also been developed [7, 8]. Narimani (2018) has appraised the 

empirical correlation between SPT and pressuremeter test considering the relatively cheaper cost of SPT [9].  

In developing countries, the standard penetration test is an extensively used tool for soil investigations. The SPT 

evaluates the strength of soils by measuring the penetration resistance (N) of the standard rod. It was initially developed 

for coarse-grained soil, but numerous researchers have developed correlations of N with most of soil's physical and 

mechanical properties. The said correlations have enhanced its scope to all types of soils and the determination of several 

soil parameters through these correlations. Site-specific correlations of N with shear wave velocity (Vs) by statistical 

regression have been reported [10]. Unconfined compressive strength (UCS) is a reliable test for fine-grained soils, 

Behpoor and Ghahramani (1990) has evaluated the relationship of N with the UCS and modulus of elasticity (E) for the 

soils having N < 25 [11]. Arshid and Kamal (2020) [12] appraised a similar relationship for refilled soils using relative 

compaction and moisture content. Wrzesiński et al. (2018) appraised the shear strength evaluation of fine-grained 

cohesive soils using artificial neural networks [13]. A Risk model for the prediction of subsidence along railway lines 

based on Artificial Neural Networks (ANN) employing Multi-Layer Perceptron (MLP) and support vector machine 

(SVM) has been developed by Le and Oh (2018) [14]. ANN model to predict settlement of pile has been appraised by 

Baziar et al. (2015) [15]. 

For the computation of geotechnical properties, several numerical, statistical or empirical models have been 

developed. These models in geotechnical engineering contain certain limitations due to spatial variations and 

uncertainties associated with soil. The nonlinear behaviour of the soil limits the suitability of regression models for its 

evaluation under various scenarios. Kurup and Griffin (2006) [16] stated that mathematical models work on soil behavior 

only, ignoring the composition of the soil, which affects their accuracy. Constitutive modeling is unable to properly 

simulate the behavior of geomaterial for reasons pertaining to excessive empirical parameters, complex formulation, 

and idealization of material behavior [17]. The limitations of numerical, statistical, or empirical methods/models attract 

researchers to use artificial neural networks, which are general, flexible and do not require a physical model to start the 

process [18, 19].  

An inference method called Reverse Engineering Gene Networks with Artificial Neural Networks (RegnANN) has 

been reported to yield better results [20]. Moreover, it can classify patterns and tolerate the presence of chaotic 

components. ANN has been employed to predict or model the soil parameters yielding higher accuracy. So it is now 

considered a better alternative to the numerical, statistical, or numerical models for the evaluation of various parameters 

of geomaterials. Numerous researchers have employed this knowledge-based artificial intelligence technique to crack 

geotechnical engineering problems; prediction of organic matter present in soil [21], estimation of permeability, 

compaction and lateral earth pressure [22], light structural foundation[23] determination of an appropriate number of 

testing points [24], pile foundation, soil nails [25], soil resistivity [26] decision making for geotechnical drilling vessels 

[27], Prediction of soil type and SPT-N [28, 29], Prediction of shear wave velocity and SPT-N [30].  

In contrast to the mathematical models, which incorporate several assumptions to overcome the lack of physical 

understanding, the ANNs utilize the input-output data only and delineate the structure of the model itself. So, the ANN 

model does not require to assume the structure of the model in advance. Mathematical models require an advance 

assumption of the structures which influence the accuracy of their results; hence mathematical models fail to simulate 

the complex behaviour of most geotechnical engineering problems. With the enrichment of the database, ANNs can 

always be updated to obtain better results by feeding the additional data. Figure 1 presents an overview of the function 

of ANN; it consists of three modules. One or more hidden layers are implanted between the input and output layers. The 

input layer contains input parameters, while the required output is set in the output layer [31]. 



Civil Engineering Journal         Vol. 7, Special Issue, 2021 

3 

 

 

Figure 1. ANN Concept Diagram  

The available data is fed to the trial ANN model, and it processes the data by knowing the input and outputs of the 

fed data. ANN model establishes the interrelations between the nodes in the input layer and output layer by adjusting 

their weights in backward and forward cycles. The weights of connections between the input, hidden, and output layers 

are adjusted in each backward cycle to arrive at the known output. The process is expressed mathematically in Equations 

1 and 2 [32]. The output predicted from the ANN can be calculated by Equation 1: 

N =  ∑ wixi + θi (1) 

where N is the output predicted from the ANN, wi= are the weights for the layer ith, xi=are the input values for the layer 

ith, and θi=are the bias values for the layer ith. 

Back Propagation neural network is the most widely used network in practice; it was developed by Rumelhart et al. 

[33]. An activation function. To enable the prediction models to arrive at pre-fed output values, an activation function 

performs the task by assigning calculated weighted input values. A variety of default activation functions are available 

to work with ANN; however, these functions could be customized to meet any specific requirement. In the present study, 

training of the ANNs was achieved through the multi-layer free forward back-propagation process (MLFFBP). This 

process employs the Levenberg-Marquardt back-propagation method [34]. The resulting error can be calculated by the 

following Equation 2: 

E(w) =
1

2
∑i [T2 − N2] (2) 

where T is the target (defined in the database), and N is the output (predicted by the ANN) value. To minimize the error 

obtained from Equation 2, the back-propagation technique (DETA RULE) proposed by [35, 36] was employed. 

Furthermore, to avoid the problem of local minima [37], each database was divided into three further subsets, i.e. 

(Training, Validation, and Testing). Figure 2 shows the sequence of activities aimed at the prediction of N. 

3. Research Methodology 

The Photohar is a plateau located in the northern part of Punjab province in Pakistan. The plateau is a geographic 

term describing an elevated landform having a relatively planar topography. Mountainous ranges enclose its Northern 

and Southern sides. The Southern rage is descending from the surface, and the Northern range is ascending in elevation. 

The Eastern and Western sides are enclosed by the major rivers, the Indus on the West, and the Jhelum on the East. The 

elevation of the hilltops are as high as 1200 m above mean sea level, while the elevation descends to 300 m above mean 

sea level along the river banks. Owning to an alluvial deposit, the surface shows a number of local ridges and valleys. 

Photohar stretches from latitude 32.166-34.150 N and longitude 71.166-73.916 E and covers an area of about 23,000 

Km2. The stratigraphic succession exposed in the study area ranges in age from Precambrian to Quaternary. Warwick 

and Wardlaw (2007) reported that the plateau's geologic setting also inhibits extensive variation [38]. The sedimentary 

rocks exposed on the Potwar Plateau and adjacent Kohat Plateau are Eocene limestone, evaporites, and red beds; 

Miocene to Pleistocene fluvial sediments and terrace gravel and loess; and Holocene alluvium [39, 40]. 
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Figure 2. ANN flow chart 

3.1. Experimental Program 

The study area locator map and data collection points are shown in Figures 3 and 4. Seventy-four (74) data stations 

were marked and distributed in the mesh grid pattern throughout the Photohar plateau of northern Punjab, Pakistan. The 

sampling stations were precisely selected to lie on natural deposits and in confirmation to the area's general topographic 

and geological setting. 

 

Figure 3. Study area locator map 
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Figure 4. Distribution of data collection points 

As the study targets to ease out the feasibility and planning stages of projects, hence the depth of exploration was 

limited to 4.5 m. SPTs were performed at 1.5 m, 3 m, and 4.5 m depth at each data station. Samples were extracted for 

gradation and Atterberg's limits. Seventeen Hundred and Seventy-Six (1776) tests were performed, comprising 444 SPT, 

444 Gradation (G), and Atterberg's limit (ALs). SPT has been standardized by the American Society of Testing and 

Materials (ASTM) under designation D 1586 [41]. The test comprises boring a standard diameter hole using an 

appropriate boring technique depending on the characteristics of the site's soil. The number of blows applied for each 

0.15 m (0.5 ft.) penetration are recorded, and the number of blows for the last 0.3 m (1 ft.) penetration is termed as 

standard penetration resistance number (N). The cathead hammer release system was used in the current study. Figures 

5 and 6 present the experimental procedure and samples. 

  

Figure 5. Standard Penetration Test assembly 

  

Figure 6. Samples prepared for sieve analysis test 
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Many different testing factors can influence the accuracy of the SPT readings. For example, borehole diameter, rod 

lengths, and hammer efficiency could influence the measured N value. Correction factors for these parameters are 

available; however, the measured SPT-N values were used to train ANN models. These corrections were considered to 

have no effect on the prediction mechanism; however, the user may apply the appropriate correction to the predicted 

SPT-N values according to the actual working conditions. Liquid Limit (LL) is the water content, in percent, at which 

semiliquid soil turns to plastic. The Plastic Limit (PL) is the water content, in percent, of soil at the boundary between 

the plastic and semi-solid states [42]. 

The proportion of various grain sizes present in the soil is termed as its gradation. The plot of the grain sizes and 

their percentage finer than the designated grain sizes is called the Grain Size Distribution (GSD) of the given soil as 

described by ASTM D 6913 [43]. The stress-strain behaviour of soil is largely dependent on the GSD of the soil; hence 

it is almost an integral part of almost all soil exploration works. The GSD is also an important factor for the engineering 

classification of soils and permeability assessments. The GSD characteristics lead to selecting or rejecting the specific 

materials for any specific civil engineering project. Almost all the engineering types of soils are present in the region, 

ranging from GP to CL. The fine-grained inorganic soils have light brown to reddish brown colour shades. Consistency 

is in the range of medium stiff to hard. The maximum liquid limit as determined is 48.14, while the maximum plastic 

limit is 27.77, along with the presence of non-plastic silts. AASHTO subgrade ratings range from A-1-a to A-7. Clean 

coarse-grained soils are poorly graded, while silty and clayey gravels and sands are also found in the region. Coarse 

soils are having loose to very dense relative density. The results of field and laboratory explorations led to presenting a 

potential SPT-N Values model using less expensive and less time-consuming laboratory testing and field exploration. 

3.2. Preparation of Databases 

After the execution of the field and laboratory tests of the samples collected from the locations shown in Fig 3, the 

soil parameters were evaluated and used to create a database for the selected knowledge-based models. The selected 

parameters for the generation of models were the percentage passing of the 63, 50, 40, 20, 10, 5, 2, 1, 0.5, 0.25, 0.16, 

0.08 mm sieves and Atterberg's Limits (LL, PL). The results were arranged systematically to form a database containing 

three subsets. The soil parameters representing 1.5 m deep formation were arranged in subset 1, while subset 2 and 

subset 3 contain parameters for 3.0 m and 4.5 m depths. The ANN model for 1.5 m depth had 16 input parameters, while 

the ANN model for 3.0m depth had 17 inputs, while the ANN model for 4.5 m depth had 18 parameters in the input 

layer, as shown in Table 1. The additional parameters for 3.0 m and 4.5 m depth were incorporated to further improve 

the performance of the models. The statistical outlines of the databases used for training purposes are shown in Table 1. 

Table 1. Input Parameters for ANN Models 

  Database at 1.5 m Database at 3.0 m Database at 4.5 m 

Sieve # Units Min Max St.Dev COV Min Max St.Dev COV Min Max St.Dev COV 

80 (mm) 86 100 2.75 0.025 88.54 100 1.37 0.01 0 100 9.21 0.09 

63 (mm) 79.75 100 3.81 0.04 78.8 100 3.71 0.04 0 100 11.11 0.11 

50 (mm) 59.52 100 7.5 0.08 52.15 100 9.15 0.09 0 100 14.23 0.15 

40 (mm) 43.54 100 11.25 0.12 20.33 100 14.3 0.15 0 100 21.12 0.23 

20 (mm) 9.09 100 20.64 0.22 0.066 100 28.03 0.33 0 100 32.94 0.41 

10 (mm) 2.56 100 23.77 0.27 0.066 100 31.13 0.38 0 100 35.14 0.46 

5 (mm) 1.1 100 25.13 0.29 0 100 32.13 0.41 0 100 35.94 0.49 

2 (mm) 0 100 26.21 0.31 0 100 33.18 0.43 0 100 36.82 0.52 

1 (mm) 0 100 26.47 0.32 0 100 33.53 0.44 0 100 36.82 0.53 

0.5 (mm) 0 100 27.38 0.34 0 100 34.03 0.46 0 100 37.28 0.56 

0.25 (mm) 0 99.5 29.19 0.4 0 100 33.35 0.52 0 100 35.72 0.62 

0.16 (mm) 0 99.3 30.53 0.45 0 100 34.05 0.56 0 100 36.07 0.67 

0.08 (mm) 0 99 32.65 0.51 0 100 35.43 0.63 0 100 37.22 0.75 

LL % 0 46.12 14.16 0.73 0 48.14 14.43 0.92 0 37.56 14.25 0.97 

PL % 0 26.96 9.54 0.71 0 27.77 10.23 0.9 0 26.83 10.21 0.96 

PI % 0 21.25 5.27 0.9 0 20.37 4.72 1.07 0 16.03 4.6 1.09 

SPT-1.5 NO. 2 100 33.07 0.76 2 100 33.07 0.76 2 100 33.07 0.76 

SPT-3.0      9 100 36.18 0.63 9 100 36.18 0.63 

SPT-4.5          8 100 36.31 0.55 



Civil Engineering Journal         Vol. 7, Special Issue, 2021 

7 

 

3.3. The Architecture of ANN Models 

In this study, a fully customized Matlab-based tool developed by Ahmad was used for training the neural network 

models. Eighteen (18) different ANN models were trained at three levels (i.e., 1.5, 3.0, and 4.5 m) to predict the N value. 

For each depth, six ANN models with different architectures were trained. Six model having different number of hidden 

layers and number of neurons were developed 16-1(16)-1 (inputs-hidden layers (neurons)-output), 16-1(32)-1, 16-2(16)-

1, 16-2(32)-1, 16-3(16)-1 and 16-3(32)-1, were developed. In this study, sigmoid and hyperbolic activation functions 

are used between the input and middle layer, and hyperbolic activation functions are employed between the middle and 

output layer of the ANN. Different Activation functions are presented in Table 2, and the Architecture of different ANN 

models has been presented in Table 3. 

Table 2. Different Activation functions for ANN 

Activation Function Formulae Domain Shape 

Logistic/Sigmoid 𝑓(𝑥) =
1

1 − 𝑒−𝑥
 (0, +1) 

 

Hyperbolic 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (-1, +1) 

 

Table 3. Architecture of ANN Models 

Models 1 2 3 4 5 6 

Structure of Model 

Input Layer 16 16 16 16 16 16 

Hidden Layer 1 16 32 16 32 16 32 

Hidden Layer 2 0 0 16 32 16 32 

Hidden Layer 3 0 0 0 0 16 32 

Output Layer 1 1 1 1 1 1 

Transfer Function 

Hidden Layer 1 Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 

Hidden Layer 2 Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 

Hidden Layer 3 Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 

Output Layer Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic 

3.4. Normalization of Databases 

The performance of an ANN depends upon the quality of the database, as the database consists of parameters having 

different measuring units. Therefore, these units must be converted to unitless entities to bring these to the same dais. 

This process is termed data normalization. To ease out the learning process of ANN models, it is advisable to assign the 

upper and lower limits for the subject parameters. In this work, all the parameters were normalized between [0.1-0.9] 

by using the following Equation 3: 

𝑁 =
∆𝑁

∆𝑛
𝑛 + (𝑁𝑚𝑎𝑥 −

∆𝑁

∆𝑛
𝑛𝑚𝑎𝑥) (3) 

where n is the actual value, N is the new normalized value, Δn is the total variance of n, nmax is the maximum n value, 

Nmax is the new desired maximum value of N and ΔN is the new desired difference between the maximum and 

minimum N value. In our case, we use the parameters Nmax=0.9 and ΔN=0.8 to end up with normalized values in the 

range [0.1, 0.9]. The same equation, Equation 3, in rearranged form, is used to denormalize the output results predicted 

by the ANN. 

4. Results and Discussion 

The performance of the proposed ANN models was assessed using the mean arithmetic error (MAE), mean square 

error (MSE), and coefficient of correlation (R). For the testing data subset 1, the MAE values ranged from 12.73 to 

17.72, the coefficient of correlation (R) between 0.61 and 0.75, and the mean square error ranged between 3.22 and 4.74. 

Model 1.5-N5, which has three hidden layers and sixteen neurons, performed best for subset 1, i.e., 1.5 m depth. Figures 

7 and 8 show the results of the models for subset 1. 
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Figure 7. Comparison of Models at 1.5m 

 

Figure 8. Statistical Indicators of Models at 1.5 m 

For subset 2, the MAE values ranged from 7.14 to 10.7, while the coefficient of correlation (R) values from 0.88 to 

0.92 and MSE ranged between 1.92 and 2.56. Model 3.0-N5, which has three hidden layers and 16 neurons in each 

layer, was the best performing model for the 3 m depth database subset. Figures 9 and 10 show the results of the models 

for subset 2. 

 

Figure 9. Comparison of Models at 3.0 m 
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Figure 10. Statistical Indicators of Models at 3.0 m 

For subset 3, the MAE values ranged from 6.97 to 10.3, while the coefficient of correlation (R) ranged from 0.89 to 

0.94, and the mean square error ranged between 1.01 and 2.7. Model 4.5-N44, which has two (02) hidden layers and 32 

neurons in each layer, was the best performing model for the depth of 4.5 m. Figures 11 and 12 show the results of the 

models for subset 3. These models employed sigmoid as the transfer function between input and hidden layers while 

hyperbolic function between the hidden and output layer.  

 

Figure 11. Comparison of Models at 4.5 m 

 

Figure 12. Statistical Indicators of Models at 4.5 m 
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Among the eighteen models, the optimized models were then tested using test results of randomly selected additional 

data stations. Finally, the additional 30 tests were performed for validation of the optimized ANN model. The outcome 

of the validation results is presented in Figure 13. 

 

Figure 1. Validation of Optimized ANN Models 

It shows the graphical presentations of the validated models. The optimized models predicted the N values well 

harmonized with field values. Prediction of 1.5-N5 ranged from 88-111%. The predicted N values are greater than 100%, 

meaning the model predicted value is higher than the actual value of N, as measured in the field. Prediction of 3.0-N5 

ranges from 72 to 110%. While the prediction range of 4.5-N4 remains 65 to 110%. A user-friendly Matlab code for the 

developed AAN model is also being presented as a supplementary tool. 

5. Conclusion 

The paper presents the use of ANNs to predict N using gradation and Atterberg's limits of the soil. Among the 

eighteen trial ANN models having different architecture, the Model 1.5N5, 3.0N5, and 4.5N4 were the best performing 

models for the samples' 1st, 2nd, and 3rd data sets. The study demonstrates the adequate accuracy (R =0.75 to 0.94, 

MAE = 6.97 to 12.73 MSE=1.01 to 3.22) of the back propagation neural networks to predict the N. For the further 

verification of optimized models; additional 30 soil samples were extracted and tested. The results were compared with 

the prediction of optimized ANN models. Predicted N values are well harmonized with field values. It is concluded that 

ANN modeling is a good technique to predict N from the selected basic soil properties with acceptable accuracy. It will 

cut down the time and cost required for the preliminary investigation of large-scale projects and serve as ready-to-use 

databases for single or double-story residential units and select suitable routes for highways. It will be very useful for a 

site where the mobilization of SPT equipment is not possible due to the difficult terrain during the feasibility phase of 

projects. The study's outcome will ease out the screening process of available sites for a particular project without 

requiring much financial implications. 
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