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Abstract 

The increasing volume of vehicles on the road has had a significant impact on traffic flow. Congestion in urban areas is 

now a major concern. To mitigate congestion, an accurate model is required which is based on realistic traffic dynamics. 

A new traffic model is proposed based on the conservation law of vehicles which considers traffic dynamics at transitions. 

Traffic alignment to forward conditions is affected by the time and distance between vehicles. Thus, the well-known 

Lighthill, Whitham, and Richards (LWR) model is modified to account for traffic behavior during alignment. A model for 

inhomogeneous traffic flow during transitions is proposed which can be used to characterize traffic evolution. The 

performance of the proposed model is compared with the LWR model using the Greenshields and Underwood target 

velocity distributions. These models are evaluated using the Godunov technique and numerical stability is guaranteed by 

considering the Courant, Friedrich, and Lewy (CFL) condition. The results obtained show that the proposed model 

characterizes the flow more realistically, and thus can provide better insight into traffic behavior for use in controlling 

congestion and pollution levels, and improving public safety. 
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1. Introduction 

The economic growth of a country is affected by the road infrastructure. Congestion wastes significant time and 

degrades this growth. The pollution due to the corresponding emissions causes serious health problems and reduces the 

quality of life. Smart traffic infrastructure is required to mitigate this congestion and address the corresponding issues. 

Effective traffic management requires realistic traffic characterization to predict infrastructure use [1]. This paper 

considers the time and distance between vehicles for alignment to forward conditions. When a stimulus is perceived, a 

driver reacts during the reaction time and then aligns to forward vehicles during the transition time. The reaction distance 

is covered during the reaction time, whereas the transition distance is covered during the transition time. Safe time 

includes the transition and reaction times required for safe alignment. This can be considered the minimum time needed 

to avoid accidents. The safe distance is covered during the safe time and includes the reaction and transition distances. 

The equilibrium velocity distribution corresponds to a homogeneous traffic flow with no transitions. This distribution 

depends on the vehicle density as well as driver behavior and road conditions [2].    

The safe distance and time as well as the maximum density and velocity affect the transition behavior of traffic. 

Thus, a traffic flow model based on these parameters can be used to investigate traffic behavior and forecast traffic 
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conditions, thus helping to mitigate congestion and reduce pollution. For example, real-time information can be stored 

in roadside units for communication to nearby vehicles to warn of congestion ahead and lower the potential for accidents. 

Suggestions can be provided to drivers to adjust their speed and/or take alternate routes. 

Velocity 𝑣 and density 𝜌 determine the macroscopic spatial and temporal traffic evolution. Density is the number of 

vehicles per unit length and traffic flow 𝑞(𝜌) is the product of density and velocity. Lighthill and Witham (1995), and 

Richards (1956) [3, 4] proposed the LWR model which assumes changes in flow are small and traffic alignment is 

instantaneous [5]. This model ignores inhomogeneous traffic flow behavior. However, an inhomogeneous traffic flow 

can occur whenever traffic conditions vary between locations on a road [6], and this will affect the velocity and density. 

The Payne (1971) model considers vehicle conservation when there is no acceleration and includes driver 

presumption and relaxation when acceleration does occur. Presumption is driver anticipation to a stimulus ahead while 

relaxation is traffic alignment to this stimulus [7]. Whitham (2011) independently characterized traffic based on similar 

assumptions [8], so it is called the Payne-Whitham (PW) model. This model assumes large changes in flow do not occur 

and traffic variations are smooth [9]. Due to this inadequate characterization, velocity and density evolution can be 

unrealistic when the changes are large [5, 10]. This can occur in situations such as the sudden application of brakes in 

anticipation of an accident. 

Del Castillo et al. (1994) improved the PW model by considering driver presumption and reaction time for small 

transitions in velocity and density [2]. A concavity condition was employed which requires a decrease in flow for a large 

density and vice versa. Further, the traffic flow versus density is assumed to be concave both spatially and temporally, 

and a decreasing density is needed to make the behavior realistic. Daganzo (1955) showed that the PW model can have 

negative velocities at abrupt changes in density. This is because traffic will occupy empty spaces which means 

movement opposite to the direction of flow, resulting in the velocity being negative (which is fluid-like behavior). It has 

been argued that traffic is anisotropic, i.e. forward traffic conditions contribute to changes in flow and this flow is not 

influenced by rearward vehicles [9]. Thus, an anisotropic model was developed based on driver interaction which 

considers both forward and rearward traffic conditions. To smooth variations in the traffic flow, the LWR model employs 

diffusion (viscosity) terms based on the velocity and density which are 
𝜕2𝜐

𝜕2𝑥
 and 

𝜕2𝜌

𝜕2𝑥
, respectively. However, these terms 

can create negative velocities at discontinuities. The Del Castello et al. model may also produce unrealistic results at 

discontinuities [11]. This is because the anticipation and reaction time in this model are too large. 

Markos (1998) [13] countered the arguments in Del Castillo et al. (1994) and Daganzo (1955) [2, 9] and suggested 

that the average velocity can be employed for vehicles in a macroscopic flow. Differences in velocity are due to 

microscopic inhomogeneous traffic conditions so changes in velocity can occur anywhere in the flow. Further, 

macroscopic traffic models are a simplification of microscopic traffic flow which is affected by vehicle sizes, distances 

between vehicles, and driver behavior, and thus these factors should be considered. In addition, negative flow can be 

avoided by allowing only positive velocities. 

Aw and Rascle (2000) characterized traffic evolution based on the arguments of Daganzo (1955) to overcome the 

deficiencies of the PW model [14]. Their model consists of two coupled equations. The first characterizes conservation 

of vehicles and the second determines acceleration. With this model, driver presumption is a monotonically increasing 

function of density. However, changes in velocity are ignored so the acceleration can be high for a large density. Berg, 

Mason, and Woods (BMW) [15] proposed a car-following model based on headway. Headway is the distance between 

vehicles required for alignment and is given by 𝜁 =
1

𝜌
. It is small when the density is large which results in greater 

interactions between vehicles. The BMW model employs a diffusion (viscosity) term based on acceleration, but it 

ignores the time and distance required for alignment. 

Traffic models should consider driver physiology [16]. Further, the velocity during alignment to forward conditions 

should be included Khan et al. (2020) [17]. Driver reaction has been considered to provide more realistic behavior than 

existing models [18, 19]. Further, realistic parameters were used to better characterize traffic [20]. Thus, the LWR model 

is improved in this paper by including the transition behavior of traffic. The safe distance and safe time are considered 

based on the anticipated velocity, and the flow is slow with a large safe distance. Further, the traffic density distribution 

differs according to the safe distance and has a larger variance when this distance is smaller. The change in this 

distribution during a transition depends on the velocity changes required to achieve a homogeneous flow and maintain 

the safe distance. Transitions occur because of traffic bottlenecks, ramps, and traffic control lights, and result in an 

inhomogeneous traffic flow. Conversely, if a transition does not occur, the flow should be homogeneous. 

The rest of this paper is organized as follows. Section 2 presents the LWR and proposed traffic models. The Godunov 

scheme is employed in Section 3 for numerical evaluation of these models. A comparison of the LWR and proposed 

models is presented in Section 4. Finally, some concluding remarks are given in Section 5. 
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2. Traffic Flow Models 

Traffic flow dynamics should be considered in developing traffic flow models. Figure 1 shows the steps in this 

development. First, a model framework is defined based on qualitative statements and traffic observations. Second, the 

related traffic characterization literature and physical laws are used to obtain a model. Then, the performance of the 

model is evaluated numerically. These results are used to modify the model as required to obtain an acceptable traffic 

characterization [18]. The LWR and proposed traffic models are presented below. 

 

Figure 1. The steps in the development of a traffic flow model 

The LWR model is based on the principle of conservation of matter and is given by Lighthill and Witham (1995), 

and Richards (1956) [3, 4]: 

 (𝜌)𝑡 + (𝜌𝜐(𝜌))
𝑥

= 0,                                (1) 

where ρ is density and 𝜐(𝜌) is the equilibrium velocity distribution. The subscript t denotes partial derivative with 

respect to time and x denotes partial derivative with respect to space. This model assumes vehicle conservation on a road 

so there are no exits or entrances. A smooth traffic density is also presumed. Traffic following the equilibrium velocity 

distribution results in a homogeneous flow. This distribution is determined by the density distribution which 

characterizes traffic behaviour on a very long (infinite length), ideal road [21]. An ideal road does not have any 

disturbances to the traffic flow. The LWR model assumes vehicles adjust their velocity in zero time which is unrealistic. 

As a consequence, this model cannot be used to evaluate traffic behaviour during transitions. Further, velocity 

adjustments made during a transition result in an inhomogeneous flow, which is not possible with the LWR model [5]. 

A new traffic model is proposed which incorporates traffic behaviour during transitions. Traffic adjusts to the 

equilibrium velocity distribution according to the anticipated change in velocity [27]. This change can be characterized 

as an acceleration [16] given by: 

𝑎(𝜌) =
𝜐(𝜌)2−𝜐𝑎

2

2𝑑𝑠
,                     (2) 

where 𝜐𝑎 is the average velocity at the transition, 𝑑𝑠 is the safe distance and 𝑡𝑠 is the safe time. 𝜐(𝜌) is the velocity 

distribution that traffic adjusts to when a transition occurs. For the LWR model, this distribution [22] can be expressed 

as: 

υ(𝜌) = 𝑎(𝜌)𝑡𝑠,                             (3) 

and substituting this in (1) gives: 

(𝜌)𝑡 + (𝜌𝑎(𝜌)𝑡𝑠)𝑥 = 0.                     (4) 

Now substituting (2) in (4) results in:  

(𝜌)𝑡 + (𝜌 (
𝜐(𝜌)2−𝜐𝑎

2

2𝑑𝑠
) 𝑡𝑠)

𝑥
= 0.                     (5) 

Several equilibrium velocity distributions have been proposed in the literature [23]. The Greenshields distribution 

[24] is widely used and is given by: 

𝜐(𝜌) = 𝜐𝑚 (1 −
𝜌

𝜌𝑚
),                     (6) 
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where 𝜌𝑚 is the maximum density and 𝜐𝑚 is maximum velocity. This indicates that density and velocity are inversely 

related. The Underwood distribution [25] is also commonly employed and can be expressed as: 

𝜐(𝜌) = 𝜐𝑚exp (
𝜌𝑚

𝜌
).                     (7) 

This is an exponential velocity distribution based on density. Substituting (6) into (5) gives: 

(𝜌)𝑡 + (𝜌 ((𝜐𝑚 (1 −
𝜌

𝜌𝑚
))

2

− 𝜐𝑎
2)

𝑡𝑠

2𝑑𝑠
)

𝑥

= 0.                    (8) 

The safe velocity is 𝜐𝑠 =
𝑑𝑠

𝑡𝑠
 so (8) can be written as: 

(𝜌)𝑡 + (((𝜐𝑚 (1 −
𝜌

𝜌𝑚
))

2

− 𝜐𝑎
2)

𝜌

2𝜐𝑠
)

𝑥

= 0,                    (9) 

so the traffic flow during a transition is: 

𝑞(𝜌) = ((𝜐𝑚 (1 −
𝜌

𝜌𝑚
))

2

− 𝜐𝑎
2)

𝜌

2𝜐𝑠
.               (10) 

This indicates that vehicles maintaining a large safe distance will have slow transitions and few interactions between 

vehicles, whereas a small safe distance will result in fast transitions and many interactions between vehicles. If there is 

no transition, 𝜐𝑎 = 0 can be assumed so the traffic flow becomes: 

𝑞(𝜌) = ((𝜐𝑚 (1 −
𝜌

𝜌𝑚
))

2
𝜌

2𝜐𝑠
.                   (11) 

Thus, the flow with the equilibrium velocity distribution depends on the safe velocity which is not accounted for in the 

LWR model. If the safe velocity is reduced by a factor β, then 𝜐𝑠(𝜌) =
𝜐(𝜌)

𝛽
, which gives 

𝑞(𝜌) =
𝛽

2
(𝜐𝑚 (1 −

𝜌

𝜌𝑚
)) 𝜌,                   (12) 

and using (6) results in: 

𝑞(𝜌) =
𝛽

2
𝜌𝜐(𝜌).                   (13) 

Then from (13) and (9) we have: 

𝑞(𝜌) +
𝛽

2
(𝜌𝜐(𝜌))

𝑥
= 0,                   (14) 

which shows that the traffic flow increases as the safe velocity is decreased. The traffic flow reduces to the LWR model 

flow with 𝛽 = 2 as substituting 𝜐𝑠(𝜌) =
𝜐(𝜌)

2
 in (11) gives: 

𝑞(𝜌) = (𝜐𝑚 (1 −
𝜌

𝜌𝑚
)) 𝜌,                  (15) 

and using (6) results in: 

𝑞(𝜌) = 𝜌𝜐(𝜌).                   (16) 

Then combining (15) and (16) with (9) gives the LWR model: 

(𝜌)𝑡 + (𝜌𝜐(𝜌))
𝑥

= 0.                   (17) 

Unlike the LWR model, the proposed model can account for both homogeneous and inhomogeneous traffic flows. 
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3. Performance Evaluation  

Consider a road divided into N equidistant segments and M equal duration time steps. The total length is 𝑥𝑁 so a 

segment has length ℎ = 𝑥𝑁 𝑁⁄ , and the total time duration is 𝑡𝑀 so a time step is 𝑘 = 𝑡𝑀 𝑀⁄ . The average traffic density 

ρ and flow 𝑞(𝜌) are evaluated for the nth road segment denoted 𝑥
𝑛−

ℎ

2

 to 𝑥
𝑛+

ℎ

2

 over time 𝑡𝑚 to 𝑡𝑚+1 using the technique 

developed by Godunov [26]. The number of vehicles present in the nth segment at time t is given by: 

𝑙𝑛(𝑡) = ∫ 𝜌(𝑥, 𝑡)𝑑𝑥
𝑥

𝑛+
ℎ
2

𝑥
𝑛−

ℎ
2

,                   (18) 

so the traffic flow in this segment at time t is: 

Δ𝑙𝑛(𝑡) = 𝑞 (𝜌 (𝑥
𝑛−

ℎ

2

, 𝑡)) − 𝑞 (𝜌 (𝑥
𝑛+

ℎ

2

, 𝑡)).                  (19) 

The traffic flow in the nth segment during the time interval (𝑡𝑚, 𝑡𝑚+1) is then: 

𝑙𝑛(𝑡𝑚 + 1) − 𝑙𝑛(𝑡𝑚) = ∫ Δ𝑙𝑛(𝑡)𝑑𝑡
𝑡𝑚+1

𝑡𝑚
= ∫ 𝑞 (𝜌 (𝑥

𝑛−
ℎ

2

, 𝑡)) − 𝑞 (𝜌 (𝑥
𝑛+

ℎ

2

, 𝑡)) 𝑑𝑡
𝑡𝑚+1

𝑡𝑚
,              (20) 

and using (18), this has the form: 

∫ 𝜌(𝑥, 𝑡𝑚 + 1)𝑑𝑥
𝑥

𝑛+
ℎ
2

𝑥
𝑛−

ℎ
2

− ∫ 𝜌(𝑥, 𝑡𝑚)𝑑𝑥
𝑥

𝑛+
ℎ
2

𝑥
𝑛−

ℎ
2

= ∫ 𝑞 (𝜌 (𝑥
𝑛−

ℎ

2

, 𝑡)) − 𝑞 (𝜌 (𝑥
𝑛+

ℎ

2

, 𝑡)) 𝑑𝑡
𝑡𝑚+1

𝑡𝑚
.             (21) 

The average density at time step m for the nth segment is: 

𝜌(𝑛, 𝑚) =
1

ℎ
∫ 𝜌(𝑥, 𝑡𝑚)𝑑𝑥

𝑥
𝑛+

1
2

𝑥
𝑛−

1
2

,                   (22) 

and the corresponding flow is: 

𝜌(𝑛, 𝑚) =
1

𝑘
∫ 𝑞 (𝜌 (𝑥

𝑛−
ℎ

2

, 𝑡)) 𝑑𝑡
𝑡𝑚+1

𝑡𝑚
.                   (23) 

Substituting (22) and (23) into (21) gives: 

𝜌(𝑛, 𝑚 + 1) − 𝜌(𝑛, 𝑚) =
𝑘

ℎ
(𝑞(𝑛, 𝑚) − 𝑞(𝑛 + 1, 𝑚)),                 (24) 

For the LWR model, 𝑞(𝜌) = 𝜌𝜐(𝜌), and for the proposed model 𝑞(𝜌) is given by (9). The traffic flow has initial 

density distribution 𝜌0(𝑥) at 𝑡 = 0, and this is used to determine the initial average densities. For the time interval 

(𝑡𝑚, 𝑡𝑚+1) set: 

𝜌(𝑥, 𝑡) = 𝜌(𝑛, 𝑚)   for   𝑥
𝑛−

1

2
ℎ

< 𝑥 < 𝑥
𝑛+

1

2
ℎ
.                  (25) 

To account for both increasing and decreasing flows, 𝑞(𝜌(𝑥, 𝑡)) is approximated as: 

𝑞(𝜌(𝑥, 𝑡)) = {
𝑞 (min(𝑝(𝑛 − 1, 𝑚), 𝜌(𝑛, 𝑚))) ,   if   𝜌(𝑛 − 1, 𝑚) ≤ 𝜌(𝑛, 𝑚)

𝑞 (max(𝑝(𝑛, 𝑚), 𝜌(𝑛 − 1, 𝑚))) ,   if   𝜌(𝑛 − 1, 𝑚) > 𝜌(𝑛, 𝑚).
               (26) 

For numerical stability, the Courant-Friedrichs-Lewy (CFL) condition is applied so that the maximum distance traffic 

covers during a time step is not greater than h so that 

|𝑞′(𝜌)|max × 𝑘 < ℎ,                   (27) 

where |𝑞′(𝜌)|max is the maximum rate of change at 𝑡 = 0 given by: 

max (
𝑞(Δ𝜌)

Δ𝜌
) = max (

𝑞(𝜌(𝑛,0))−𝑞(𝜌(𝑛−1,0)

Δ𝜌
).                    (28) 

According to the CFL condition, the Courant number γ should be less than 1, so to ensure convergence [26], γ is set to 

0.5 which from (27) gives: 
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𝑘 = 0.5 ×
ℎ

|𝑞′(𝜌)|max
.                   (29) 

4. Simulation Results 

The simulation parameters are summarized in Table I. Traffic is observed over a period of three seconds while 

traversing a road from −20 m to 200 m. The road begins at −20 m so that the traffic can begin uniformly distributed 

about 0. The length of road considered is 𝑥𝑀 = 220 m with 𝑀 = 450 so that ℎ = 0.489 m. The maximum velocity is 

𝜐𝑚 = 30 m/s and the maximum normalized density is 0.2, i.e. 20% of the road is occupied. The initial traffic density 

distribution is 𝜌0(𝑥) = 0.09 exp
(

−𝑥2

50
)
 so that the density is uniformly distributed around 0. This distribution is used for 

both the LWR and proposed models. The initial density interval is set to Δ𝜌 = 0.0004 to evaluate |𝑞′(𝜌)|max, and this 

is used in (29) to determine k. Non-periodic boundary conditions are employed so that vehicles can move beyond the 

200 m point. The traffic density evolution on the road over time is determined using the Godunov technique presented 

in Section 3. Two average transition velocities, 𝜐𝑎 = 0 m/s and 10 m/s, are considered with the equilibrium velocity 

distributions (6) and (7) and 𝜐𝑚 = 30 m/s. 

Table 1. Simulation Parameters 

Name Parameter Value 

Average transition velocity 𝜐𝑎 0, 10 m/s 

Equilibrium velocity distribution 𝜐(𝜌) 
Greenshields and 

Underwood 

Maximum velocity 𝜐𝑚 30 m/s 

Initial density distribution 𝜌0(𝑥) 0.09 exp
(

−𝑥2

50 )
 

Length of road X 220 m 

Number of road steps M 450 

Segment length h 220/450 = 0.489 m 

Safe velocity 𝜐𝑠 10, 20 m/s 

Maximum normalized density 𝜌𝑚 0.2 

Initial density interval Δ𝜌 0.0004 

LWR model time step with the Greenshields distribution k 0.0067 s 

LWR model time step with the Underwood distribution k 0.0015 s 

Proposed model time step with the Greenshields distribution, 𝜐𝑎 = 10 m/s, 𝜐𝑠 = 20 m/s K 0.0102 s 

Proposed model time step with the Greenshields distribution, 𝜐𝑎 = 0 m/s, 𝜐𝑠 = 20 m/s K 0.0091 s 

Proposed model time step with the Underwood distribution,  𝜐𝑎 = 10 m/s, 𝜐𝑠 = 20 m/s K 0.000256 s 

Proposed model time step with the Underwood distribution, 𝜐𝑎 = 0 m/s, 𝜐𝑠 = 20 m/s k 0.000254 s 

Total simulation time 𝑡𝑀 3 s 

Figure 2 shows the traffic density evolution with the LWR model at 0 s, 1.5 s, and 3 s. The target to align to forward 

conditions is the Greenshields distribution. The initial density is shown in blue. At 1.5 s, traffic spans from 18 m to 64 

m while the maximum density is 0.060. At 3 s, the traffic spans from 50 m to 110 m and the maximum density is 0.042.  

 
Figure 2. Traffic density evolution with the LWR model when the target equilibrium velocity distribution is the 

Greenshields distribution 
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Figures 3 and 4 show the proposed model traffic density evolution for safe velocities 𝜐𝑎 = 20 m/s and 10 m/s, 

respectively, with 𝜐𝑎 = 10 m/s. The safe distances for these velocities are then 20 m and 10 m, respectively. With this 

model, traffic adjusts from 𝜐𝑎 = 10  m/s to the Greenshields distribution which is the target equilibrium velocity 

distribution. The results in these figures show that traffic moves slower with a 20 m/s safe velocity compared to a 10 

m/s safe velocity. At 1.5 s, the traffic in Figure 3 spans from 23 m to 83 m, whereas in Figure 4 it spans from 65 m to 

155 m. Thus, the traffic density has a greater variance at a lower safe velocity, so this velocity has a significant effect 

on traffic behaviour. This variance is greater than that with the LWR model shown in Figure 2. The average distance 

covered is higher at a lower safe velocity as vehicles maintain a smaller safe distance. Figure 5 shows the proposed 

model density evolution from 𝜐𝑎 = 0 m/s to the equilibrium velocity distribution with a safe velocity of 20 m/s. There 

are no significant differences between Figures 3 and 5, which indicates that the average transition velocity has little 

effect on traffic behaviour. 

 

Figure 3. Traffic density evolution with the proposed model for 𝒅𝒔 = 𝟐𝟎 m, 𝝊𝒔 = 𝟐𝟎 m/s, 𝝊𝒂 = 𝟏𝟎 m/s, and 𝒕𝒔 = 𝟏 s. The 

target equilibrium velocity distribution is the Greenshields distribution. 

 
Figure 4. Traffic density evolution with the proposed model for 𝒅𝒔 = 𝟏𝟎 m, 𝝊𝒔 = 𝟏𝟎 m/s, 𝝊𝒂 = 𝟏𝟎 m/s, and 𝒕𝒔 = 𝟏 s. The 

target equilibrium velocity distribution is the Greenshields distribution 

 
Figure 5. Traffic density evolution with the proposed model for 𝒅𝒔 = 𝟐𝟎 m, 𝝊𝒔 = 𝟐𝟎 m/s, 𝝊𝒂 = 𝟎 m/s, and 𝒕𝒔 = 𝟏 s. The 

target equilibrium velocity distribution is the Greenshields distribution 
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Figure 6. Traffic density evolution with the proposed model for 𝒅𝒔 = 𝟐𝟎 m, 𝝊𝒔 = 𝟐𝟎 m/s, 𝝊𝒂 = 𝟎 m/s, and 𝒕𝒔 = 𝟏 s. The 

target equilibrium velocity distribution is the Underwood distribution 

 

Figure 7. Traffic density evolution with the proposed model for 𝒅𝒔 = 𝟐𝟎 m, 𝝊𝒔 = 𝟐𝟎 m/s, 𝝊𝒂 = 𝟏𝟎 m/s, and 𝒕𝒔 = 𝟏 s.  The 

target equilibrium velocity distribution is the Underwood distribution 

Figures 6 and 7 show the proposed model traffic density evolution for 𝜐𝑎 = 0 m/s and 10 m/s, respectively, at 0 s, 

1.5 s and 3 s. The target equilibrium velocity distribution is the Underwood distribution and the safe time is 1 s. With 

𝜐𝑎 = 0 m/s, no transition occurs, but with 𝜐𝑎 = 10 m/s, traffic aligns to the forward conditions. At 1.5 s, the traffic in 

Figure 6 spans from 50 m to 120 m, whereas in Figure 7 it spans from 40 m to 110 m. At 3 s, the traffic in Figure 6 

spans from 110 m to beyond 200 m, whereas in Figure 7 it spans from 100 m to 190 m. Thus, the density variance is 

larger with no transition than with 𝜐𝑎 = 10 m/s. Figures 3 to 7 show that the traffic evolution with the proposed model 

and the Greenshields or Underwood target equilibrium velocity distributions is smooth. 

 

Figure 8. Traffic density evolution with the LWR model when the target equilibrium velocity distribution is the Underwood 

distribution 
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Figure 8 shows the traffic density evolution with the LWR model at 0 s, 1.5 s, and 3 s. The target equilibrium velocity 

distribution is the Underwood distribution. At 1.5 s, the traffic spans from 30 m to 75 m whereas with the Greenshields 

distribution it spans from 18 m to 64 m as shown in Figure 2. At 3 s, the traffic span with the Underwood distribution is 

from 70 m to 130 m, whereas with the Greenshields distribution the span is from 50 m to 110 m. Thus, the density 

variance is greater with the Underwood distribution. 

The traffic behaviour of the LWR and proposed models varies greatly as shown in Figures 2 to 8. Figures 3 to 7 

show that with the proposed model, the density varies according to the target velocity distribution and safe velocity at 

transitions. The density with the LWR model only varies according to the target velocity distribution and ignores the 

conditions at transitions. Thus, the LWR model can only characterize traffic moving with the equilibrium velocity 

distribution whereas the proposed model also considers the traffic conditions at transitions such as the safe velocity and 

safe time. These are important parameters and so the proposed model provides a more realistic characterization of traffic 

behaviour.  

5. Conclusion 

The LWR model only considers homogeneous traffic flow conditions. Thus, it cannot characterize variations in the 

flow, in particular transitions when abrupt changes in the density occur. To overcome this drawback, a model was 

developed which incorporates changes in the velocity during transitions based on the safe time and safe distance. The 

LWR and proposed models were evaluated under different traffic conditions and with two equilibrium velocity 

distributions. The results obtained show that the proposed model provides a more realistic characterization of traffic 

behaviour. Thus, it is a better choice for traffic management to reduce fuel consumption and improve public safety and 

air quality. The proposed model can be employed in connected vehicles and roadside units to mitigate traffic congestion. 

It can be extended by including lateral and forward distance headways to improve traffic flow prediction. 

6. Declarations  

6.1. Author Contributions 

Conceptualization, Z.H.K. and T.A.G.; methodology, Z.H.K.; software, Z.H.K.; validation, Z.H.K. and T.A.G.; 

formal analysis, Z.H.K.; investigation, Z.H.K.; writing original draft, Z.H.K.; writing review and editing, Z.H.K., 

T.A.G., and W.I.; supervision, T.A.G.; project administration, T.A.G.; funding acquisition, T.A.G. All authors have read 

and agreed to the published version of the manuscript. 

6.2. Data Availability Statement 

No new data were created or analyzed in this study. Data sharing is not applicable to this article. 

6.3. Funding and Acknowledgements 

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).  

6.4. Conflicts of Interest 

The authors declare no conflict of interest.  

7. References  

[1] Trung, Truong Thanh. “Smart City and Modelling of Its Unorganized Flows Using Cell Machines.” Civil Engineering Journal 6, 

no. 5 (May 2020): 954–960. doi:10.28991/cej-2020-03091520. 

[2] Del Castillo, J. M., P. Pintado, and F. G. Benitez. “The Reaction Time of Drivers and the Stability of Traffic Flow.” Transportation 

Research Part B: Methodological 28, no. 1 (February 1994): 35–60. doi:10.1016/0191-2615(94)90030-2. 

[3] Lighthill, Michael James, and Gerald Beresford Witham. “On Kinematic Waves II. A Theory of Traffic Flow on Long Crowded 

Roads.” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229, no. 1178 (May 1955): 

317–345. doi:10.1098/rspa.1955.0089.  

[4] Richards, Paul I. “Shock Waves on the Highway.” Operations Research 4, no. 1 (February 1956): 42–51. doi:10.1287/opre.4.1.42. 

[5] Zhang, H. M. “A Theory of Nonequilibrium Traffic Flow.” Transportation Research B: Methodological 32, no. 7 (September 

1998): 485-498. doi:10.1016/S0191-2615(98)00014-9. 

[6] Helbing, Dirk. “Improved Fluid-Dynamic Model for Vehicular Traffic.” Physical Review E 51, no. 4 (April 1995): 3164–3169. 

doi:10.1103/physreve.51.3164. 

[7] Payne, Harold J. “Models of Freeway Traffic and Control.” Simulation Council Proc. 28, Mathematical Models of Public Systems. 

Edited by Bekey, G.A. 1 (1971): 51-61. 

https://doi.org/10.1287/opre.4.1.42


Civil Engineering Journal         Vol. 7, No. 06, June, 2021 

1069 

 

[8] Whitham, Gerald Beresford. “Linear and Nonlinear Waves.” Pure and Applied Mathematics 42. (June 1999). 

[9] Daganzo, Carlos F. “Requiem for Second-Order Fluid Approximations of Traffic Flow.” Transportation Research Part B: 

Methodological 29, no. 4 (August 1995): 277–286. doi:10.1016/0191-2615(95)00007-z. 

[10] Khan, Zawar Hussain, and Thomas Aaron Gulliver. “A Macroscopic Traffic Model Based on Anticipation.” Arabian Journal for 

Science and Engineering 44, no. 5 (January 2019): 5151-5163. doi:10.1007/s13369-018-03702-9. 

[11] Khan, Zawar Hussain, Waheed Imran, Thomas Aaron Gulliver, Khurram Shehzad Khattak, Zahid Wadud, and Akhtar Nawaz 

Khan. “An Anisotropic Traffic Model Based on Driver Interaction.” IEEE Access 8 (April 2020): 66799–66812. 

doi:10.1109/access.2020.2985668. 

[12] Bellomo, Nicola, and Christian Dogbe. “On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and 

Perspectives.” SIAM Review 53, no. 3 (January 2011): 409–463. doi:10.1137/090746677. 

[13] Papageorgiou, Markos. “Some Remarks on Macroscopic Traffic Flow Modelling.” Transportation Research Part A: Policy and 

Practice 32, no. 5 (September 1998): 323–329. doi:10.1016/s0965-8564(97)00048-7. 

[14] Aw, A., and M. Rascle. “Resurrection of ‘Second Order’ Models of Traffic Flow.” SIAM Journal on Applied Mathematics 60, 

no. 3 (January 2000): 916–938. doi:10.1137/s0036139997332099. 

[15] Berg, Peter, Anthony Mason, and Andrew Woods. “Continuum Approach to Car-Following Models.” Physical Review E 61, no. 

2 (February 2000): 1056–1066. doi:10.1103/physreve.61.1056. 

[16] Khan, Zawar Hussain, Thomas Aaron Gulliver, H. Nasir, A. Rehman, and K. Shahzada. “A Macroscopic Traffic Model Based 

on Driver Physiological Response.” Journal of Engineering Mathematics 115, no. 1 (March 2019): 21–41. doi:10.1007/s10665-

019-09990-w. 

[17] Khan, Zawar Hussain, and Thomas Aaron Gulliver. “A Macroscopic Traffic Model Based on Transition Velocities.” Journal of 

Computational Science 43 (May 2020): 101131. doi:10.1016/j.jocs.2020.101131. 

[18] Imran, Waheed, Zawar Hussain Khan, Thomas Aaron Gulliver, Khurram Shehzad Khattak, Salman Saeed, and Muhammad 

Sagheer Aslam. “Macroscopic Traffic Flow Characterization for Stimuli Based on Driver Reaction.” Civil Engineering Journal 

7, no. 1 (January 2021):1-13. doi:10.28991/cej-2021-03091632. 

[19] Khan, Zawar Hussain, Waheed Imran, Sajid Azeem, Khurram Shehzad Khattak, Thomas Aaron Gulliver, and Muhammad 

Sagheer Aslam. “A Macroscopic Traffic Model Based on Driver Reaction and Traffic Stimuli.” Applied Sciences 9, no. 14 (July 

2019): 2848. doi:10.3390/app9142848. 

[20] Fosu, Gabriel Obed, Francis Tabi Oduro, and Carlo Caligaris, “Multilane Analysis of a Viscous Second-order Macroscopic 

Traffic Flow Model.” SN Partial Differential Equations and Applications 2, no. 1 (February 2021): 7. doi:10.1007/s42985-020-

00054-8. 

[21] Jin, Wenlog. “Traffic Flow Models and Their Numerical Solutions.” Ph.D. dissertation, Dept. Math., Univ. California Davis, 

Davis, CA, 2003. Available online: www.its.uci.edu/~wjin/publications/jin2000thesis.pdf (accessed on January 2021). 

[22] The Physics Hypertextbook, Kinematics and Calculus. Available online: http://physics.info/kinematics-calculus/ (accessed on 

January 2021). 

[23] Morgan, Joanne V. “Numerical Methods for Macroscopic Traffic Models.” Ph.D. dissertation, Dept. Math., Univ. Reading, 

Berkshire, UK, 2002. Available online: http://www.reading.ac.uk/web/_les/maths/Jv morgan.pdf (accessed on January 2021).  

[24] Greenshields, B. D., Bibbins, J. R., Channing, W. S., and Miller, H. H. “A Study of Traffic Capacity.” Highway Research Board 

Proceedings, National Research Council, USA, Highway Research Board (1935): 448–477. 

[25] Umar, Khalil, Khan, Zawar Hussain, Waheed Imran, Salman Saeed, Khurram Shehzad Khattak, Khizar Azam, and Mushtaq 

Ahmad Khan. “Behavioral Analysis of LWR Model under Different Equilibrium Velocity Distributions.” Pakistan Journal of 

Science 71, no. 4 (December 2019): 194-99.  

[26] Leveque, Randall J. “Numerical Methods for Conservation Laws, Second Edition” Lectures in Mathematics, (1992): 19–40. 

doi:10.1007/978-3-0348-5116-9_3. 

[27] Khan, Zawar Hussain. “Traffic Modelling for Intelligent Transportation Systems.” Ph.D. dissertation, Dept. Electrical and 

Computer Eng., Univ. Victoria, Victoria, BC, CA, (2016). Available online: 

https://dspace.library.uvic.ca/bitstream/handle/1828/7152/Khan_Zawar_PhD_2016.pdf?sequence=1&isAllowed=y (accessed 

on April 2021).  

 

https://doi.org/10.1007/s13369-018-03702-9
http://www.its.uci.edu/~wjin/publications/jin2000thesis.pdf
http://physics.info/kinematics-calculus/

