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Abstract 

Geotechnical engineers often deal with layered foundation soils. In this case, the soil bearing capacity assessment using 

the conventional bearing capacity theory based on the upper layer properties introduces significant inaccuracies if the top 

layer thickness is comparable to the rigid footing width placed on the soil surface. Under undrained conditions the 

cohesion increases almost linearly with depth. A few theoretical studies have been proposed in the literature in order to 

incorporate the cohesion variation with depth in the computation of the ultimate bearing capacity of the strip and circular 

footings. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase of cohesion 

do not appear to exist. In this paper, numerical computations using FLAC code are carried out to assess the vertical 

bearing capacity beneath rough rigid circular footing resting on two-layered clays of both homogeneous and linearly 

increasing shear strength profiles. The bearing capacity calculation results which depend on the top layer thickness, the 

two-layered clays strength ratio and the cohesion increase rates with depth are presented in both tables and graphs, and 

compared with previously published results available in the literature. The critical depth for circular footing is found 

significantly less than for strip footing. 
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1. Introduction 

For a surface strip footing resting on a single layer of homogeneous clay under undrained conditions, practitioners 

generally use Terzaghi’s expression to compute ultimate footing loads. For a surface strip footing without a surcharge, 

the ultimate bearing capacity expression is reduced to: 

𝑞𝑢 = 𝑁𝑐 . 𝐶𝑢                                                                                                                                                                       (1) 

Equation 1 can be rewritten to include the effect of footing shape as follows: 

𝑞𝑢 = 𝑁𝑐 . 𝐶𝑢. 𝑆𝑐                                                                                                                                                                  (2) 

The ultimate bearing capacity of circular footings resting on a single layer of homogeneous clay under undrained 

conditions can be estimated using Equation 2. In situ, natural soils are often deposited in layers. These layers are non-

homogeneous in nature but can be assumed as distinct homogeneous layers for engineering purposes, although the 
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strength properties of adjacent layers are generally quite different. If a footing is placed on the surface of a layered soil 

for which the top layer thickness is large compared to the footing width or diameter, then the realistic assessment of 

the bearing capacity may be obtained using conventional bearing capacity theory based on the properties of the upper 

layer. However, if the thickness of the top layer is comparable to the footing width, this approach may not be 

appropriate. 

 The effect of soil homogeneous layering for strip footings has been widely reported in the literature, particularly by 

Button [1], Meyerhof and Hanna [2], Merifield et al. [3], Gupta et al. [4], Chi and Lin [5], Rao et al. [6], Eshkevari et 

al. [7] and Das and khatri [8]. Circular piled raft on clay soil has been addressed by Karkush and Aljorany [9]. They 

showed the benefit effect of interaction between the soil and the circular raft foundation to support the load of digester 

tank. Experimental studies [10] on saturated normally consolidated and lightly overconsolidated clays indicate that the 

cohesion of soil mass under undrained conditions increases almost linearly with depth. A few theoretical studies have 

been proposed in the literature to incorporate the variation of cohesion with depth in the computation of the ultimate 

bearing capacity of strip and circular footings. 

Using the stress characteristics method, Davis and Booker [11] have performed a series of solutions for both smooth 

and rough rigid strip footings on single clay layer with undrained cohesion increasing linearly with depth. Likewise, 

using the characteristics method, Reddy et al. [12] have obtained the solutions for both strip and circular smooth 

footings for the cases of footing placed at very shallow depths from the ground surface. Recently, using the lower 

bound limit analysis in conjunction with finite elements, the bearing capacity factor 𝑁𝑐for several rates of increase of 

cohesion with depth has been estimated by Khatri and Kumar [13]. Using a numerical approach by means of FLAC 

code (Fast Lagrangian Analyses of Continua) [14], the bearing capacity factor Nc of a strip footing resting on two 

layers with undrained cohesion increasing linearly with depth has been computed by Benmebarek et al. [15]. Lately, 

Chi and Lin [5] utilized limit analysis and FLAC numerical simulation to investigate the bearing capacity of a footing 

on single thick stratum or two-layered cohesive soils. They concluded that the partial punch-through shear failure was 

between the general shear failure and the full punch-through shear failure, depending on the strength ratio and the 

normalized layer thickness, the features of this failure mode was not apparent from the variations of bearing factor 

figures. However, the problem of circular and square footings resting on layered clays has been addressed by Merifield 

and Nguyen [16] only for layered clays with constant undrained shear strength. Therefore, with respect to 

investigations carried out so far, for layered soils, the effect of an increase of soil cohesion with depth has not been 

addressed in detail. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase 

of cohesion do not appear to exist. Geotechnical engineers have addressed this issue by simply averaging layer 

strengths or adopting large safety factors to account for the uncertainty of soil layering. 

The purpose of the present investigation is to take advantage of the numerical computation, which does not require 

in advance the specification of the failure mechanism surface needed for both limit equilibrium and limit analysis 

methods, to study the effect of two-layered clays with constant and linear increase of cohesion with depth on the 

bearing capacity beneath rigid circular footing subjected to axial static load. The computation results of the bearing 

capacity related to the strength ratio of the two-layered clays, the relative thickness of the top layer and the rates of the 

increase of soil cohesion with depth are presented in tables and graphs. The results are compared with previously 

published results available in the literature regarding circular footings [12, 13, 16, 17] to illustrate the sensibility of the 

bearing capacity and the failure mechanisms to the layered strength and layered thickness. A flowchart of the research 

methodology employed in this study is depicted in Figure 1. 

2. Problem Definition 

This paper deals with the numerical study of bearing capacity factor for circular footings on two-layered clays 

whose cohesion increases linearly with depth. A footing of diameter D is placed on an upper layer of clay with 

undrained shear strength 𝐶𝑢1−0 and thickness H as shown in Figure 2. The latter is underlain by an infinite depth clay 

layer with undrained shear strength 𝐶𝑢2−0. Both cases of constant and linearly increase of cohesion are considered in 

this investigation.  

It is assumed that the rate of cohesion increase is similar for both layers. The cohesion of the two soil layers 

increases linearly with depth in the following trend: 

𝐶𝑢1 = 
𝑚∗𝑧

𝐷
𝐶𝑢1−0 + 𝐶𝑢1−0                                                                                      (3) 

𝐶𝑢2 = 
𝑚∗𝑧

𝐷
𝐶𝑢2−0 + 𝐶𝑢2−0                                (4) 

It should be noted that the ultimate bearing capacity for undrained loading of a footing is independent of the soil 

unit weight and elastic parameters. This implies that the undrained strength is assumed to be independent of the mean 

normal stress.  
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Figure 1. Research methodology flow chart 

 
Figure 2. Studied cases: (a) Problem notation; (b) Cohesion variation with depth 

In the case of a layered soil profile with constant undrained shear strength, it is convenient to rewrite Equation 1 in 

the form: 

𝑁𝑐
∗ = 

𝑞𝑢

𝐶𝑢1
                                                                                                                                                                            (5) 

In the case of layered clays with linearly increasing undrained shear strength, the equation can be written in the 

form: 

𝑁𝑐
∗ = 

𝑞𝑢

𝐶𝑢1−0
                                                                                  (6) 

𝑁𝑐
∗ is a modified bearing capacity factor which is a function of both 𝐻/𝐷 and 𝐶𝑢1/𝐶𝑢2 for constant undrained shear 

strength and is a function of 𝐻/𝐷, 𝐶𝑢1−0/𝐶𝑢2−0 and m for linearly increasing undrained shear strength. 
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Solutions have been computed using FLAC code where 𝐻/𝐷 ranges from 0.125 to 1.5, 𝐶𝑢1−0/𝐶𝑢2−0 varies from 

0.25 to 5 and for different values of m (m = 0, 0.5, 1, 1.5, 2, 3, 4, 5), these cover most problems of practical interest. It 

is noted that (𝐶𝑢1−0/𝐶𝑢2−0) > 1 corresponds to the common case of a strong clay layer over a soft clay layer, while 

(𝐶𝑢1−0/𝐶𝑢2−0) < 1 corresponds to the reverse case. 

3. FLAC Simulations 

For circular footings, the problem is axis-symmetric, therefore, only one half of the footing and soil mass was 

considered in the calculation scheme. Figure 3 shows the mesh and boundary conditions retained for this analysis. In 

the vicinity of the footing, the grid is refined to capture the large gradients in strain. The vertical and bottom 

boundaries were located at a distance of ten times the footing diameter in order to minimize boundary effects. The 

bottom boundary was assumed to be fixed, and the right vertical boundary was constrained in motion in the horizontal 

direction. 

In order to be consistent with existing design expressions and the comparative studies described above, the elastic 

perfectly plastic Tresca model encoded in FLAC was used. Physical and mechanical characteristics assigned to the soil 

were: a shear modulus G=30 MPa, an elastic bulk modulus K=50 MPa, constant undrained strength, Cu1-0 =100 kPa 

with internal friction u = 0°. In order to develop an acceptable analysis scheme for later computations, preliminary 

simulations have been carried out, by testing the size of the domain and the grid refinement. It is noteworthy that the 

undrained bearing capacity of foundations is insensitive to the stiffness of soils [18, 19] and the soil unit weight as 

described by Houlsby and Martin (2003) [17] and verified in preliminary simulations. 

The loading was modeled by the kinematically controlled indentation of the rigid footing. The solution was 

performed with velocities 1.0e-7 m/step constant throughout the whole indentation process. Using a FISH function, the 

ultimate bearing capacity 𝑞𝑢 was calculated by dividing the sum of the vertical footing nodal forces by the area of the 

footing, with its radius equal to the distance to the center of the first element outside the footing. 

 

Figure 3. Mesh used and limit boundary conditions 

4. Results and Discussion 

4.1. Comparison with Existing Solutions 

Before computing the bearing capacity of circular footings on two-layered undrained clays with constant and 

linearly increasing shear strength, first the case of single-layer was computed and compared with existing solutions 

available in the literature (Table 1): (i) The lower bound solutions on the basis of the three dimensional finite element 

limit analysis given by Salgado et al. [20], (ii) The method of characteristics solution of Houlsby and Martin [17], (iii) 

The lower bound limit analysis in conjunction with finite elements and linear programming reported by Khatri and 

Kumar [13] and (iv) The upper bound solution of Kusakabe et al. [21].  

The results of the present study are well framed and compared to the solutions reported in the literature. This is 

clearly indicated in Figure4 which presents the values of 𝑁𝑐
∗ versus m. Furthermore, the same trend is recorded (i. e. a 

smooth increase of 𝑁𝑐
∗ with m). The curve derived from this study is situated between that of Kusakabe et al. [21] and 

the other curves. In the range of m = 0 to 3 the same curve as that of Houlsby and Martin [17] and Khatri and Kumar 

[13] was obtained. 
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Table 1. Comparison of 𝑵𝒄
∗ values with the results derived by other authors for the case of a single layer clay with linearly 

increasing undrained shear strength 

 

Figure 4. A comparison of 𝑵𝒄
∗ values with those from literature with different numerical solutions  

In addition, the computed values of the modified bearing capacity factor for rough circular footings for the case of 

layered clays with constant undrained shear strength (m = 0) are plotted in Figure 5 and compared in Table 2 to the 

results given by Merifield and Nguyen [16] using finite elements ABAQUS code for each ratio of 𝐻/𝐷 and 𝐶𝑢1−0/

𝐶𝑢2−0 solutions.  
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∗ for all combinations of 
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Table 2. Comparison of 𝑵𝒄
∗ values with the results derived by other authors for the case of layered clays with constant 

undrained shear strength (m = 0) 

𝑯

𝑫
 

𝒄𝒖𝟏−𝟎

𝒄𝒖𝟐−𝟎

 0.25 0.5 0.75 1 1.25 1.5 2 2.5 3 4 5 

0,125 
Present study 7.8 7.79 6.97 6.05 5.26 4.65 3.81 3.26 2.86 2.32 2.01 

Merifield et al. [16] 7.95 7.89 6.85 6.05 5.27 4.66 3.85 3.32  2.41 2.07 

0,25 
Present study 6.39 6.39 6.38 6.05 5.59 5.14 4.45 3.90 3.50 2.93 2.59 

Merifield et al. [16] 6.36 6.36 6.34 6.05 5.59 5.17 4.51 4.02  3.13 2.78 

0,5 
Present study 6.05 6.05 6.05 6.05 6.03 5.91 5.38 4.97 4.62 4.10 3.82 

Merifield et al. [16] 6.04 6.04 6.04 6.05 6.02 5.90 5.58 5.23  4.39 4.03 

1 
Present study 6.05 6.05 6.05 6.05 6.05 6.04 6.04 6.03 6.00 5.90 5.85 

Merifield et al. [16] 6.03 6.03 6.03 6.05 6.05 6.05 6.06 6.06  6.04 5.94 

1,5 
Present study 6,05 6,05 6,05 6,05 6,05 6,05 6,05 6,05 6,05 6,05 6,05 

Merifield et al. [16] 6.04 6.04 6.03 6.05 6.04 6.04 6.04 6.04  6.04 6.03 

The comparison between the present 𝑁𝑐
∗ and the results of Merifield and Nguyen [16] seems quite coherent. The 

same value of 6.05 was obtained for a single homogeneous layer. The present 𝑁𝑐
∗ values remain a little lower with a 

difference of less than 7%. Finally, the effect of increasing cohesion linearly with depth is investigated for different 

values of m (m = 0, 0.5, 1, 1.5, 2, 3, 4, 5). These cover most problems of practical interest. The results are listed 

presented in Table 3. 

Table 3. 𝑵𝒄
∗ values of bilayers clay where undrained shear strength increases linearly with depth 

H/D 0-2/Cu0-1uC m = 0 m = 0.5 m = 1 m = 1.5 m = 2 m = 3 m = 4 m = 5 

0.125 

0.25 7.8 8.09 8.28 8.51 8.78 9.22 9.72 10.19 

0.5 7.79 8.04 8.32 8.52 8.75 9.23 9.72 10.19 

0.75 6.97 7.45 7.85 8.22 8.56 9.16 9.68 10.18 

1 6.05 6.53 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 5.26 5.78 6.22 6.48 6.83 7.51 8.14 8.68 

1.5 4.65 5.14 5.58 5.97 6.26 6.84 7.46 8.00 

2 3.81 4.25 4.64 5.01 5.35 5.85 6.37 6.92 

2.5 3.26 3.66 4.01 4.34 4.65 5.24 5.60 6.11 

3 2.86 3.23 3.55 3.86 4.13 4.68 5.18 5.42 

4 2.32 2.64 2.70 2.86 3.19 3.63 4.04 4.43 

5 2.01 2.26 2.49 2.50 2.71 3.10 3.47 3.82 

0.25 

0.25 6.39 6.77 7.15 7.51 7.83 8.51 9.19 9.79 

0.5 6.39 6.77 7.15 7.51 7.83 8.51 9.19 9.79 

0.75 6.38 6.79 7.15 7.52 7.83 8.51 9.19 9.79 

1 6.05 6.53 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 5.59 6.09 6.60 7.05 7.47 8.26 8.99 9.66 

1.5 5.14 5.71 6.18 6.67 7.13 7.98 8.73 9.40 

2 4.45 5.07 5.48 5.97 6.42 7.27 8.05 8.79 

2.5 3.90 4.55 4.90 5.40 5.82 6.68 7.47 8.17 

3 3.50 3.97 4.47 4.99 5.35 6.16 6.89 7.60 

4 2.93 3.40 3.81 4.23 4.60 5.31 5.99 6.70 

5 2.59 3.02 3.41 3.75 4.11 4.77 5.40 6.01 

0.5 

0.25 6.05 6.56 7.00 7.40 7.77 8.48 9.16 9.79 

0.5 6.05 6.56 7.00 7.40 7.77 8.48 9.16 9.79 

0.75 6.05 6.56 7.00 7.40 7.77 8.48 9.16 9.79 

1 6.05 6.53 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 6.03 6.56 7.01 7.36 7.77 8.47 9.15 9.79 

1.5 5.91 6.53 7.00 7.40 7.77 8.48 9.15 9.79 

2 5.38 6.26 6.96 7.39 7.78 8.45 9.15 9.79 

2.5 4.97 5.89 6.65 7.27 7.76 8.48 9.17 9.78 

3 4.62 5.56 6.30 6.99 7.61 8.48 9.17 9.79 

4 4.10 4.94 5.77 6.47 7.12 8.26 9.17 9.80 

5 3.82 4.59 5.33 5.99 6.65 7.81 8.91 9.78 
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1 

0.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.75 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.5 6.04 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2 6.04 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2.5 6.03 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

3 6.00 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

4 5.90 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

5 5.83 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 

0.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.75 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

3 6.01 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

4 5.96 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

5 5.96 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.5 

0.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

0.75 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.25 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

1.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

2.5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

3 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

4 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

5 6.05 6.52 7.00 7.38 7.76 8.47 9.15 9.79 

 

4.2. Layered Clays with Constant Undrained Shear Strength 

4.2.1. Footing on Strong Clay Overlying Soft Clay (
𝑪𝒖𝟏−𝟎

𝑪𝒖𝟐−𝟎
 > 1) 

For cases of layered clays with constant undrained shear strength (m = 0) where the top layer is stronger than the 

bottom layer ((𝐶𝑢1−0/𝐶𝑢2−0) 1), the present results of 𝑁𝑐
∗ given in Table 3 are shown graphically in Figure 5 for 

comparison purposes. These indicate that 𝑁𝑐
∗ increases as 𝐻/𝐷 increases and approaches 6.05 for all cases up to a 

depth ratio of 𝐻/𝐷 = 1.5. Thereafter, the value of 𝑁𝑐
∗ becomes almost constant and equal to 6.05 which indicates that 

the failure mechanism is limited in the top layer and the whole soil can be treated as homogenous using the properties 

of the top layer only. For strong clay overlying soft clay profile, the larger the ratio 𝐶𝑢1−0/𝐶𝑢2−0 is, the larger the 

critical depth will be. This critical depth (𝐻/𝐷 = 1.5) for circular footing is significantly less than the 𝐻/𝐵  2-2.5 for 

strip footing found by some investigators [2, 3, 10]. 

For H/D  1.5, the present results show that 𝑁𝑐
∗ decreases with both the increase of the ratio 𝐶𝑢1−0/𝐶𝑢2−0 and the 

decrease of the top layer depth ratio 𝐻/𝐷. For instance, the values of 𝑁𝑐
∗ are reduced to 2.01 for (𝐶𝑢1−0/𝐶𝑢2−0) = 5 

and 𝐻/𝐷 = 0.125 while for the same conditions, the value is reduced to 1.40 in the case of a strip footing [15]. As the 

top layer becomes very strong compared to the bottom layer, full punching shear through the top layer occurs typically 

for ratios of 𝐻/𝐷 ≤ 0.5 as illustrated in Figure 6 for the case of 𝐻/𝐷 = 0.25 and (𝐶𝑢1−0/𝐶𝑢2−0) = 5. 
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Figure 6.  Failure mechanism visualized by the distribution of maximum shear strain rates and displacement field vectors 

for 
𝑯

𝑫
 = 0.25 and   

𝑪𝒖𝟏−𝟎

𝑪𝒖𝟐−𝟎
 = 5 

4.2.2. Footing on Soft Clay Overlying Strong Clay (
𝑪𝒖𝟏−𝟎

𝑪𝒖𝟐−𝟎
 < 1) 

For cases of layered clays with constant undrained shear strength (m = 0) where the top layer is weaker than the 

bottom layer, the results presented in Table 3 indicate that 𝑁𝑐
∗ decreases as 𝐻/𝐷 increases until a value of 0.5 is 

reached. For 𝐻/𝐷 = 0.125, it is equal to 7.80 when the ratio (𝐶𝑢1−0/𝐶𝑢2−0) = 0.25. For  𝐻/𝐷 = 0.25 and (𝐶𝑢1−0/
𝐶𝑢2−0) = 0.25, the bottom layer is slightly affected by the failure mechanism as illustrated by the concentration of the 

shear strain increments and field displacement vectors (Figure 7). However, for the ratios of 𝐻/𝐷  0.5, the results 

(Table 3) show no increase in the bearing capacity of circular footings corresponding to the failure surface fully 

contained within the top layer as illustrated by the concentration of the shear strain increments and field displacement 

vectors (Figure 8). Consequently, the whole soil can be treated as homogenous soil using the properties of the top soil 

only. For soft clay overlying strong clay profile, the critical depth seems to be a constant around 0.5D which is less 

than the case of strong clay overlying soft clay profile.  

 

 

Figure 7.  Failure mechanism visualized by distribution of maximum shear strain rates and displacement field vectors for 
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Figure 8. Failure mechanism visualized by distribution of maximum shear strain rates and displacement field vectors for 

footing with  
𝑯

𝑫
 = 0.5 and  

𝑪𝒖𝟏−𝟎

𝑪𝒖𝟐−𝟎
 < 1 

4.3. Layered Clays with Linearly Increasing Undrained Shear Strength 

The computed values of the modified bearing capacity factor 𝑁𝑐
∗  for two layered clays with undrained shear 

strength increasing linearly with depth are presented in Table 3. The results show a significant increase in 𝑁𝑐
∗ values 

with an increase in the value of m for all combinations of 𝐻/𝐷 and 𝐶𝑢1−0/𝐶𝑢2−0. Figures 9 and 10 illustrate the effects 

of m and 𝐻/𝐷 for two extreme cases respectively: strong-over-soft clay profile with (𝐶𝑢1−0/𝐶𝑢2−0) = 5 and soft-over-

strong clay profile with (𝐶𝑢1−0/𝐶𝑢2−0) = 0.25. 

Figure 9 indicates that regarding the influence of m, there is a clear increasing trend with m for each value of 𝐻/𝐷. 

Furthermore, for each value of m, an increase in the bearing capacity factor for strong-over-soft clay profile occurs up 

to the critical depth ratio 𝐻/𝐷 = 1 beyond this threshold there is no effect. However, for 𝐻/𝐷 = 0.5, 𝑁𝑐
∗ increases as m 

increases and converges to the envelope curve for m = 5. This indicates that critical depth decreases as m increases and 

reaches 𝐻/𝐷 = 0.5 for m = 5. For 𝐻/𝐷  0.5, the effect of the increase of m is less sensible with the diminution of 

𝐻/𝐷. However, for soft-over-strong clay profile, the results indicate that an increase in bearing capacity (Figure 10) is 

more pronounced for 𝐻/𝐷 = 0.125 than 𝐻/𝐷 ≥ 0.25. The difference decreases with the increase of m. However, for 

the ratios of 𝐻/𝐷  0.5, the results (Table 3) show no increase in the bearing capacity of circular footings 

corresponding to the failure surface fully contained within the top layer as illustrated by the concentration of the shear 

strain increments and field displacement vectors (Figure 8). So, the whole soil can be treated as a homogenous soil 

using the properties of the top soil only. For soft clay overlying strong clay profile, the critical depth seems to be a 

constant around 0.5D which is significantly less than the case of strong clay overlying soft clay profile.  

 

Figure 9. Variation of 𝑵𝒄
∗ with 
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𝑫
 and m for  
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𝑪𝒖𝟐−𝟎
 = 5 
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Figure 10. Variation of 𝑵𝒄
∗ with 

𝑯

𝑫
 and m for 

𝑪𝒖𝟏−𝟎

𝑪𝒖𝟐−𝟎
 = 0.25 

5. Conclusions 

Numerical computations of the bearing capacity of rigid and rough circular footings on a two-undrained layered 

clays profile with both constant and linear increase of cohesion with depth have been performed using FLAC code. 

The results obtained have been presented in terms of a modified bearing capacity factor 𝑁𝑐
∗  in both tabular and 

graphical forms to facilitate their use in solving practical design problems. A number of conclusions may be drawn 

from this investigation: 

 For a single layer clay profiles, the present numerical computations of  𝑁𝑐
∗compare well with previously reported 

analytical and finite-element solutions. 𝑁𝑐
∗  is found to increase continuously with the rate of increase of the 

cohesion according to depth. 

 For a strong-over-soft clay profile: 

 For constant undrained shear strength (m = 0), the results show a critical depth ratio 𝐻/𝐷 = 1.5 for circular 

footing. This critical depth is significantly less than 𝐻/𝐵  2-2.5 for strip footing. For 𝐻/𝐷  1.5, 𝑁𝑐
∗ decreases 

with both the increase of the ratio 𝐶𝑢1−0/𝐶𝑢2−0 and the decrease of the top layer depth ratio 𝐻/𝐷. For 𝐻/𝐷  

1.5, failure mechanism occurs within the top layer, and the bearing capacity is independent of the bottom layer, 

as well; 

 For linearly increasing undrained shear strength, the results indicate that the increase of the m reduces the 

critical depth noticed by the reduction of the bearing capacity occurring up to depth ratios 𝐻/𝐷 = 1 and 0.5 for 

m = 0.5 and 5 respectively unlike the case of strip footing which occurs for 𝐻/𝐷 = 2, 1.5 and 1 for m = 0, 0.5 

and 1.5 respectively 

 For a soft -over- strong clay profile: 

 The bearing capacity increases with the increase of the factor m and the decrease of the depth ratio 𝐻/𝐷 ; 

 The critical depth ratio is around 𝐻/𝐷 = 0.5 which is much less than the case of strong clay overlying soft clay 

profile for circular footing, 

 It can also be noted that increasing the m value reduces the critical depth observed by reducing the bearing 

capacity occurring up to the depth ratio 𝐻/𝐷 = 0.25 for m = 5. 
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