
 Available online at www.CivileJournal.org 

Civil Engineering Journal 
(E-ISSN: 2476-3055; ISSN: 2676-6957) 

  Vol. 7, No. 08, August, 2021 

 

 
 

  

 
 

    
1290 

 

Effect of Fiber, Cement, and Aggregate Type on Mechanical 

Properties of UHPC 

 

Esmail Shahrokhinasab 1*, Trevor Looney 2, Royce Floyd 3, David Garber 4 

1 Research Assistant, Department of Civil and Environmental Engineering, Florida International University, Miami, FL 3317, USA. 

2 Graduate Research Assistant, Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, USA. 

3 Associate Professor, Department of Civil and Environmental Engineering Science, University of Oklahoma, Norman, OK 73019, USA. 

4 Associate Professor, Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA. 

Received 12 April 2021; Revised 25 June 2021; Accepted 08 July 2021; Published 01 August 2021 

Abstract  

Ultra-High Performance Concrete (UHPC) is a new class of concrete that differentiates itself from other concrete materials 
due to its exceptional mechanical properties and durability. It has been used in structural rehabilitation and accelerated 
bridge construction, structural precast applications, and several other applications in the past decades. The mechanical 
properties of UHPC include compressive strength greater than 124 MPa (18 ksi) and sustained post cracking tensile 
strength greater than 5 MPa (0.72 ksi) when combined with steel, synthetic or organic fibers. Proprietary, pre-bagged 
mixtures are currently available in the market, but can cost about 20 times more than traditional concrete. This high price 
and the unique mixing procedure required for UHPC has limited its widespread use in the US and has motivated many 
researchers to develop more economical versions using locally available materials. The objective of this study was to 
investigate the effect of different proportions of typical UHPC mixture components on the mechanical properties of the 
mixtures. Particle packing theory was used to determine a few optimal mixture proportions and then modifications were 
made to investigate the effect. A compressive strength of around 124 MPa (18 ksi) was achieved without using any quartz 
particles in the mixture design. 

Keywords: Non-Proprietary UHPC; Steel Fibers; Particle Packing Analysis. 

 

1. Introduction 

After water, concrete (made of aggregates, cement, and water) is the most widely used material on Earth. 
Conventional concrete has been one of the primary construction materials since the invention of Portland cement in 
1824. During this time, there have been numerous research efforts to improve the strength, cost efficiency, and durability 
of concrete, and still, there are many ongoing studies to address different issues accompanied by concrete technology. 
One relatively recent solution for improving upon conventional concrete is ultra-high performance concrete (UHPC). 

The definition of UHPC has been evolving over the past few years. Based on Federal Highway Administration 
(FHWA) guidelines [1], UHPC is concrete with more than 150 MPa (21.7 ksi) compressive strength at 28 days, a 
maximum water-to-cementitious materials ratio (w/cm) of 0.25, and containing internal fiber reinforcement to achieve 
post-cracking tensile strength above 5 MPa (0.72 ksi). Other researchers [2] are proposing lower required strengths (124 
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MPa [18 ksi]), but have other requirements on the peak tensile strength and residual strength at different tensile 
deformations. Regardless of the specific definition, it has much higher compressive strength, higher tensile strength and 
ductility, and improved durability. 

Because of these improved mechanical properties, UHPC has become a widely used material for accelerated bridge 
construction (ABC) and rehabilitation of existing infrastructure to enhance resiliency [3-5]. Exceptional mechanical 
properties of UHPC have made it an ideal option for precast concrete as well. Many precast sites have utilized UHPC 
to produce prefabricated bridge elements like deck panels, bridge girders or even other structural elements like tunnel 
segments and wind tower elements [6, 7]. Its enhanced durability has also made it a qualified candidate for extending 
structures' design life [8] and even in critical infrastructures for blast mitigation purposes [9]. The application of UHPC 
is not limited to structural applications, it has been used for many architectural elements like stairways, facades, bus 
shelters, and sun shades due its high durability and resistance [10, 11].  

Despite all the advantages of the UHPC, its final price still remains a big concern for designers and owners. Adding 
steel fibers accompanied by other proprietary materials like silica fume, slag, superplasticizer, and so on, which are 
usually costly to produce, has made UHPC 20 to 30 times more expensive than conventional concrete and has limited 
the widespread use of UHPC in the U.S. infrastructure. For this reason, many different investigations have been 
conducted to develop non-proprietary UHPC mixtures, typically achieving close to the same mechanical properties of 
commercially available UHPC but with significantly lower cost. Several researchers developed the non-proprietary 
UHPC with locally available materials in different locations and could reach the minimum requirements for UHPC 
mixtures [12-14]. Several studies also studied their developed non-proprietary UHPC mixture in different applications 
like connecting precast deck panels in retrofit jobs [15].  

Although there have been several previous efforts to develop non-proprietary UHPC mixtures, there is still more 
research needed for on UHPC with different types and quantities of constituent materials. The main objective of this 
research was first to develop a non-proprietary UHPC mixture with locally available material and then evaluate the 
effect of different cement types and contents, w/cm, superplasticizer and viscosity modifying admixtures contents, fiber 
type, and fine aggregate type and content on the compressive strength and flowability of the non-proprietary UHPC 
mixtures. Different cement types and contents were studied to find the optimized UHPC cement paste. Different 
aggregate types and contents were explored the effect of particle packing on the compressive strength. The effect of 
different fiber types was investigated on one of the best performing UHPC mixtures. This study was conducted using 
only minimal laboratory equipment to help future researchers see how similar work can be done with only limited 
equipment (a bread mixer and compression test machine). Recommendations are made from this research for a non-
proprietary UHPC mixture using materials from Florida with a compressive strength of 124 MPa (18 ksi) and spread 
flow of 254 mm (10 in.); the mixture consisted of Type I/II portland cement, slag, silica fume, and limestone fine 
aggregate with w/cm of 0.2 and aggregate-to-cementitious material of 1.0. 

2. Background and Significant of Study 

Many investigators have developed non-proprietary UHPC mixtures with local material to minimize the price while 
maintaining similar mechanical properties to address the cost issue [16-18]; the mix proportions for the major 
investigations are summarized in Table 1. 

Table 1. Previous research projects for developing non-proprietary UHPC mixes [2, 12, 14, 16, 18-20] (1 mm = 0.0394 in.; 1 
MPa = 0.145 ksi)  

Researcher Year Location 
Selected-UHPC Mix Parameters Performance 

Used SCM per cement 
weight  

w/cm Agg.:cm 
Fiber vol. 

fraction (%) 
Flow 
(mm) 

f’
c 

(MPa) 

Tadros et al.* 2020 US 
SF: 0.2 to 0.25   
LP: 0 and 0.18   

0.18 to 0.2 0.77, 0.88, 1.1 0.0 and 2.0 226-279 148-172 

Lawler et al. 2019 FL 
SF: 0.15   
FA: 0.15  

0.170 1:0 to 2:0 1.5 and 2.0 203-254 124-131 

Karim et al. 2019 Iowa SF: 0.07 and 0.25   0.18, 0.2, 0.23 1.12, 1.3 2.0 203-254 124-131 

Looney et al. 2019 OK 
SF: 0.17   

S: 0.5   
0.18 to 0.23 0.75 and 1 1.0 and 2.0 229-279 110-125 

El-Tawil et al. 2016 Michigan 
SF: 0.25   

S: 1.0   
0.18 1.0 1.5 - 144-195 

Graybeal 2013 WA, OR, ND, 
SD, NY, PA 

SF: 0.25   
FA: 0.25 

0.15 to 0.16 1.0 1.0 and 2.0 264-315 155-200 

Tafraoui et al. 2009 France 
SF: 0.25  

Metakaolin: 0.25 
0.22 0.9, 1.18 0.0 and 2.0 - 103-190 

cm = all cementitious materials; FA=fly ash; LP=limestone powder; S=slag or GGBS; 

*: In this study, the liquid portion of chemical admixtures was involved in w/c and w/b calculations; 

**: this study agg/c was reported. 
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The composition of most UHPC includes granular constituents including fine aggregates between 0.15 and 0.61 mm 
(0.006 and 0.024 in.), cement with an average diameter of 0.0152 mm (0.0006 in.), crushed quartz with an average 
diameter of 0.010 mm (0.0004 in.), and silica fume to fill the voids between other particles and result in the highest 
possible matrix density [21]. Graybeal [19] conducted a comprehensive study to develop non-proprietary UHPC using 
available material in Washington, Oregon, North and South Dakota, New York, and Pennsylvania. Twelve cement types, 
five different silica fumes, thirteen supplemental materials, eight high-range water reducers, ten aggregate variations, 
and five various fiber reinforcements were studied. The researchers were able to obtain more than 158.6 MPa (23 ksi) 
strength at the age of 28 days by keeping the water- cement ratio between 0.2 and 0.25, aggregate-to-cementitious 
(agg./c) material ratios between 1 and 2, and using high early strength white cement. 

El-Tawil et al. [16, 22] followed a similar procedure in Michigan. Type I white Portland cement, Type V Portland 
cement, Type I Portland cement / slag cement blend, silica fume, and silica powder were studied exclusively to see how 
the materials affect the final mechanical results. More than 137.9 MPa (20 ksi) strength was achieved for all mixes at 
28 days. Results showed that the silica powder could be eliminated from the matrix due to its high costs, and cost analysis 
revealed 60% percent decrease in price compared to commercial UHPC [16, 22]. Berry et al. [17] conducted research 
to develop non-proprietary UHPC using the material available in Montana and reached the compressive strengths of 
approximately 138 MPa (20 ksi) with flows of 203 to 280 mm (8 to 11 in.). Later, the researchers studied the feasibility 
of using the developed material for highway bridge applications, specifically for filling the joints between precast 
members [23].  

Other researchers have also been able to achieve compressive strengths of more than 145 MPa (21 ksi) at 28 days by 
maintaining the water to cement ratio between 0.2 to 0.3 and using 1 to 2% steel fibers by volume. Several mix designs 
were developed using Type I/II Portland cement, Class F fly ash, fine masonry sand, silica fume, and high-range water 
reducer. Optimized mix designs were evaluated based on the workability and compressive strength [17, 23]. Few studies 
went beyond mix development and attempted large scale batches for field application and evaluate the overall experience 
of working with non-proprietary UHPC out of the laboratory environment [24]. Non-proprietary UHPC has also been 
used in field-cast joints between precast concrete deck panels with a cost of less than $1,307 per cubic meter ($1,000 
per cubic yard) with steel fibers (proprietary mixes can cost more than $4,575 per cubic meter [$3,500 per cubic yard] 
for the material alone) [17, 23]. 

In this research, the effect of important variables on compressive strength and flowability of non-proprietary UHPC 
concrete was studied. Different cement types and content, w/cm, fiber types, fine aggregate type and content, 
superplasticizer and viscosity modifying admixtures contents were investigated to see the effect on non-proprietary 
UHPC mixtures. This research effort is significant for several reasons. First, Florida ranks third in the United States in 
the production and use of aggregate products, consuming about 153 million tons per year [25]; there would be ample 
available material for a Florida-based non-proprietary UHPC mixture. Additionally, most of the sand in Florida 
originates from limestone, which typically leads to reduced performance when used for concrete when compared to 
quartz fine aggregate. For this reason, only limestone fine aggregate (not quartz) was used in this study. Several studies 
have reported using limestone powder [13, 14, 26] and coarse and fine limestone aggregates for developing non-
proprietary UHPC mixes [27-29] with varying degrees of success. The results from this research would extend to other 
locations where only limestone fine aggregate is available. In addition, results could be used as a guide to choose proper 
fiber type and content for future studies. Investigating new fiber types is important as the fiber most used for UHPC in 
the past (OL 13/0.20) is no longer being produce in the US. 

Finally, the described research outlines a reasonable approach for developing a non-proprietary UHPC mixture with 
limited laboratory capabilities; only a small commercial bread mixer with about a 0.00425 cubic meter (0.15 cubic feet) 
capacity and a compression test machine were used in this testing program.  

3. Materials and Methods 

The different materials and experimental procedure used for developing the non-proprietary UHPC mixture design 
and determining its mechanical properties are described in this section. The research methodology is shown 
schematically in Figure 1 and is explained in this section.  

3.1. Material Types  

The UHPC mix developed in this study used a combination of fine sand (FA), ultra-fine recovery material (UFR), 
cement, and different supplementary cementitious materials (SCMs), including slag cement (S) and silica fume (SF). 
Previous studies also reported using fine quartz particles in the UHPC matrix [19, 22, 23, 30], but quartz is not locally 
available in Florida, with the majority of produced sand in this state coming from limestone aggregate. Silica powder 
was not used due to its relatively high costs.  
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Figure 1. Research methodology for developing the non-proprietary UHPC mixture 

Table 2 summarizes the material details that have been used in this study. Five different cement types and five 
different fiber types were used to investigate the effect of each on the mechanical properties of the UHPC. Due to the 
low water to cementitious ratio of UHPC, a high-range water reducer (HRWR) was used to obtain the required 
workability. The HRWR chosen for this study was Glenium 7920, produced by BASF. In mixes reinforced with heavier 
fibers, a viscosity modifying admixture (VMA) was used to prevent fiber segregation in the concrete matrix. Two 
different fine aggregates were chosen for this study, based on local availability: regular limestone sand and ultra-fines 
recovery (UFR). These solid parts are recoverable fine materials coming from waste water streams of aggregate plant 
system. The fine size of UFR (less than 150 µm) has made it a conveyable and stackable material ideal for several 
industries. As crushed quartz fine aggregate is rare in south Florida, UFR was used to improve the concrete density.  

Table 2. Material detail and supplier information 

Material Details Sign Supplier 

Fibers 

DRAMIX 4D 65/35BG A Bekaert 

Helix 5-13 H HELIX 

OL 13/.20 B Dramix 

Hiper Fiber HF Hiper Fiber 

STRUX® 90/40 S GCP Applied Technology 

Cement 

Type M- Masonry Cement 

C 

Titan America Type I-II 

Type III 

Type I-II Ash Grove 

Type I Lehigh White Cement 

Ground-Granulated Blast-Furnace Slag (GGBFS) - S ARGOS USA Cement 

Silica Fume Master Life® SF 10 SF BASF 

Sand Fine Masonry FA Titan America 

UFR - UFR Titan America 

HRWR Glenium 7920 HRWR BASF 

VMA VMA 358 VMA BASF 

The detailed specifications for the cement types used in this study are shown in Table 3.  

6 Cylinders
76.2x152.4mm (3x6in.)

Trial Batch 
0.00425 m3 (0.15 ft3)

Flow Table 
Test

Compression Test
at 3, 7, and 28 days

Satisfactory 
Results?

Revise Mixture
change proportions, 

w/cm, admixture dosage

NO

Final Mixture

YES

Material
Determine available material

Mix Optimization 
Particle Packing Theory 

Initial Mix Proportions
Particle Packing Theory 
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Table 3. Manufacturer supplied properties of cements evaluated 

Cement 
Type 

Producer 
28-day strength, 

MPa (ksi) 
C3S C2S C3A C4AF 

Blaine Fineness 
(m2/kg) 

Air Content 
(%) 

Setting Time (min) 

Initial Final 

Masonry Titan America 20.2 (2.9) - - - - - 15 145 - 

Type I-II Titan America 47.0 (6.8) 63 9 6 11 398 7 109 228 

Type I-II Ash Grove 32.3 (4.7) 59 19 6 10 - 6 115 115 

Type III Titan America 54.7 (7.9) 69 6 6 11 505 6 75 155 

Type I 
(white) 

Lehigh 49.1 (7.1) 73 7 13 1 483 6.7 100 200 

Four different steel fibers from various manufacturers and one synthetic fiber were used in this study to provide 
required tensile behavior in UHPC. Table 4 summarizes the properties of the different fibers used in this study. Figure 
2 shows the different fibers used in this study. The Bekaert OL 13/.20 and Hiper Fiber Type A fibers were both brass 
coated, looked the same, and had similar properties. While the exact chemical composition of the fibers was not obtained, 
the manufacturer of the Helix 5-13 fibers did inform the researchers of a higher zinc content in the fibers used for this 
test program; the company has since modified the chemical composition of their fibers to decrease the zinc content. The 
fiber types are given a short name in Table 4 for use in the mixture design tables that follow.  

Table 4. Fiber Properties 

Name Fiber Geometry 
Length, 
mm (in) 

Diameter, 
mm (in) 

Aspect 
Ratio (l/d) 

Tensile strength, 
MPa (ksi) 

A DRAMIX 4D 65/35BG hooked/deformed 35.6 (1.4) 0.51 (0.020) 65 1,850 (268.0) 

H Helix 5-13 twisted 12.7 (0.5) 0.51 (0.020) 65 1,700 (246.5) 

B Bekaert OL 13/.20 straight 12.7 (0.5) 0.20 (0.008) 65 2,758 (400.0) 

HF Hiper Fiber Type A straight 12.7 (0.5) 0.20 (0.008) 65 2,800 (406.0) 

S STRUX® 90/40 straight 1.55 (40) 0.017 (0.43) 90 90.0 (620) 

 
Figure 2. Different steel fibers: (a) Bekaert 4D 65/35BG, (b) Helix 5-13, (c) BEKAERT OL 13/0.2 & Hiper Fiber and            

(d) STRUX® 90/40 

3.2. Mixing Procedure 

When compared to conventional concrete, the UHPC mixing procedure requires additional considerations regarding 
the mixing time and mixing energy. Due to the small particle size and very low water-cementitious materials ratio, 
UHPC requires more mixing energy than normal concrete to complete the wetting process. A 1.5-HP planetary mixer 
with 0.00566 m3 (0.2 ft3) capacity was used to make 0.00425 m3 (0.15 ft3) mixtures and was found to exert the appropriate 
amount of mixing energy.  

The mixing process included two 10-minute phases. The first 10-minute mixing phase involved the mixing of all the 
dry components (other than the fibers). The sand, slag, cement, and silica fume were all premeasured and added to the 
mixer to blend for 10 minutes. UHPC is sensitive to moisture. For this reason, a precise quality control system should 
be used to monitor and measure the moisture content of aggregate and UFR. To remove the effect of natural moisture, 
all aggregates were oven dried before mixing. There were a few mixtures where the aggregates were not oven dried 
before mixing, which led to increased variability in the performance of the mixture. These cases are noted in the 
discussion on results. 

For the second 10-minute mixing phase, half of the HRWR was added to the required water and was poured into the 
mixer over the course of 2 minutes. After that, the rest of the HRWR was added to the mixture and left to mix until the 
powder material became a flowable paste, which typically took 6 to 11 minutes of additional mixing time. Once the 
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concrete paste was produced, the fibers were added to the mixture and allowed to mix for an additional 2 minutes. The 
transition from a powder to a fluid takes additional time depending on the water-cementitious materials ratio and the 
HRWR dosage. The average total mixing time varied between 20 to 25 minutes. Figure 3 shows the steps required for 
the mixing procedure.  

 
Figure 3. General Mixing procedure (a) weighted material, (b) dry mixing, (c) weighted water and HRWR, (d) blending half 

of HYWR with required water, (e) second 10 minutes of mixing with water and HRWR, and (f) adding fibers 

3.3. Mix Optimization  

The mix optimization process included two phases: physical optimization and chemical reaction optimization. 
Physical optimization, also known as the particle packing analysis, is a process to minimize voids in the concrete matrix 
and maximize the density. In other words, particle packing optimization in a concrete mixture is accomplished by 
selecting the right size and amount of each constituent to reduce the volume of voids in the paste. The chemical reaction 
optimization also refers to choosing SCMs to expedite and improve cement hydration, which usually is considered 
simultaneously with the particle packing process. 

In the particle packing analysis, several constituents with different particle size distribution curves are combined in 
proportions that result in an ideal curve for the dry constituents. There were several efforts to find the ideal curve to get 
the highest packing density. Andreasen and Andersen [31] defined an equation for the ideal particle size distribution 
curve to obtain the densest mixture with specific materials. Later, this equation was modified by Funk and Dinger [32] 
to account for the smallest particle size. The model is shown below as Equation 1. 

�(�) =
�� − ����

�

����
� − ����

�  (1) 

where: 

D(P): is the percent passing for each diameter evaluated, 

D: the particle diameter being evaluated, 

Dmin: the smallest particle diameter used in the mix design, 

Dmax: the largest particle size used in the mix design,  

q: distribution modulus.  

The largest particle size of all the materials used in this study was 500 µm (2.0×10-5 in.), which was in the fine sand 
aggregates. The smallest particle diameter is around 1 µm (3.9×10-8 in.) from the silica fume. For UHPC mixtures 
developed based on the modified Andreasen and Andersen curve, q is typically selected between 0.19 for finer mixtures 
and 0.37 for coarser mixtures [2]. The idealized curve with a distribution modulus of 0.25 is shown with the distributions 
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for the materials used and the optimized mixture designs in Figure 4. This distribution modulus is based on previous 
work by other researchers [18, 33, 34]. 

To start the analysis, the particle size distribution curves for each material were required. Dry constituents in UHPC 
are very fine. The particle size distribution curves for these materials cannot typically be determined using a physical 
sieving process. Commercial laser diffraction devices can be used to determine the particle size distributions for very 
fine particles (0.1µm to 1000µm) and enable the operator to produce distribution curves for any material. A particle size 
distribution analysis was completed for the materials used in this research using a Malvern laser particle size analyzer; 
this was completed by Titan America in Miami. The particle size distributions for the primary dry materials used in this 
study are shown in Figure 4 (a).  

Several different mix designs were created and analyzed using a developed spreadsheet tool. The proportions were 
used for each aggregate-to-cementitious material ratio of 0.8, 0.9, 1.0, 1.1, and 1.2, and their cumulative percent passing 
curve was compared to the optimum packing curve created using the modified equation by Funk and Dinger [32]. The 
trial-and-error process revealed the optimum aggregate-to-cementitious material ratio was 1.0.  

Keeping the aggregate-to-cementitious material equal to 1.0, several mix designs were evaluated by how close they 
were to the ideal curve produced by Equation 1. The mixture designs with the minimum difference from the ideal curve 
were chosen as the base mixture designs for the experimental program. Figure 4 shows the distribution curves of different 
constituents and optimized mixture designs compared to the idealized curve (labelled “CPFT”).  

 
Figure 4. Particle packing analysis, (a) Distribution curve of different constituents and (b) qualified mix proportions close to 

the optimum curve 

Table 5 summarizes the optimized mixture proportions based on this particle packing analysis. An ideal cement to 
slag to silica fume ratio (0.6:0.3:0.1) was determined based on this analysis, OPT#1 in Table 5. Modifying the sand to 
UFR ratio was found to improve the particle packing in the range where there was the largest difference between the 
mixture curves and idealized curves; four mixtures with UFR were designed as comparisons OPT#6 through OPT#9 in 
Table 5. 

Table 5. Proportions of the initial qualified mixes 

Mixes Agg./C 
Cement % Slag % Silica Fume % Sand % UFR % 

Cementitious Materials Aggregate 

OPT#1 1.0 0.6 0.3 0.1 1.00 0.00 

OPT#6 1.0 0.6 0.3 0.1 0.90 0.10 

OPT#7 1.0 0.6 0.3 0.1 0.80 0.20 

OPT#8 1.0 0.6 0.3 0.1 0.70 0.30 

OPT#9 1.0 0.6 0.3 0.1 0.65 0.35 

These proportions were considered as the starting point for the experimental work. Different combinations of 
constituents were also used to see how chemical reactions develop in the mixtures. To achieve the highest possible 
mechanical properties and proper flowability, a trial-and-error process was conducted. Different variables including 
water-to-cementitious material ratio, HRWR dosage, and initial proportions were evaluated during the trial-and-error 

(a) (b)

0

20

40

60

80

100

120

0.001 0.01 0.1 1

%
 C

u
m

u
la

ti
v
e 

fi
n

er

Paricle Size (D) [mm]

0

20

40

60

80

100

120

0.001 0.01 0.1 1

%
 C

u
m

u
la

ti
v
e 

fi
n

er

Paricle Size (D) [mm]

UFR
Sand Silica Fume

Cement

Slag

Constituents:

CPFT

OPT#1
OPT#6
OPT#7

Optimized mixes: CPFT
OPT#8

process.  



Civil Engineering Journal         Vol. 7, No. 08, August, 2021 

1297 
 

OPT#1, which resulted from the particle packing analysis, was used as the starting point for the trial batching process. 
Later, after purchasing UFR, OPT#6 to OPT#9 were also tested. Considering OPT#1 as a base mix design, different 
cement types, water contents, mixing times, superplasticizer dosages, fiber contents and fiber types, and VMA contents 
were all evaluated based on the compressive strength and flowability tests, which were conducted according to ASTM 
1856 [35]. After determining proper type and content of constituents, OPT#6 to OPT#9 were cast to investigate the 
effect of fine aggregate (UFR) content.  

The selected proportions are within the ranges used by previous researchers. The water-to-cementitious material ratio 
was varied between 0.15 to 0.23, which is also consistent with previous research. These limits and the actual material 
properties that are typically included for developing non-proprietary UHPC mixture vary based on the application of 
UHPC and required mechanical properties. More details on the optimization process can be found in Shahrokhinasab 
and Garber [36]. A total of 115 0.00425-m3 (0.15-ft3) batches and 690 76.2 mm by 152.4 mm (3-in. by 6-in.) cylinders 
were cast during this experimental program.  

3.4. Curing and Storage 

All samples were stored at room temperature 23-25°C (73-77 °F). All samples were kept in molds with sealed top 
surface and demolded 24 hours before testing at each age.  

4. Results And Discussion 

In addition to developing the non-proprietary UHPC mix and determining the appropriate proportions, the effect of 
each variable evaluated was determined through several trial batches. The results are summarized in the following 
sections. The mixtures that best represented a comparison were selected and included in each section below. 

4.1. Effect of Cement Type 

Five different cement types were used to evaluate their effect on the final properties of the non-proprietary UHPC. 
OPT#1 was used as a base mix design with 2% steel fibers by volume, and HRWR and VMA dosage were determined 
to get flow between 178 and 254 mm (7 and 10 in.). Details of each mix design are summarized in Table 6. One of the 
mixtures (OU2) did not use oven-dried sand and used DRAMIX 4D 65/35BG fibers; the other four mixtures used oven-
dried sand with OL 13/.20 fibers. 

Table 6. Mixture proportions and characteristics for investigation of cement type 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 
(kg/m3) 

Sand 
Moisture agg/cm C S SF FA UFR Type 

Content 
(%) 

HRWR 
(oz./cwt) 

VMA 
(oz./cwt) 

OU2 Masonry Cement 0.20 1.0 0.6 0.3 0.1 1.0 0 A 2.0 15.77 0 2174 N 

C3 Ash Grove Type I-II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 22.25 0 2387 D 

C32 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 27.47 6.5 2353 D 

C37 Titan Type III 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 27.47 0 2387 D 

C4 Lehigh White Cement 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 23.35 0 2347 D 

Flowability and compressive strengths are shown in Figure 5. Use of the masonry cement led to the lowest 
compressive strength, with 28-day strengths less than 70 MPa (10.2 ksi) and density less than 2242.6 kg/m3 (140 lb/ft3). 
The poor performance of the masonry cement could be due to the additional air content in the resulting concrete mixture 
(evident from the lower density) and possibly due to increased lime content. The Type I/II cement and Lehigh White 
cement had similar strengths, around 100 MPa (14.5 ksi). The Type III cement resulted in the highest 28-day strengths, 
reaching an average compressive strength of 120 MPa (17.5 ksi) at 28 days. Type III cement showed a noticeably 
shortened working time compared to other cement types, although the initial flowability of UHPC made by Type III 
cement was almost same as other cement types. Considering the decreased working time for Type III cement and its 
initially higher price compared to Type I/II, it was not used for large-scale batches. The working time issue of Type III 
cement should be addressed through trial baches before it is used in UHPC.  
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Figure 5. Mix designs with different cement type: (a) flowability of mixes with different cement type and (b) effect of cement 
type on compressive strength (1 mm = 0.0394 in.; 1 MPa = 0.145 ksi) 

Type I/II cement was used for most mixtures in this experimental program and recommended for the final mixture as 
it led to reasonable strength and more consistent mixtures with reasonable working time. 

4.2. Effect of Water-to-Cementitious Materials Ratio  

The hydration process of cementitious material is a critical factor that affects the final mechanical properties of 
concrete. This fact is especially true for UHPC due to the very fine aggregate (maximum aggregate size does not exceed 
500 µm) and relatively high specific surface area. Lower water-to-cementitious materials ratios (w/cm) usually result in 
higher compressive strength, but there are thresholds for both high and low w/cm depending on the material used in the 
concrete mixture. The minimum w/cm threshold is determined based on the minimum amount of water required to 
complete the hydration process in the cementitious materials. In other words, reducing the w/cm past a certain point 
does not enhance the strength due to incomplete hydration process. In addition, decreasing the w/cm decreases the 
workability and flowability of fresh concrete, which will then cause more HRWR to be required.  

There is no exact w/cm to guarantee the full hydration process, as it depends on cement fineness, chemical composition 
of the clinker used and grain size. Previous studies [37–39] reported numbers between 0.35 to 0.45 for full cement 
hydration for conventional concrete but the value differs for each mixture design and depends on the constituents used 
in the concrete matrix. To find the optimum w/cm for the non-proprietary UHPC in this research, mixtures with w/cm 
between 0.17 to 0.24 were tested, which coincides with typical w/cm for UHPC mixtures [17, 18, 24, 40]. Five mixtures 
used to compare the effect of the w/cm are shown in Table 6.  

The HRWR content was increased for smaller w/cm to maintain the workability of the mixture; even with the 
increased HRWR content, the flow still decreased with w/cm, as shown in Figure 6 (a). 

Table 7. Mixture proportions and characteristics for investigation of water-cementitious materials ratio (dried sand used in 
all mixtures) 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 

(kg/m3) agg/cm C S SF FA UFR Type Content (%) 
HRWR 
(oz./cwt) 

VMA 
(oz./cwt) 

C17 Titan Type I/II 0.24 1.0 0.6 0.3 0.1 1.0 0 B 2.0 16.39 2.47 2287 

C11 Titan Type I/II 0.22 1.0 0.6 0.3 0.1 1.0 0 B 2.0 19.87 6.5 2316 

C32 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 27.47 6.5 2353 

C34 Titan Type I/II 0.18 1.0 0.6 0.3 0.1 1.0 0 B 2.0 27.47 6.5 2400 

C26 Titan Type I/II 0.17 1.0 0.6 0.3 0.1 1.0 0 B 2.0 35.52 0 2403 

Results showed that the optimum w/cm ratio for this mixture was around 0.18 to 0.20, as shown in Figure 6 (b). The 
compressive strength increased as the w/cm decreased from 0.24 to 0.18. The compressive strength decreased when the 
w/cm ratio was further decreased from 0.18 to 0.17. A w/cm ratio of 0.20 is recommended for this mixture as it led to a 
mixture with high strength and good workability. The w/cm shown here do not include the water from chemical 
admixtures.  
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Figure 6. Effect of water-to-cement ratio on (a) flowability and (b) compressive strength (1 mm = 0.0394 in; 1 MPa = 0.145 ksi) 

4.3. Effect of HRWR and VMA Content 

Effect of HRWR Content 

In general, a base amount of HRWR was designed for all the mixtures and was used initially to provide required 
workability and flowability of mixtures with low w/cm. The actual amount of HRWR was then modified during the 
mixing procedure based on the workability of each mixture, with a target flow between 200 and 250 mm (8 and 10 in.). 
Three mixtures that had similar mixture proportions with different HRWR contents are summarized in Table 8. The 
HRWR dosages were selected to get approximate flows of 150, 200, and 250 mm (6, 8, and 10 in.). 

Table 8. Mixture proportions and characteristics for investigation of HRWR effect (dried sand used in all mixtures) 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 
(kg/m3) agg/cm C S SF FA UFR Type Content (%) 

HRWR 

(oz./cwt) 

VMA 

(oz./cwt) 

C28 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1 0 B 2.0 21.70 0 2356 

C2 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1 0 B 2.0 22.25 0 2315 

C31 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1 0 B 2.0 27.47 0 2380 

As would be expected, increasing the HRWR content increased the flow of the mixture, shown in Figure 7 (a). 
Increasing the HRWR content decreased the 28-day compressive strength for these three mixtures, shown in Figure 7 
(b). This was likely because increasing HRWR also increased the amount of total liquid in the mixture and thus also 
increased w/cm. The water in chemical admixtures is usually neglected when determining the water content in a mixture 
and w/cm, due to their small proportions. The added water from the chemical admixtures was not considered when 
determining the total water content or w/cm in this research. The most accurate way of calculating w/cm is to consider 
the free water and water content of other constituents including aggregates and chemical admixtures. The results in this 
research would support that this additional water should be considered when determining the total water content in non-
proprietary UHPC mixtures.  

The small flow for mixture C28 required compacting of the material in the mold to ensure that no voids were present 
in the cylinder; this compaction of the material may have led to higher compressive strength. Having a flow less than 
203 mm (8 in.) is not practical. Additionally, there was noticeable fiber segregation for mixtures with too high of flows. 
Fiber segregation and different fiber contents in different cylinders may be why the 7-day strength was higher than the 
28-day strength for C31. Based on the testing with differing amounts of HRWR, HRWR contents are recommended in 
the 22 to 27 oz./cwt range based on obtaining a flow between 203 and 254 mm (8 and 10 in.).  

Another important concern about HRWR or any other chemical admixture, is their water content or liquid part that 
can affect the w/cm of mixture. In this study the liquid part of chemical admixtures was neglected in w/cm calculations 
due to their low proportion, but to get accurate results, especially for overdosed HRWR mixes with very low amount of 
w/cm, the water content of chemical admixtures should be involved in total water calculations. 
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Figure 7. Effect of HRWR content on (a) flowability and (b) compressive strength (1 mm = 0.0394 in.; 1 MPa = 0.145 ksi) 

Effect of VMA Content 

Viscosity modifying admixture (VMA) is a water-soluble polymer that has been used in concrete technology to 
modify the viscosity of mixing water and increase the ability of cementitious paste to retain its constituents in suspension 
[41]. VMAs have been widely used for self-compacting concrete SCC with slump flows ranging from 26 to 31 inches 
[41]. VMA is also used for pumped concrete, under water concrete, lightweight concrete, sprayed concrete or shotcretes, 
and even for porous concrete [42]. In this experiment, VMAs were used to help prevent steel fiber segregation in the 
UHPC mixes. Some fiber types are typically heavier and longer and are more prone to settle and segregate in the concrete 
mixture. In these cases, VMA will modify the viscosity of the whole mixture and make fibers distribute more uniformly. 

The effect of VMA was investigated on a fiber type that did not require VMA to stabilize the fiber in the mixture 
(Dramix OL 13/0.2); this allowed for a 0 oz./cwt to be compared to mixtures with VMAs. The effect of VMA were 
evaluated through three mixture designs and their proportions are shown in Table 9. The water content of the VMA was 
not considered in the w/cm calculation due to its small proportion compared to the total water. 

Table 9. Mixture proportions and characteristics for investigation of VMA effect (dried sand used in all mixtures) 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 
(kg/m3) 

agg/cm C S SF FA UFR Type Content (%) 
HRWR 
(oz./cwt) 

VMA 
(oz./cwt) 

C28 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 21.70 0 2356 

C16 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 26.55 3.02 2382 

C29 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.0 0 B 2.0 21.70 6.50 2347 

The flow and compressive strength for similar mixtures with different amounts of VMA are shown in Figure 8. VMA 
increased the flow (comparing C28 and C29 with similar HRWR contents), see Figure 8 (a). The VMA content did not 
influence the compressive strength of these three mixtures, shown in Figure 8 (b). VMAs are not suggested to be used 
with the standard fiber types used for UHPC (i.e., with 12.7-mm length and 0.20-mm diameter [0.5-in. length and 0.008-
in. diameter]), but they can be used to stabilize other types of fibers that may tend to float or settle during the mixing 
procedure without affecting the strength of the mixture. No VMAs are recommended in the standard proposed mixture 
since the standard UHPC fiber type is recommended. 
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Figure 8. Effect of VMA content on (a) flowability and (b) compressive strength (1 mm = 0.0394 in.; 1 MPa = 0.145 ksi) 

Four additional mixtures were also performed to investigate the influence of VMA on working time and the 
corresponding 28-day compressive strength. The details for these four mixture designs are provided in Table 10.  

Table 10. Mixture proportions and characteristics for investigation of working time (dried sand used in all mixtures) 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 
(kg/m3) 

agg/cm C S SF FA UFR Type Content (%) 
HRWR 
(oz./cwt) 

VMA 
(oz./cwt) 

C35 Titan Type I/II 0.20 1 0.6 0.3 0.1 1 0 B 2 27.47 0.00 2411 

C36 Titan Type I/II 0.20 1 0.6 0.3 0.1 1 0 B 2 27.47 6.50 2406 

C40 Titan Type I/II 0.17 1 0.6 0.3 0.1 1 0 B 2 29.39 0.00 2507 

C41 Titan Type I/II 0.17 1 0.6 0.3 0.1 1 0 B 2 29.39 9.16 2428 

The mixing procedure for these four mixtures was the same as the other mixtures. The only difference was that not 
all the cylinders were cast immediately after the mixing procedure was completed. The flow was measured every 10 
minutes for 20 to 60 minutes, until the flow of the mixture dropped below 127 mm (5 in.). Two cylinders were cast at 
three different times after casting. The flow versus time for these four mixtures are shown in Figure 1. The mixture with 
a w/cm of 0.20 had a higher flow over time with VMA compared to the same mixture without VMA, shown in Figure 
1 (a). The VMA content had no effect on the flow for the mixtures with a w/cm of 0.17, shown in Figure 1 (b). All 
mixtures were slightly agitated by hand mixing at the end of the testing; in all cases the hand mixing increased the flow. 
This can be done in the field (by hand or in a separate mixer) to extend the working time of the mixtures.  

 

Figure 1. Flow versus time for mixtures with and without VMA and (a) w/cm of 0.2 and (b) w/cm of 0.17 (1 mm = 0.0394 in.) 
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The compressive strength was measured at the same age for the cylinders taken from different times after the end 
of mixing from the mixtures with w/cm of 0.20 (7 days) and w/cm of 0.17 (28 days). There was a slight increase in 
compressive strength the longer they were cast after the end of mixing for the cylinders with w/cm of 0.20. There was 
no effect for the cylinders with w/cm of 0.17. Similar compressive strengths were observed for specimens with and 
without VMA for both values of w/cm.  

 
Figure 10. Compressive strength versus time after mixing for mixtures with and without VMA and (a) w/cm of 0.2 and (b) 

w/cm of 0.17 (1 MPa = 0.145 ksi) 

4.4. Effect of Fiber Type 

Previous researchers [16-18, 23, 43] have tested the effect of different fiber contents, ranging from 1% to 5% fiber 
content by volume. The typical fiber content for UHPC mixes is 2% by volume, which is what was selected for this 
research. Five different fiber types including four steel fibers and one synthetic fiber were investigated in this study:  

 Dramix 4D 65/35BG (A); 

 Helix 5-13 Uncoated (H); 

 Dramix OL 13/.20 (B); 

 Hiper Fiber Type A (HF); 

 STRUX® 90/40 (S). 

All different fiber types were used with the OPT#1 mixture design for performance comparison, as shown in Table 
11. VMAs were used with two of the heavier fiber types to help to stabilize the fibers. Helix (H) fibers and Bekaert 4D 
65/35BG (A) fibers were the heaviest and most challenging fibers to keep in suspension in the concrete mixture. While 
the recommended dosage by the manufacturer was 10 oz./cwt, the lower doses of VMA noted in Table 11 were effective 
at preventing segregation. These amounts were determined by gradually adding the VMAs to the mixture until the mix 
was viscous enough to stabilize the fibers. The recommended dosage by manufacturer usually comes from of an average 
required amount for series of experimental tests, therefore, proper dosage may slightly be different from recommended 
value by manufacturer, according to the mixture constituents.   

Table 11. Mixture proportions and characteristics for investigation of fiber type (dried sand used in all mixtures) 

Mix. Cement Type w/cm 

Mix Proportions Fiber Admixtures 
Density 
(kg/m3) ag/cm C S SF FA UFR Type Content (%) 

HRWR 

(oz./cwt) 

VMA 

(oz./cwt) 

C5 Titan Type I/II 0.20 1.0 0.60 0.3 0.1 1.0 0 H 2.0 24.72 6.41 2342 

C6 Titan Type I/II 0.20 1.0 0.60 0.3 0.1 1.0 0 A 2.0 24.72 8.24 2345 

C2 Titan Type I/II 0.20 1.0 0.60 0.3 0.1 1.0 0 B 2.0 22.25 0 2315 

C42 Titan Type I/II 0.20 1.0 0.60 0.3 0.1 1.0 0 HF 2.0 27.47 0 2380 

L9 Titan Type I/II 0.20 1.0 0.60 0.3 0.1 1.0 0 S 2.0 27.47 0 2268 
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The flowability and compressive strength for the five mixtures with different fiber types are shown in Figure 11. 
Similar flowability was achieved for all five fiber types using differing amounts of HRWR and VMA. The Hiper Fiber 
(HF in C42) and Dramix OL 13/.20 (B in C2) were found to have higher compressive strengths than the other types of 
fibers. Samples containing synthetic fibers showed lower compressive strengths and density than those with steel fibers. 
These samples had the smallest compressive strengths of all the different fiber types and contents tested. This lower 
compressive strength of samples with synthetic fibers, could be due to the lower strength of the synthetic fibers compared 
to steel fibers. Additionally, the lower strength of specimens with synthetic fibers could be explained by higher fiber 
clumps when synthetic fibers were used. Clumping of the fibers occurred in some cases where the fibers were added 
rapidly to the mixer, when long or heavy fibers were used, or when synthetic fibers were used. These clumps could trap 
some air and make voids in the concrete matrix which result in lower density and compressive strength.  

  

Figure 11. Effect of Fiber type on (a) flowability and (b) compressive strength (1 mm = 0.0394 in.; 1 MPa = 0.145 ksi) 

The mixtures presented here all had reasonable distribution of the fibers according to visual inspection after testing. 
Sample photographs of the cylinders after compression failure are shown in Figure 12. There were some mixtures 
where the heavier fibers segregated and settled during mixing, before VMA was used.  

 
Figure 12. Sample cylinders after compression failure for different fiber types: (a) Helix 5-13, (b) Dramix 4D 65/35BG, (c) 

OL 13/.20, (d) Hiper Fiber Type A, and (e) Strux 90/40 

As mentioned above, the Helix 5-13 fibers had a higher zinc content and no brass coating, which led to an expansive 
reaction occurring between the fibers and the concrete, as shown in Figure 13. The concrete expanded about 12.7 mm 
(0.5 in.) outside the top of the cylinder before demolding, shown in Figure 13 (a). When the cylinder molds were 
removed, part of the cylinders broke off the top, visible in Figure 13 (b). The concrete still held load but failed at much 
lower loads than other cylinders (40.9 MPa (5.9 ksi)). These findings suggest that higher zinc content in fibers can 
negatively affect the mechanical properties of the UHPC mixture due to some unwanted chemical reactions. The 
manufacturer of the fiber has fixed this issue. But this example highlights the importance of mixing trial batches before 
using new fiber sources in field applications. 
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Figure 13. Example of expansion caused by concrete mixture reacting with zinc in fibers for C23 (a) before demolding, (b) 
after demolding before testing, and (c) after testing 

Based on these test results, one of the fibers with a 13-mm (0.5-in.) length and 0.2-mm (0.00787-in.) diameter with 
a brass coating would lead to the highest compressive strength. The longer hooked fibers and synthetic fibers may 
appropriate for use in cases where the highest compressive strength is not required. Zinc-coated fibers or fibers with 
high zinc contents should be avoided.  

4.5. Effect of Fine Aggregate Content  

Ultra-fines recovery (UFR) material was used in some mixtures to improve the particle packing of the mixtures. UFR 
is made of limestone with lower stiffness, resistance, and strength compared to quartz particles made of rock crystal 
quartz. It has a very fine particle size, which minimizes the porosity of concrete by filling the gaps between courser 
particles and increasing the density. UFR was used to improve the distribution curve of OPT#1 and make it closer to the 
ideal curve driven from Equation 1. The particle packing analysis showed that replacing 10 to 35% of regular sand with 
UFR brought the base mix distribution curve (OPT#1) much closer to the ideal curve (shown in Figure 4). Table 12 
summarizes the proportions of five mix designs obtained by replacing 0, 10, 20, 30, and 35% of sand with UFR to study 
the effect of UFR on the flowability and compressive strength. Adding UFR to the concrete mix increased the total 
special surface area, which required more HRWR to result in the same flowability. For this reason the required dosage 
of HRWR increased with increasing replacement ratios of UFR in the concrete mix. 

Table 12. Mixture proportions and characteristics for investigation of using ultra-fine recovery (UFR) (dried sand used in 
all mixtures) 

Mix. Cement Type w/cm 
Mix Proportions Fiber Admixtures 

Density (kg/m3) 
agg/cm C S SF FA UFR Type Content (%) HRWR (oz./cwt) VMA (oz./cwt) 

C28 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 1.00 0.00 B 2.0 21.70 0 2356 

C45 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 0.90 0.10 B 2.0 27.47 0 2347 

C46 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 0.80 0.20 B 2.0 27.47 0 2377 

C47 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 0.70 0.30 B 2.0 29.39 0 2364 

C48 Titan Type I/II 0.20 1.0 0.6 0.3 0.1 0.65 0.35 B 2.0 29.39 0 2360 

The measured flow and compressive strength for these mixtures with varying UFR amounts and w/b of 0.20 are 
shown in Figure 14. Compressive strength results showed that replacing 10, 20, 30 and 35% of sand with UFR enhanced 
the 28-strength 7.0, 9.3, 8.9 and 13.6%, accordingly. Flowability results showed that even by overdosing the HRWR, 
C47 with 30 % UFR and C48 with 35% UFR were less flowable than C45 with 10% UFR. Although the flow was 200 
mm (8 inches), it was harder to work with the UHPC with a 35-percent UFR replacement.  
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Figure 14. Effect of fine aggregate content on (a) flowability and (b) compressive strength (1 mm = 0.0394 in; 1 

MPa = 0.145 ksi) 

Two additional mixtures were cast with a lower w/cm and UFR contents of 20 and 30 percent. Details for these 
mixtures are provided in Table 13. 

Table 13. Mixture proportions and characteristics for investigation using ultra-fine recovery (UFR) with w/b of 0.18 (dried 
sand used in all mixtures) 

Mix. Cement Type w/b 
Mix Proportions Fiber Admixtures Density 

(lb/ft3) agg/cm C S SF FA UFR Type Content (%) HRWR (oz./cwt) VMA (oz./cwt) 

C28 Titan Type I/II 0.18 1 0.6 0.3 0.1 1.00 0.00 OL 2.0 27.47 0 149.4 

C45 Titan Type I/II 0.18 1 0.6 0.3 0.1 0.80 0.20 OL 2.0 38.08 0 150.7 

C46 Titan Type I/II 0.18 1 0.6 0.3 0.1 0.70 0.30 OL 2.0 38.08 0 150.8 

The measured flow and compressive strength for these mixtures with varying UFR amounts and w/cm of 0.18 are 
shown in Figure 15. Compressive strength results showed that replacing 20 and 30 percent of sand with UFR increased 
the 28-strength 19.1 and 17.6 percent, respectively, compared to the mixtures without any UFR.  

  
Figure 15. Effect of fine aggregate content on (a) flowability and (b) compressive strength (with w/cm = 0.18) 

According to the results, the use of UFR up to 35% improved the mechanical properties of UHPC. 

5. Conclusions 

The primary goal of this research was to develop a non-proprietary UHPC mixture and evaluate the effect of different 
cement types and contents, w/cm, superplasticizer and VMA contents, fiber type, and fine aggregate type and content 
on the compressive strength and flowability of non-proprietary UHPC mixtures. More than 600 individual specimens 
were tested to determine the compressive strength of non-proprietary UHPC mixture designs using different fine 
aggregates and steel fibers. Two mixture designs with the most promising results and fiber types are summarized in 
Table 14. 
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Table 14. Proposed mixture designs with limestone fine aggregate based on the availability of UFR   

Mixes Agg./cm 
Cement 

(%) 
Slag 
(%) 

Silica 
Fume (%) 

Sand 
(%) 

UFR 
(%) 

Recommended values 
Expected Compressive 

Strength MPa (ksi) 
Fiber 

Content 
(%) 

w/cm  
HRWR 
dosage 

(oz./cwt) 

OPT#1 1.0 0.6 0.3 0.1 1.00 0.00 2.0 0.20 26 117.2 (17.0) 

OPT#9 1.0 0.6 0.3 0.1 0.65 0.35 2.0 0.20 28 124.1 (18.0) 

OPT#1 is the recommended mixture if UFR is not available. Because it does not have UFR a lower dosage of HRWR 
is required to reach the desired flowability. Mixture OPT#9 has better particle packing since 35% of the fine aggregate 
is replaced by UFR. Fibers with a 13-mm (0.5-in.) length and 0.2-mm (0.00787-in.) diameter with a brass coating and 
2,750 MPa (400 ksi) tensile strength, exhibited the best performance in both mixtures, but other fiber types provide 
reasonable results for some applications if proper adjustments are made to the admixture dosages.  

The conclusions of this evaluation on non-proprietary UHPC include: 

 UHPC is sensitive to the moisture content of dry constituents (aggregates); the moisture content of the fine 
aggregate affected the repeatability of UHPC mixtures. It is important to use oven dried fine aggregates to ensure 
accurate and proper results. This may be difficult for field applications. More research should be done to 
investigate mixtures with fine aggregates with natural moisture contents.  

 Five different cement types were studied in this research. The use of masonry cement led to the lowest 
compression strengths, which was probably due to its higher air content. Type III cement led to the highest 
measured strength but had shorter working time. Type I/II and Lehigh White cement had similar compressive 
strength and workability and had compressive strength within 10 percent of Type III cement.  

 Five different w/cm were tested between 0.17 and 0.24, which corresponds to the typical range for UHPC 
mixtures. Higher compressive strength was observed with lower w/cm as was expected. Mixtures with lower 
w/cm had issues with workability and required more superplasticizer to maintain the required flowability. Based 
on this, the optimum w/cm ratio for non-proprietary UHPC was found to be between 0.18 to 0.20. 

 Different dosage of HRWR were used to keep the flow between 150, 200, and 250 mm (6, 8, and 10 in.). 
Compression strength of mixtures with higher dosage of HRWR was lower than mixtures with less HRWR 
dosage. This observation was potentially due to the additional water in HRWR causing an increased w/cm. This 
additional water in the chemical admixtures was not considered when calculating w/cm and the amount of water 
to add to each mixture, which is similar to what has been done in most previous studies on UHPC. Due to very 
high sensitivity of UHPC mixtures to water content, it is recommended to consider the liquid parts of chemical 
admixtures in w/cm calculations and when determining the amount of water to add to a mixture.  

 The use of VMA was found to be a good option when using fiber types where fiber segregation may be a concern. 
VMA did not affect the compressive strength of the mixtures tested in this research, but more research is needed 
to study the effect of VMA on the rheology of UHPC. Additional variables like maximum aggregate size, w/cm, 
HRWR dosage, and VMA dosage should be further investigated. 

 The use of typical fibers with 13-mm (0.5-in.) length and 0.2-mm (0.00787-in.) diameter, and tensile strength of 
2,750 MPa (400 ksi) led to the highest compressive strengths. This size fiber distributed well without the addition 
of VMA. 

  New fiber types should be tested in small trial batches to ensure adequate performance before being used in field 
applications. Zinc-coated fibers and uncoated fibers with high zinc contents can lead to an expansive reaction in 
UHPC that breaks down the concrete matrix and greatly decreases the strength of the concrete. Whether or not a 
fiber reacts with the concrete mixture can be determined through these small trial mixtures. 

 Using UFR improved the particle packing of the UHPC mixture, which was expected to result in better 
mechanical properties. Replacing 10 to 30 percent of fine sand with UFR in the mixture resulted in a 7 to 19 
percent increase in the compressive strength depends on the w/cm.  
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