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Abstract 

Explosions caused by standoff charges near buildings have drastic effects on the internal and external structural elements 
which can cause loss of life and fatal injuries in case of failure or collapse of the structural element. Providing structural 
elements with blast resistance is therefore gaining increasing importance. This paper presents numerical investigation of 
RC columns with different reinforcement detailing subjected to near-field explosions. Detailed finite element models are 
made using LS-DYNA software package for several columns having seismic and conventional reinforcement detailing 
which were previously tested under blast loads. The numerical results show agreement with the published experimental 
results regarding displacements and damage pattern. Seismic detailing of columns enhances the failure shape of the 
column and decrease the displacement values compared to columns with conventional reinforcement detailing. Further, 
the effect of several modeling parameters are studied such as mesh sensitivity analysis, inclusion of air medium and 
erosion values on the displacements and damage pattern. The results show that decreasing the mesh size, increasing 
erosion value and inclusion of air region provide results that are very close to experimental results. Additionally, 
application is made on a slab-column multistory building provided with protective walls having different connection 
details subjected to blast loads. The results of this study are presented and discussed. Use of a top and bottom floor slab 
connection of protective RC walls are better than using the full connection at the four sides to the adjacent columns and 
slabs. This leads to minimizing the distortion and failure of column, and therefore it increases the chance of saving the 
building from collapse and saving human lives. 
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1. Introduction 

Terrorist bombing is currently regarded a threat to almost all countries around the world. Highly populated and 
commercial districts are usually the target of terrorist bombing, which leads to loss of human lives, damage of 
structures and infra-structure in addition to serious negative impact on security and economy [1]. Bombing methods 
include projectiles, explosive devices, car bombs, fuel tanks and others. An explosion is defined as a large-scale, rapid 
and sudden release of energy. Blast loads are air shock waves with immediate rise in pressure, producing dynamic 
impulsive loads with significant potential energy which sets high vibrations in the affected surface, and may cause 
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damage or failure of the structural elements leading to possible progressive collapse of the building [2]. The dynamic 
pressure wave has a time history consisting of positive and negative phases. The primary effect of a blast wave on a 
structure occurs during the positive phase, where pressure values are high. In the negative phase or the negative 
pressure, the air is absorbed towards the center of the blast, which leads to the fragmentation of walls or structural in 
the area of the explosion [3, 4].  

Columns are the main carrying elements in skeleton structures; if columns are damaged due to blast this may lead to 
partial or progressive collapse of the structure [5-7]. It is therefore essential to direct research to improve the resistance 
of columns to blast so as to provide protection to the structure [7, 8]. Several researchers investigating experimentally 
the behavior of RC columns under near-field explosion showed that seismic detailing of RC columns has noticeable 
effect on the blast behavior [9-11]. Abladey and Braimah [10] investigated the effects of near-field explosions on RC 
columns and showed that RC columns designed and detailed for areas of high seismicity detailed reinforcement have a 
high blast resistance. Siba [12] investigated also experimentally the effects of near-field explosions on RC columns 
with different transverse reinforcement detailing and at different scaled distances; results showed that seismic-detailed 
columns performed better than conventional columns because of confinement effect that made the seismic columns 
more ductile. Retrofitting RC columns by wrapping with carbon or glass fiber reinforcement polymers (CFRP/GFRP) 
improved the behavior of RC columns under blast loading, decreased the drift and cracks and changed the failure mode 
from diagonal shear to ductile flexure FRP is a potential material for blast mitigation of RC columns [13-17]. 

The commercial computer software packages that accomplish coupled analysis are ANSYS, AUTODYN, LS-
DYNA and ABAQUS. ABAQUS is a nonlinear analysis program, has a several constitutive models which used by 
Hussain et al. to simulate the behavior of the post heated unconfined concrete columns [18]. The commercial software 
package LS-DYNA was employed by several researchers to simulate the response of RC columns to blast loads [14, 
19-24]. Lan et al. [19] performed finite element (FE) analysis of columns subjected to blast by LS-DYNA software and 
showed that smaller tie spacing increases the columns post-blast residual load capacity. Bao and Li [20] and Shi et al. 
[21] evaluated the dynamic response and residual axial strength of RC columns subjected to short stand-off blast using 
LS-DYNA and validated the model against experimental results. Cui et al. [22] investigated the failure mechanism of 
RC columns under close-in explosions using a proposed fluid-solid coupling numerical method and explained local 
failure. Gholipour et al. [23] assessed the vulnerability of an RC column subjected to possible combined impact and 
blast loading using LS-DYNA due to several parameters. Elsanadedy et al. [15] carried out nonlinear FE analysis using 
LS-DYNA software for RC circular columns subjected to explosive charges and investigated the effects of CFRP 
retrofitting on the level of damage to the RC column. Li et al. [24] developed a refined FE model using LS-DYNA to 
simulate the blast response of CFRP-retrofitted RC columns by modifying the parameters to consider the strain rate 
effect of CFRP; good agreement was achieved between the numerical and testing results. Ibrahim and Nabil [25] 
constructed a detailed 3D FE model for a six-story RC framed structure using ABAQUS package to investigate its 
response to blast charges at several standoff distances. 

In this research, a study is carried out to evaluate numerically the effect of near-field explosions on RC columns 
with conventional and seismic detailing. Detailed finite element models are made for several columns which were 
previously tested under blast loads and dynamic nonlinear analysis is performed using LS-DYNA software package. 
The numerical results agree with published experimental results. The results show the importance of seismic column 
detailing for improving the failure shape of the column and decrease the displacement value compared to the column 
with conventional reinforcement detailing. In addition, the effect of a different parameters on reinforced concrete 
columns under blast load effect such as the sensitivity of mesh, erosion, standoff distance, and air field have been 
numerically investigated. This numerical study illustrated the effect of these parameters to improve damage 
mechanism (cracks and crushing) and displacement compared with the experimental results. Further, an application is 
made to a multistory RC building with protection RC walls with two types of connections (top and bottom connection, 
fully connection) subjected to near-field explosion. The results show the effectiveness of types of connections of 
protective RC walls and column RC detailing on significantly improving blast resistance of multistory RC building. 
The results of this work have been presented and discussed. 

2. Methodology and Numerical Modeling 

The structural elements subjected to blast load are modeled using nonlinear analysis software LS-DYNA [26].  The 
finite element model is created in the LS-Preprocessor and analyzed in LS-DYNA. Three-dimensional finite element 
models are made for the RC columns and multistory building using LS-DYNA, as an alternative to the less accurate 
SDOF system commonly adopted in design and analysis of structures subjected to blast loads to determine the 
behavior of structure elements. Figure1 illustrates the flow chart for the sequence of constructing the finite element 
model for RC column using LS-DYNA software. Concrete is modelled as eight-node solid element using solid 
Lagrangian elements. Both the transverse and longitudinal reinforcing steel bars are modelled using beam element 
option. The air medium is modeled surrounding the RC column to allow the propagation of blast load and achieve the 
interaction with RC column. 
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The CONSTRAINED_LAGRANGE_IN_SOLID command was used to afford association of concrete and steel 
[27]. The ALE solver is a combination between the Euler and Lagrange that is used in creating models for both fluids 
and solid elements [28]. The main advantage of using ALE solver is reducing the problems occurring due to the severe 
mesh distortions [29]. The materials properties with respect to behavior under blast load are defined in the following 
sections.  

 

Figure 1. Steps of Creating LS-DYNA Model  

2.1. Concrete Material 

Concrete is modeled as solid element with eight-nodes. The concrete material is modelled in LS-DYNA through 
material model (MAT_WINFRITH_CONCRETE), developed in the 1980’s to represent concrete material when 
subjected to impact loading and implemented in LS-DYNA software package in 1991 as MAT084 [30]. Four 
parameters define the winfrith concrete material model: compressive strength, modulus of elasticity, yield of 
reinforcement and tensile cracking behavior; these parameters are determined from uniaxial compression, uniaxial 
tension, tri-axial compression and biaxial compression tests [31-33]. Concrete element model MAT084is used to 
define the concrete known by its complex behavior which assuming elastic-perfectly plastic stress-strain relationship 
in compression as shown in Figure 2 [34]. The material model parameters adopted in this research to represent the 
studied experimental work are listed in Table 1 [34]. 

   

Figure 2. Stress-strain relationship of concrete model MAT084 [33] and yield surface of steel material MAT024 [36]  

Table 1. Values assigned for concrete material type MAT084 

Parameter Value Parameter Value 

Mass density (Ro) (kg/m³) 2500 Fracture energy (FE) 100 

Initial tangent modulus of concrete (TM) 2.641E+10 Aggregate size (ASIZE) 0.008 

Poisson’s ratio (PR) 0.20 Young’s Modulus of rebar (E) 2.00E+11 

Uniaxial compressive strength (UCS) 4.10E+07 Yield stress of rebar (YS) 4.20E+08 

Uniaxial tensile strength (UTS) 4100000 Ultimate elongation before rebar failure (UELONG) 0.25 

Input File FEMB 
LS-DYNA Prepost 

(Numerical Modeling of Component and Material) 

Start 

Blast Hazard SETUP 
(Simulation Blast Loads) 

Solver LS-DYNA Excitable 
(Blast Analysis) 

Output File 
LS-DYNA Post Processing 

(Analysis Data) 

End 
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Table 2. Parameters adopted steel material MAT024 

Parameter Value Parameter Value 

Mass density (Ro) (kg/m³) 7850 Yield stress (SIGY) 4.70E+08 

Young’s modulus (E)  2.00E+11 Tangent modulus (ETAN) 1.90E+08 

Poisson’s ratio (PR) 0.2 Failure flag (FAIL)  0.30 

2.2. Steel Material 

The steel material which presents the reinforcement bars (transverse and longitudinal reinforcement) is defined as 
material MAT024: MAT_PIECEWISE_LINEAR_PLASTICITY (PLYS) with arbitrary stress-strain curve and 
arbitrary strain rate dependency [35]. Figure 1 shows the material model PLYS under uniaxial compression, shear test, 
uniaxial tension, biaxial tension and biaxial compression [36]. The material model parameters representing the studied 
experimental work are given in Table 2. 

2.3. Air Modeling Assumption 

The air medium was used in case study that the blast wave propagated through air medium using ideal gas Equation 
1. Air is defined as material type (Mat_null_title) which the mass density is 1.23 kg/m³ [37, 38] with the hourglass 
coefficient equals (1×10-6). Table 3 lists the values adopted for the air modeling parameters. 

� = �� + ��	� + ��	�
� + ��	�

� + �	(�� + ��	� + ��	�)    (1) 

For an ideal gas, this equation can be represented by suitable coefficients: C0 = C1 = C2 =C3 =C6 =0, and C4=C5= 

(ϒ – 1), 

where; 

� =
�

��
− 1 (2) 

and; 

� = (	� − 1)
�

��

− 1 (3) 

where �� and � are the initial and actual densities of air, E is the specific energy and  is the adiabatic expansion 
coefficient for air.          

Table 3. Values adopted for air modeling 

Parameter Value Parameter Value 

Mass density (Ro) (kg/m³) 1.23 Initial internal energy per unit volume (E0) (Pa) 2.50×105 

Coefficients C0, C1, C2, C3 and C6 of eq. (1) 0 Initial relative volume (V0) 1.00 

Coefficients C4 and C5 of eq. (1) 0.40 Adiabatic expansion coefficient for air (ϒ) 1.40 

2.4. Explosive Material Model 

The blast load is modelled by two methods according to finite element modelling (air blast function or no air 
volume at numerical simulation), the first numerical modelling approach is presented as LOAD_BLAST defined as air 
blast function for the application of pressure loads due to explosives in conventional weapons as shown in Equation 4 
[39, 40]. The input data is defined according to location (x, y, z), the equivalent mass of TNT, the unit conversion flag 
and type of burst (hemispherical charge situated on the surface or spherical charge at least one charge diameter away 
from the surface) [41]. 

��(�) = ��� 	�1 −	
�

��
� ��	�	�/�� (4) 

where Pso is the peak overpressure, to is the positive phase duration, b is a decay coefficient of the waveform and t is 
the time elapsed, measured from the instant of blast arrival. 

In the second numerical modelling approach with no air region, the burst load is modelled using Jones-Wilkins-Lee 
(JWL) equation of state defines pressure as a function of relative volume, V, and internal energy per initial volume, E, 
C1, C2, r1 and r2 are constants and e,  and v are the internal energy, adiabatic constant and specific volume 
respectively, and its ideals for explosives determined by dynamic tests, Equation 5 presents the pressure value. The 
blast load is modelled using the 8-node finite element concept (MAT_HIGH_EXPLOSIVE_BURN) material model 
with the knowledge (INITIAL_DETONATION) [42]. 
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�
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For both numerical approaches, there are important parameters for computing the blast loads by using Hopkinson-
Cranz law, the weight of explosive material (W) in kg and the distance of detonation source (R) in meter which called 
scale law as described by Equation 6 [39]. 

� =
�

√�
�  (6) 

3. Verification Study: Fence Wall   

3.1. Description and Modeling 

Pantelides et al. [43] tested a reinforced concrete fence under blast load, numerical modeling was also made using 
LS-DYNA software. The dimensions of the RC fence were (1.20×1.20 m), the fence thickness was 152 mm, and the 
concrete type was Normal Strength Concrete (NSC). After 28 days, the compressive strength reached 51 MPa, with 
tensile strength 4.0 MPa. TNT was used as the explosive substance, and the explosive weight was 6.20 kg. The 
standoff distance was 1.0 m, and the explosive was positioned at the RC fence's mid-height. Figure 3 depicts the test 
configuration for the fence, which is supported by two concrete blocks on either end as a vertical support. 

  

Figure 3. Fence dimensions and reinforcement details and test setup [43]  

In this work, the validation model is created using the LS-DYNA software package as shown in Figure 4. The 
concrete solid elements, reinforcing steel elements, air medium, and explosion model have already been described. 
(MAT RIGD) is used to simulate the ground surface as rigid concrete and rigid supports. The contact option 
(CONTACT AUTOMATIC SURFACE TO SURFACE) is used to connect the rigid components (rigid supports and 
ground surface) to the RC fence. For rigid components and RC fences, the two parts are specified as master and slave 
parts. 

  
 

Figure 4. RC wall fence: test specimen and FE model 

3.2. Numerical Results and Discussion  

Tables 4 show the maximum lateral displacement measured experimentally in the wall and evaluated numerically 
by FE analysis. It is observed that the tolerance for error between the FE analysis and the experimental test is 0.487 
percent. Comparison between the experimental failure shapes and the failure shape determined by finite element 
analysis is shown in Figure 5. It is clear that the damage shape for FE analysis is sufficiently similar to the 
experimental one. 

Table 4. Comparison of experimental and FE maximum deflection 

Specimen Test Results (m) FE Results (m) Difference 

RC Fence 0.082 0.0824 0.487% 
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Figure 5. Experimental and numerically predicted damage shape in elevation and plan view 

4. Comparative Study for Columns with Conventional and Seismic Detailing 

4.1. Columns Description and Modeling 

For verification of the numerical modeling approach, RC columns tested under blast loads by Siba [12] were 
modeled and analyzed by finite element LS-DYNA package. In the experimental work, RC columns 300×300×3200 
mm designed to resist lateral loads only and having conventional and seismic reinforcement details, as shown in 
Figure 6, were subjected to blast. Seismic detailing of columns follow clause 21.7.2.2 of Canadian Standards 
Association (CSA). The load charge ANFO with standoff distance measurement from center of the detonation and the 
explosion propagation seems as fireball, as shown in Figure 7. Table 5 lists the designation of the studied columns, 
reinforcement detailing (conventional or seismic), tie spacing and lap splice location, as well as the blast load with 
charge mass (ANFO or TNT) and standoff distance (R). Tie spacing between stirrups (mm) has two values 
conforming to column reinforcement type (conventional and seismic), the splice location for seismically and 
conventional column is at mid region or bottom region, respectively. Scale distance (z) depends on the charge mass 
(w) and standoff distance. String potentiometers were used to calculate the displacements value of each tested column 
at three different height locations at 1.0, 1.50 and 2.0 m located directly at the back face of the column [44]. Three-
dimensional finite element models were made for the seven RC columns tested by Siba (2014) [12], using mesh size 
15×15×18.75 mm; concrete was modeled as solid elements using material MAT084, steel reinforcement bars were 
modeled as beam elements of elasto-plastic material MAT024. 

Table 5. Studied columns reinforcement details and explosions data 

Model 
no. 

Column 
designation 

Tie spacing 
(mm) 

Lap splice 
(mm) 

Standoff dist. 
R (m) 

Charge mass 
(kg ANFO) 

Charge mass 
W (kg TNT) 

z (m/kg 1/3) 

1 CONV-2 300 870 1.30 150 123 0.26 

2 CONV-5 300 870 1.70 150 123 0.34 

3 CONV-20 300 870 2.60 150 123 0.52 

4 SEIS-8 75 980 2.50 100 82 0.58 

5 SEIS-3 75 980 1.30 150 123 0.26 

6 SEIS-4 75 980 1.70 150 123 0.34 

7 SEIS-9 75 980 2.60 150 123 0.52 

                                             

(a) Conventional detailing           (b) Seismic detailing            (c) Splice at mid height 

Figure 6. Reinforcement details of the columns tested by Siba [12]  
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Figure 7. Test set-up for the tested columns and ANFO explosive ANFO explosive as fireball [12]  

4.2. Numerical Results and Discussion 

The numerical results obtained using LS-DYNA are given in table 6 and compared to experimental results 
regarding the displacement values at different height points based on strain gauge locations. The variation of 
horizontal displacement at level 2.0 m with time for column SEIS-8 is plotted in Figure 8 which illustrates 
comparative charts (displacement and time) between the numerical and experimental results; it is clear that the 
numerical study is close to experimental displacement values at the same level. Figure 9 demonstrates the 
compatibility of the experimental and analytical failure shapes, indicating that they are sufficiently close. 

Table 6. Numerical and experimental results for the studied columns 

Column 

type 

Charge mass 

(kg-TNT) 

Standoff dist. 

(m) 
z (m/kg 1/3) 

Experimental displacements (mm) Numerical displacements (mm) 

@1m @1.5 m @2 m @1 m @1.5 m @2m 

CONV-2 123 1.30 0.26 
 

damaged  damaged 

SEIS-3 123 1.30 0.34 damaged N/A damaged N/A 

CONV-5 123 1.70 0.52 N/A N/A N/A N/A N/A N/A 

SEIS-4 123 1.70 0.58 N/A N/A N/A N/A N/A N/A 

CONV-20 123 2.60 0.26 11.2 14.3 9.9 127 106 60 

SEIS-9 123 2.60 0.34 failed 6.3 17.4 82 70 48 

SEIS-8 82 2.50 0.52 damaged 24.9 damaged 27.3 

 

  

(a) Numerical analysis Chart                                                            (b) Experimental chart 

Figure 8. Relation between displcament at level 2.00m and time for column SEIS-8 (numerical and experimental) 

The failure shapes of the two columns CONV-2 and SEIS-3 (subjected to 123 kg-TNT explosive at standoff 
distance 1.30 m) are shown in Figure 10. Numerical results using LS-DYNA indicate that the pressure maximum 
value and failure occurs at lower third of column CONV-2; at failure concrete is stripped off in the lap-splice zone. 
For column SEIS-3, spalling and crunching is detected at the lower half of the column. The concrete cover is spalled 
and the column is bended; however, it is observed that the close spacing of stirrups and splice location enhanced the 
failure shape and confined the core of the column. Failure of the two columns CONV-5 and SEIS-4 (subjected to 123 
kg-TNT explosives at standoff distance 1.70 m) are shown in Figure 11. The numerical results show that the pressure 
maximum value and failure occurs at the lower third of column CONV-5; the concrete is stripped off at failure in the 
lap-splice zone and the post-tension duct prevents the column from breaking into two parts. For column SEIS-4, 
several shear cracks are observed at the top of column; the column is slightly bended; it is clear that the stirrups close 
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spacing and splice location enhanced the failure shape and confined the core of the column well. The results of the two 
columns CONV-20 and SEIS-9 (subjected to 123 kg-TNT explosive at standoff distance 2.60m) are shown in Figure 
12. Numerical results indicate that the pressure maximum value and failure occurs at the bottom of the column.  

For CONV-20, failure occurs by stripping off of concrete at the bottom of the column. For column SEIS-9, it is 
observed that several flexural cracks and spalling are presented at the mid-height of column; minimal cracks are 
observed at the bottom support. Because the string pot failed in the experimental test, no data was collected at this 
position, and the displacement value has an unrealistic value; it is apparent that the displacement value is not related to 
the numerical findings. However, it is obvious that the numerically determined failure modes and crack patterns 
conform to experimental observations. Reducing the spacing of transverse reinforcement is shown to decrease the 
lateral displacements at lower scaled distances and therefore improve the blast performance of RC columns. As 
expected, the lateral displacements increased with increasing the charge mass at constant scaled distance. Similar 
observations were reported by Kyei [11]. Comparison of failure modes for conventional and seismically column, 
shown in Figure 13, indicates that the failure shape of seismically detailed column is better than that of the 
conventional column, showing only crushing and spalling of the concrete cover while the internal concrete core was 
confined enough without any crushing. This can be attributed to the lap splice location at the middle region of column 
height and also decreasing the spacing between stirrups which enhanced the confinement of core concrete. 

 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 9. Numerical and experimental results for columns SEIS-8 under 82 kg -TNT at standoff 2.50 m  

           

    

 (a) Pressure           (b) numerical failure mode           (c) experimental failure 

Figure 10. Numerical and experimental results for columns CONV-2 and SEIS-3 under 123 kg -TNT at standoff 1.30 m  

CONV-2 
 

Total failure at 
column-footing 

connection 

SEIS-3 
 

Crushing spalling of 
concrete, concrete 

confinement precluded 
catastrophic failure 

SEIS-8 
 

Small cracks of 
flexure and shear 
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 (a) Pressure           (b) numerical failure mode           (c) experimental failure 

Figure 11. Numerical and experimental results for columns CONV-5 and SEIS-4 under 123 kg-TNT at standoff 1.70 m 

        

        

 (a) Pressure           (b) numerical failure mode           (c) experimental failure 

Figure 12. Numerical and experimental results for columns CONV-20 and SEIS-9 with charge mass-TNT 123 kg at standoff 2.60 m 

CONV-5 
 

Severe crushing of 
concrete at the lower 

height 

SEIS-4 
 

Lower 1.20m 
severely cracked 

and spalled 

CONV-20 
 

Flexural cracking at 
lower-height 

SEIS-9 
 

Flexural cracking 
at mid-height 



Civil Engineering Journal         Vol. 7, No. 08, August, 2021 

1415 
 

                     

R= 1.30 m R= 1.70 m  R= 2.60 m            R= 1.30 m R= 1.70 m    R= 2.60 m 

 (a) Conventional columns    (b) Seismically detailed columns  

Figure 13. Numerical failure shapes of conventional and seismically detailed columns 

5. Numerical Study 

A parametric study is conducted using LS-DYNA software to study the effect of some modeling parameters on 
crack, failure shape and displacements. The studied variables are the finite element mesh size, the erosion value of the 
concrete material and inclusion of air medium field in the FE model. The RC column was used in this study has 
dimensions 300×300×3200 mm, concrete compressive strength 41MPa, reinforcement steel yield strength 400 MPa, 
longitudinal reinforcement bars used were 4-25 M, transverse reinforcement bars 10 M, concrete cover from 
reinforcement 40 mm, spacing between transverse reinforcement bars 75 mm at the plastic hinge region with length 
600 mm and the spacing between the plastic hinge region was150 mm. The seismic reinforcement detailing is shown 
in Figure 6. Fixed support was assumed at column-footing connection and at the top of column to prevent rotation and 
horizontal movement. 

5.1. Results of Mesh Sensitivity Analysis 

Mesh sensitivity analysis was carried out for the seismically detailed RC column SEIS-8 modeled using different 

meshes sizes. All the models were subjected to explosive charge was 82 kg-TNT (TNT mass corresponding to 100kg-

ANFO), the denotation location is at stand-off distance 2.50 m and height of burst 1.00 m, as used in the experimental 

program by Siba [12]. Table 7 lists the studied mesh sizes, number of solid elements, the approximate run time, also it 

shows the maximum displacement for each model compared with the displacement recorded experimentally for the 

column SEIS-8. The numerical cracked shape for the three models are shown in Figure 14 and the maximum lateral 

displacements at height 2.0 m are plotted in Figure 15. The numerical results show agreement with the experimental 

results for the smaller mesh size 15×15×12.50 mm; the maximum displacements decrease with decreasing the mesh 

size. The results are also compatible with results reported by Jankowski et al. [45].  

Table 7. Numerical results obtained from mesh sensitivity analysis  

Mesh size (mm) 
Number of 
elements 

Maximum displacement 
(mm) 

Approximate 
run time (s) 

Disk space used 
(GB) 

15×15×37.5 34278 28.50 2750 1.05 

15×15×18.75 66704 27.30 3900 2.08 

15×15×12.50 99132 26.30 6200 3.08 

Experimental 
 

24.94 
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a) Mesh height 37.50 mm      (b) Mesh height 18.75 mm     (c) Mesh height 12.50 mm 

Figure 14. Numerical results for cracking of columns with different mesh sizes 

 

Figure 15. Maximum displacement at level 2.00m for the studied mesh sizes 

5.2. Effect of Erosion Values 

Structural elements fail with different patterns associated with the different stress states for materials of the 

element. In closed explosive load, the material is subjected to high hydrostatic pressures that produce the material 

irreversible compaction and stiffening. Hydrocodes can analyze problems with different formulations, such as 

Lagrangian, SPH and Eulerian. Solid structures are usually modeled using Lagrangian expressions, where the material 

will be subjected to high distortions. Erosion is an important tool which simulates the spalling of concrete and 

provides a more accurate graphical illustration of the blast occurrence. Erosion is introduced when an immediate 

geometric strain limit is reached. Element removal (erosion) accompanying total element failure has the presence of 

physical material erosion, thus the numerical technique allows the calculation to proceed. 

Three models were created for the studied RC column SEIS-8 with different erosion values 0.025, 0.05 and 0.10, 

using the mesh sizing 15×15×18.75 mm. The flow stress is assigned using Von Mises stress as expressed by Johnson-

Cook (J-C) [46]. Figure 16 shows the failure mode shapes corresponding to the three erosion values; the maximum 

displacement values are plotted in Figure 17 compared to the experimental value. It is observed that the erosion 0.10 

conformed more to the experimental results. 
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(a) Erode=0.025                  (b) Erode=0.05                   (c) Erode=0.10 

Figure 16. Column SEIS-8 performance under different erosion values  

 

Figure 17. Effect of erosion values on maximum lateral displacement  

5.3. Effect of Inclusion of Air Medium 

In this study, column SEIS-8 is modeled with mesh size 15×15×18.75 mm using two modeling approaches as 

follows. 

 Model (1): The air volume is presented as a medium contains the RC column and the explosive burst charge to 

spread the propagation of blast wave as shown in Figure 18(a). 

 Model (2): The RC column under free field air blast and the blast load was defined in the LS-DYNA as 

LOAD_BLAST as shown in Figure 18(b). 

Table 8 lists as modeling approaches, total number of elements (beam and solid elements), the standoff distance for 

blast load from the center of detonation, the value of charge mass (ANFO and equivalent TNT material) and the 

maximum displacement values for each model. It is observed that in model (1) created with presence of air medium, 

the failure shape (crack and deformation) is close to the experimental results; the displacement value is nearly equal to 

the experimental (with difference only 6%). For model (2), which is free-of-air medium, the difference between 

numerical and experimental is 8.8%. 
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                                        a) Air medium                b) Free-of-air medium 

Figure 18. Modeling of column using: air medium and free-of-air medium 

Table 8. Numerical results for modeling air medium and no-air medium 

Mesh size (mm) 
Number of 
elements 

Standoff 
distance (m) 

Charge mass 
(kg ANFO 

Charge mass 
(kg TNT) 

Maximum 
displacement (mm) 

Air-medium concept 237138 2.50 100 82 23.40 

No air concept 66704 2.50 100 82 27.30 

Experimental 
  

  24.94 

6. Application to a Multistory RC Building 

6.1. Model Description 

Application is made on an RC slab-column building having three and two bays in the x- and y-directions, 
respectively, with 4 m. column spacing and two stories of story height 3m, as illustrated in Figure 19.  The column 
dimensions are 400×400 mm with vertical reinforcement 12T18 and the horizontal reinforcement T10 with spacing 
depending on the type of column (seismic/conventional). The slab thickness is 180 mm, slab reinforcement is 
T12@150 mm top and bottom, concrete compressive strength for all structural elements is 41 N/mm2, except the 
connecting line between the wall and column and slab. Precast walls are placed in confrontation of blast load with two 
options for connection, the wall thickness is 160 mm and the reinforcement in both direction is T10@200, the 
compressive strength of the connection between wall and column is 15 N/mm2.  

 
Figure 19. Application case of 3D building  

Detonation 
point 
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(a) All sides connection (b) Top and bottom connection 

Figure 20. The two connection systems for protective RC wall  

6.1.1. Seismic and Conventional Reinforcement Details for Columns 

Two reinforcement detailing for columns are studied as previously shown in Figure 6. 

 Conventional detailing with splice connection at the base region of column and spacing between stirrups 300 
mm.  

 Seismic detailing with splice connection at the mid region of column and the spacing between the stirrups 
classified into two zones with two spacing values 75 and 150 mm every 600 mm along the column height. 

6.1.2. Protective Walls Systems and Detailing 

The protective system is using precast wall; hinged connection is simulated between wall and the surrounding 
structural elements by decreasing the wall thickness with a dowel to achieve a hinged condition. Two connection 
systems are studied, as shown in Figure 20:  

 All-sides connection: the precast wall is connected from all sides (to both columns and slabs).  

 Two-side connection: only the top and bottom of the precast wall are connected to the slabs 

6.1.3. Numerical Modeling 

Several 3D models were made for the building using LS-DYNA software according to wall connection and column 
type, as shown in Figure 21, and dynamic analysis is performed under blast load of different intensities to analyze the 
effect of protective system and the effect of the reinforcement details on the failure shape. The elevation of the 
building facing the explosive load is modeled using the option of LS-DYNA SET SEGMENT, which defines a set of 
segments with optional unique or identical attributes for three-dimensional geometries by referring to the previous 
sections for defining the materials of concrete and steel bars. 

   

     

(a) All sides connection (b) Top and bottom connection 

Figure 21. FE modelling for the building with different connection systems between protective wall and columns and slabs 
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6.2. Numerical Results and Discussion 

The numerical results of the deformed shape before failure for the building models with different column detailing 
and wall connection types subjected to blast charge 125 kg TNT at distance 2.50m are shown in Figures 22 and 23. It 
is clear that the connection with slab floor only (top and bottom) is better than connecting the wall from all sides, i.e. 
to the columns and slabs. This can be explained that connection with slab and column increases the pressure and load 
transferred through the wall connection with column which increases the distortion and failure cracking, which will 
accelerate the collapse of structure. On another hand, connecting the wall to the top and bottom slabs decrease the 
pressure value on the column due to transfer from wall to slab only and decrease the columns distortions and failure of 
column which keep the structure safe for a longer time span. Regarding the effect of column reinforcement detailing 
(conventional/seismic detailing), it is clear that the seismic detailing of the columns is more efficient than 
conventional, the failure shape is better than the conventional columns due to smaller spacing between stirrups which 
increases the confinement of column and the improved location of splice. 

   
(a) Conventional column 

 

(b) Seismically detailed column 

Figure 22. Damage pattern of building with walls connected from all directions due to blast 125 kg-TNT at standoff 2.50m 

           

(a) Conventional columns 
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(b) Seismically detailed columns 

Figure 23. Damage pattern of building with walls connected on two sides due to blast 125 kg-TNT at standoff 2.50m 

     
Figure 24. Damage pattern of building with walls connected from all directions due to blast 175 kg TNT at distance 2.50m 

           
(a) Conventional column 

         
(b) Seismically detailed column 

Figure 25. Damage pattern of building with walls connected from two sides due to blast 175 kg-TNT at standoff 2.50m.  

Applying a higher explosive weight 175 kg at standoff distance 2.5 m caused collapse of the building with walls 
connected at all directions, as shown in Figure 24. The building having walls with top and bottom connection, shown 
in Figure 25, when subjected to the same blast load it survived the explosion and did not show total collapse. 
Therefore, it can be concluded that RC protective walls can enhance the structure behavior in resisting the blast loads. 
Connecting the wall at top and bottom only is better than connecting wall in all direction as does not transfer the full 
pressure value to the columns which leads to minimizing the distortion and failure of column, accordingly, it increases 
the chance of saving the building from collapse and saving human lives. 
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7. Conclusions 

This paper presented an approach for numerical modeling and nonlinear dynamic analysis of RC columns and slab-
column buildings subjected to blast loads. Three-dimensional numerical models were made using LS-DYNA software 
for columns with conventional and seismic detailing. The obtained numerical results are compared with experimental 
results in the published literature. A numerical study is conducted to explore the effect of several modeling and 
loading parameters. Further, application is made to an RC building under blast to investigate the effectiveness of 
column detailing and protective RC walls on blast resistance. 

The main conclusions of the conducted numerical studies can be summarized in the following main points. 

 The numerical results obtained by the adopted procedure are in agreement with published experimental results 
of RC columns subjected to blast regarding failure pattern and maximum lateral displacement before failure; 
which is considered as validation for the adopted numerical procedure; 

 Seismic detailing of columns (smaller stirrups spacing and splice located at column mid-height) enhance the 
failure shape of the column and decrease the displacement value compared to the column with conventional 
reinforcement detailing; this is because smaller spacing between stirrups increases the confinement of concrete 
core; 

 Finite element mesh sensitivity analysis carried out on a seismically detailed column showed that by reducing 
the mesh size, the results became more accurate and compatible with the experimental tests; 

 Using three different values of erosion had obvious effect on the failure mode of RC columns; the failure mode 
similar to that of the experimental tests was achieved by using erosion value E=0.10; 

 By using different approaches for presenting the air region field and free air region; it is concluded that the 
finite element model using the air region field compared favorably with the experimental results; 

 Finite element modeling was carried for a typical RC building with different column reinforcement detailing 
(conventional / seismic) and with blast protection system of precast RC walls. The protection system together 
with column seismic detailing were shown to delay the column failure and enhance the structure resistance to 
blast; 

 The connection between the protective wall and the slab or column should be designed as a hinged support to 
reduce the transfer of pressure blast load from the protective wall to the columns, therefore reducing the 
likelihood of failure; 

 Analysis carried out for the building under the same charge weight and standoff distance indicate that protective 
walls connected to the top and bottom floor slabs provide higher blast resistance than if all four sides of wall 
were connected to the columns and slabs. This is explained that connecting all four sides of wall to the slabs 
and columns transfers the explosive pressure load to the column and hence increases the deformation and 
distortion of column and causes early failure.  
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