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Abstract 

In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical 

characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which 

causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of 

water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the 

diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many 

tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion 

test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper 

we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity 

of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is 

a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the 

soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was 

made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the 

early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along 

the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous 

study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the 

fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. 

Keywords: Piping; Erosion Rate; Wall Laws; Piping Erosion. 

1. Introduction 

Earthen hydraulic structures, which include dams, dikes or levees, are used worldwide to limit standing or flowing 

water in a given area. But the presence of water itself in such structures can cause significant damage that can lead to 

failure of the structure. This damage can be caused by three main mechanisms that are slope instability, overtopping and 

internal erosion. According to statistics from Foster et al. (2000), approximately 30-50% of dam failures are caused by 

internal soil erosion, which make internal erosion one of the major causes of dam’s instability With global warming, 
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which causes climatic disorder, the rise of lever waters, it is evident that natural disasters bound to extreme rainy events 

and afterward floods are more frequent and devastating. With climate disorder and rising lever waters caused by global 

warming, it is obvious that natural disasters related to extreme rainfall occurrences and subsequent floods are more 

frequent and devastating. Due to this, many dam failures have occurred around the world, some of them are reported by 

Foster et al. (2000) [1]. 

Soil erosion is a natural process caused by different natural events like wind, rain and moving water, excessive 

erosion is often caused by human activities, such as deforestation, road construction and intensive farming. It affects 

farming, construction projects, homeowners living near rivers, oceans and terrestrial slopes. The rate of soil erosion for 

a specific land area is determined from the loss of soil mass over time; you can calculate it by measuring the loss of soil 

mass over a specific time period. The vulnerability of geotechnical structures interface to fluids makes its maintenance 

an important area of research [2, 3]. Understanding the underlying mechanisms and quantifying the effects of pertinent 

variables are both important. For sand erosion, its unconsolidated and weakly bonded particle assembly makes it highly 

vulnerable to flowing liquid. This can be modeled by different approaches, which are roughly divided into two types: 

continuum-based models and discrete models.  

The common feature for all the continuum-based/empirical models is in the establishment of the conditions where 

sand failure will occur, and also in the use of some parameters which are calibrated with laboratory and/or field 

observations to predict the sand erosion rate. Various models for the prediction of sand erosion rate have been developed 

[2, 4], the one developed by Bonelli et al. (2006, 2008) was for interpreting the whole erosion test with a constant 

pressure drop [4, 5]. This type of model yielded a characteristic erosion time depending on the initial hydraulic gradient 

and the coefficient of erosion [6-12]; Another area of research is piping, which involves the formation and development 

of a continuous pipe within an earthen structure by the erosion of surrounding soil material driven by a hydraulic 

gradient. Failure of this type of structure can occur in one of three modes: piping through the fill, piping from the fill to 

the foundation and piping through the foundation. 

 

Figure 1. Internal erosion and piping process in earth dams 

2. Modelling Approach of the Interface Erosion  

Turbulence models based on the hypothesis of high turbulence are not valid in the region close to the walls. There 

are then several solutions to take into account the presence of viscous effects: (1) Do not solve this region and use a wall 

law instead, (2) Introduce damping functions forcing the behavior of the model, henceforth called low-Reynolds model, 

or (3) Solve different equations for the main flow and the near-wall flow. The standard k-ε or RNG models are based 

on approach (1) [13-16].  

Thus, in the first approach, the inner region is not resolved and a wall law is then used to connect the region affected 

by viscous effects to the fully turbulent part of the boundary layer (Figure 2.a). This more or less- evolved law makes it 

possible to estimate the average speeds as well as the turbulent quantities in the unresolved part but is nevertheless based 

on very constraining hypotheses. There are different levels of more or less evolved wall laws, the simplest one is the 

standard wall law (relation 3), valid in the region characterized by 𝑦+ = 30. The disadvantage of this law comes from 

the fact that it is based, among other things, on a very large Reynolds number of the flow, the absence of an adverse 

pressure gradient. To satisfy these points, other laws more elaborated are then available and built most of the time on a 

two-layer decomposition of the boundary layer (two-layer law). Depending on the calculation point placed in the 

boundary layer, the wall law will assign appropriate values. Thus, the use of this type of law allows finding information 

in the viscous under layer. The value of the meshing criterion must therefore satisfy 𝑦+ ≈ 1 [17]. It can therefore be 
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noted that the wall law approach can be less consuming in terms of calculation time and storage space depending on the 

degree of complexity of the law, the size of the first element being more important [17-21]. 

 

Figure 2. Digital processing of the area near a wall. (a) Approach of wall laws; (b) Approach of low-Reynolds models 

The value of the meshing criterion must therefore satisfy 𝑦+ ≈ 1. It can therefore be noted that the wall law approach 

can be less consuming in terms of calculation time and storage space depending on the degree of complexity of the law, 

the size of the first element being more important. Approaches (2) and (3) require in all cases much smaller mesh sizes, 

small enough to search for information in the viscous underlay (Figure 2.b). The number of calculation elements then 

becomes higher than that of a calculation based on high-Reynolds models using standard wall laws [22-27]. 

𝑢+ =  
𝑢

√
𝜏𝑝

𝜌

     and;     𝑦+ =  
𝑦 √

𝜏𝑝

𝜌

𝜈
                                (1) 

With √𝜏𝑝/𝜌 homogeneous at a speed that is called speed of friction, noted (𝑢𝑓), and having no physical meaning 

(one prefers nevertheless to manipulate a speed instead of a surface tension). For average speeds, it is in fact better to 

focus on the 𝑈/𝑢𝑓 ratio, and not on U alone. Similarly, it is preferable to look at the ratio 𝑢𝑖   
′ 𝑢𝑗 

′̅̅ ̅̅ ̅̅ ̅/𝑢𝑓
2 instead of 𝑢𝑖   

′ 𝑢𝑗 
′̅̅ ̅̅ ̅̅ ̅ 

alone. The friction speed is around 5% of the flow velocity. The transverse evolution of the longitudinal velocity in the 

inner region of the boundary layer shows several zones composing this inner region of the boundary layer: (1) the viscous 

sub-layer (𝑦+< 5) in which the Reynolds tensor is negligible in front of the viscous stresses and in which the velocity 

evolves linearly with the distance to the wall:  

𝑈+ = 𝑦+ (2) 

And Equation 2 the logarithmic zone (30 < 𝑦+< 1000) dominated by turbulent stresses and in which a logarithmic 

evolution of speed is observed: 

𝑈+ =
1

𝑘
ln(𝑦+) + 𝐵 (3) 

Where; k and B being experimentally obtained model constants. The region between these two previous zones (5 <
 𝑦+ < 30) is called the buffer zone. The inner region of the boundary layer therefore depends only on the parameters 

𝑦+ and 𝑢𝑓, and thus remain isolated from the main flow. Outside the logarithmic zone, the Equation 3 is no longer valid 

because the effects of the main flow are less and less negligible. The velocity relation which depended only on 𝑦+must 

tend asymptotically towards a relation which this time is a function of 𝑦  /𝛿. We then enter a region characterized by a 

deficit velocity law and characterized by a relation of the type: 

 The CODE Fluent offers different types of wall treatment. 

2.1. Standard Wall Function  

It is an integration model connecting conditions at and near the wall based on the universal profiles of the turbulent 

boundary layer (parietal law and logarithmic law), these laws are based on the approach proposed by Launder and 

Spalding [8]: 

U∗ =
1

k
ln (Ey∗) (5) 

(𝑈0 − �̅�)

𝑢𝑓

= 𝐹 (
𝑦 

𝛿
) (4) 
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Where; 

𝑈∗ =
𝑈𝑝𝐶𝑢

1/4
𝐾𝑝

1/2

𝜏𝑤
𝜌⁄

 
(6) 

Where;                                      

𝑦∗ =
𝜌𝑐𝑢

1/4
𝐾𝑝

1/2
𝑦𝑝

 

𝜇
 

(7) 

Table 1. An example of a table 

K Von Kármán constant (= 0.4187) 

E Empirical constant (= 9.793) 

𝑈𝑝
  Mean velocity of the fluid at point P 

𝐾𝑝
  Turbulence kinetic energy at point P 

𝑌𝑝
  Distance from point P to the wall 

𝜇 
  Dynamic viscosity of the fluid 

The turbulent kinetic energy is calculated in the whole field. The wall condition imposed for k is then: 𝜕𝑘/𝜕𝑦= 0. 

The calculation of k and ε, in a fluid cell adjacent to the wall, is performed with the assumption of local equilibrium 

between. The calculation of k and 𝜀, in a fluid cell adjacent to the wall, is performed with the assumption of local 

equilibrium using scalable wall functions that ensure that the distance to the wall employed in the wall functions is such 

that y+≥11.126 regardless of the level of grid refinement near the wall. This value of y+ marks the intersection of the 

linear and logarithmic velocity profiles. It is clear that the evolving wall function will produce identical results to the 

standard wall function for values of y+≥11.126. 

The use of the standard equilibrium and non-equilibrium wall functions implies that the near-wall grid node lies 

entirely in the logarithmic region, but this can be difficult to achieve in overall applications given the varying geometric 

and velocity scales associated with the flow. Scalable wall functions can prevent erroneous modeling of the laminar and 

buffer regions of the boundary layer by effectively moving the near-wall mesh point to y+=11.126, regardless of the 

proximity to the wall. It is important to know that these functions can be activated for all high Reynolds number 

turbulence models that use equilibrium wall functions without surface roughness. They are not currently implemented 

for use with non-equilibrium wall functions or with the Reynolds stress transport model. 

Thus, the transport equation of ε is obtained by the relation: 

𝜀𝑝 =
(𝐶𝜇)

3
4 (𝑘𝑝)

3
2

𝑘 𝑦𝑝

 (8) 

  Where; 

   𝑘𝑝: is the kinetic energy calculated in the considered cell. 

2.2. Enhanced Wall Treatment  

In the case of improved walls, a single speed profile is used. This profile covers the entire boundary layer (inner and 

outer parts), in which case Fluent uses the following relationship 

𝑢+ = 𝑒𝜁  𝑈𝑙𝑎𝑚
+ + 𝑒

1
𝜁𝑈𝑡𝑢𝑟

+  (9) 

Where 𝜁 is the transition function given by: 

𝜁 = −
𝑎(𝑦+)4

1 + 𝑏𝑦+
 (10) 

With 𝑎 = 0.01 and 𝑏 = 5, and composed of a part; 

Laminar, 𝑒𝜁  𝑈𝑙𝑎𝑚
+  with: 

𝑈𝑙𝑎𝑚
+ = 𝑦+(1 +

𝑎

2
𝑦+) (11) 
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Or the α coefficient takes into account the parietal pressure gradient, 

𝑎 =
𝜇  𝑑𝑝

𝜌2𝜇𝜏
3    𝑑𝑥

 (12) 

As well as a turbulent part, 𝑒𝜁  𝑈𝑙𝑎𝑚
+  with:  

 𝑑𝑈𝑙𝑎𝑚
+

𝑑𝑦+
=

1

𝑘 𝑦+
[�̀�(1 − 𝛽𝑢+ − 𝛾(𝑢+)2 ]

1
2  (13) 

 

In this part also, the pressure gradient is represented by, through the coefficient �̀�: 

𝑆′ = {
1 +  𝛼𝑦+              𝑦+ <  60

1 + 60𝛼                 𝑣+ ≥ 60
 (14) 

Or we have: 

𝛽 =
𝜎𝑡𝑢𝜏

2 

2𝑐𝑝𝑇𝑝

 (15) 

In the case where the above coefficients, α, þ and y are all equal to zero, the relation (3) admits as solution a classical 

logarithmic wall law [17-21]. 

2.3. Scalable Wall Function   

Irrespective of the near-wall grid refinement’s level, the wall distance applicated to the wall function which is 𝑦+ ≥
11.126 was ensured by the scalability of the wall functions. Which marks the intersection of the velocity profile’s 

logarithmic and linear. It’s clear that a scalable wall function generates identical results to the standard wall function at 

the value of 𝑦+ ≥ 11.126. 

Standard equilibrium and non-equilibrium wall function imply that the log-law region must entirely include the near-

wall grid. It is difficult to achieve with the general application due to the velocity scales and varying geometrical with 

the flow. The erroneous modeling of the laminar and buffer regions of the boundary layer was be avoided by scalable 

wall function near to mesh point 𝑦+ = 11.126 no matter his nearest to the wall [9]. 

 

Figure 3. Flowchart of methodology to treated near to the wall 

3. Analysis and Interpretation of Results  

The fluid domain is assumed axisymmetric, which has 117 mm length in the axial direction (z) and 3 mm large in the 

radial direction (r). The inlet section and the outlet section are respectively in the left and the right side as the Figure 4 

shown:  
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Figure 4. Geometry of the tube 

 

Figure 5. Zoom of Mesh of the tube. 

Table 2. Mesh properties table 

Noeuds Elements Size of the elements Minimum curve size 

883514 877518 2.10-5 m 2.10-7 m 

Table 3. Homogenized some parameters for the flow 

Pressure of the flow (Pa) Velocity of the flow (m/s) Density of the flow (kg/m3) Viscosity of the flow (Pa.s) 

3500 1.89 1020 0.001 

4500 2.19 1020 0.00194 

6000 3.75 1020 0.00194 

The table gives the hole erosion modeling parameters.  

Using three conditions gradients, corresponding to Δ𝑝 = 𝑝𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑝𝑖𝑛𝑙𝑒𝑡  where 𝑔 = 9.81 𝑚/𝑠2, and hydraulic head 

is one of the following values: 𝐻 = 0.28 𝑚 , 𝐻 = 0.66𝑚 , 𝐻 = 1.04 𝑚. Fixing 𝑝𝑜𝑢𝑡𝑙𝑒𝑡 = 0, the inlet pressures are then: 

𝑝𝑖𝑛𝑙𝑒𝑡 = 3500 𝑃𝑎, 𝑝𝑖𝑛𝑙𝑒𝑡 = 4500 𝑃𝑎, And 𝑝𝑖𝑛𝑙𝑒𝑡 = 6000 𝑃𝑎. 

Inlet Outlet 

117 mm 

3 mm 

Wall 

Axis 
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Figure 6. Y+ obtained for 𝒑𝒊𝒏𝒍𝒆𝒕 = 𝟔𝟎𝟎𝟎 𝑷𝒂 by wall laws 

Figure 6 presented the value of y+ deferent pressure used 𝑝𝑖𝑛𝑙𝑒𝑡 = 6000 𝑃𝑎, gives the three wall laws too as axial 

coordinate function.  

 

Figure 7. Shear Stress for All pressures by wall laws 

Figure 7 gives the function of the axial coordinate of the wall-shear stress for the three wall law’s hydraulic gradients. 

Figure 7 shows the uniforms of the wall-shear along the hole length. The wall-shear stress can exceed 7 times and it has 

a permanent value inside the hole’s plateau zone. Which is decline the habitual hypothesis that is used to derive the one-

dimensional approaches of piping flow. The wall-shear and erosion are maximal in the upstream extremity. The two-

dimension’s results obtained of flow state clearly showing huge variations compared with the one-dimension’s results. 

The initial stage can be predicted just in case of rigidity of the wall, and linearity of the erosions law was valid. So, the 

strong effect on the erosion rate was observed by the pressure gradient’s application. 
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Figure 8. Rate Erosion obtained for 𝒑𝒊𝒏𝒍𝒆𝒕 = 𝟔𝟎𝟎𝟎𝑷𝒂 by wall laws 

 

Figure 9.  Rate Erosion obtained for  pinlet = 4500Pa   by wall laws 

 

Figure 10. Rate Erosion Obtained for   𝒑𝒊𝒏𝒕 = 𝟑𝟓𝟎𝟎𝑷𝒂 by wall laws 
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Figures 8 to 11 shows the erosion rate (of 10-6 kg/s), corresponding to the amount of mass production per unit time 

because of the erosion. This amount is a result of the Integration of the erosion law along the whole length of the hole 

and the multiplication of the results and the initial circumference of the hole. The linear classical erosion law: 𝜀𝑒𝑟̇ =
𝑐𝑒𝑟(𝜏 − 𝜏𝑠) was used, with the erosion constants 𝑐𝑒𝑟 = 5.5 10−4𝑠/𝑚 and τ𝑠 = 7 𝑃𝑎 as identified for a soil sample [10, 

11]. The results also indicate that the SWF (Scalable Wall Function) law is not compatible to improve the near wall 

calculation due to poor estimates.  

 

Figure 11. Erosion Rate for 6000Pa by wall laws 

By understanding and analyzing Figure 11, we notice that it gives us high shear stress at the entrance. This makes us 

conclude that the erosion of entrance in experiments is due to the excessive efforts of fluid. A process of the successive 

armoring may be reflected by increasing the initial period and decreasing the erosion rats as well. Even if the looser and 

smaller particles are directly deleted from the adjacent area to the axial hole, the course’s soil matrix reset intact. Which 

making the surface rougher and more erosion-resistant over time. While the stress shears up to the critical value, which 

is able to remove and destroy the developed armoring, because of the excessive force’s application to the soil underneath 

the specimen stat to speared along the whole hole.   

4. Conclusion  

Experimental studies were used to study the internal erosion wall of the soil and its effect on the hydraulic structure, 

Validation of those experimental results has no enough data at the numerical side which is far from our process. The 

main use of the Hole Erosion Test (HET) is to determine characteristics of the soil erosion, (erosion rate coefficient. In 

this study, we developed a new numerical model for modeling internal erosion of soil, in our model we determine the 

shear stress for three different pressures in order to compare the effects of three wall laws at the level of the solid/fluid 

interface. Using an interpretation of the hole erosion test with three constant pressure drops we obtained an analytical 

scaling law in the interface. The main advantage of this simulation is the ability to determine the shear stress in the wall, 

even if we have à turbulent flow inside the hole, which is not the case for the experimental study where we neglect the 

turbulent flow and consider only laminar flow. In this work, two-dimensional modeling was carried of the soil.in contrast 

of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not 

uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole 

length. The previous studies show that the consequence of the wall laws has not a negligible effect on the wall-shear 

stress, which affects the erosion’s interface in the fluid/soil, thus, particularly at the extremity of whole the hole where 

is maximal. The eroded profile is not uniform, this is the result of our experiment. 
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