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Abstract 

The Andrus and Stokoe curves developed based on shear wave velocity case history databases, are the most widely used 

in the context of the Seed and Idriss simplified procedure as a deterministic model. Theses curves were developed from 

the database according to the calculate Cyclic Stress Ratio (CSR) proposed by Seed and Idriss in 1971 with the 

assumption that the dynamic cyclic shear stress (τd) is always less than the simplified cyclic shear stress (τr) deduced by 

Seed and Idriss based on their simplifying hypotheses (rd= τd / τr <1). Filali and Sbartai in 2017, showed that rd can in 

many cases be greater than 1, and they have proposed a correction for the CSR in the range where rd >1. In this paper, we 

will present a probabilistic study based on the Bayesian method for the evaluation of the liquefaction potential of a soil 

deposit using a case history database based on shear wave velocity measurement. The result of this analysis shows that 

by using the corrected version of the simplified method, the boundary curve is moved to a new position. Then, the 

objective of this study is to present an adjusted mathematical model which characterizes the new position of the 

boundary curve (CRR) and a new formulation for computing the probability of liquefaction based on the probabilistic 

shape of the CRR curves using the corrected and the original version of the simplified method. 

Keywords: Earthquakes; Probabilistic Hazard Analysis; Site Effects/Liquefaction; Probability; Random Variable; Wave Propagation. 

 

1. Introduction 

After the earthquakes of Alaska (1964) and Niigata in Japan (1964), Seed and Idriss [1] developed a simplified 

procedure based on in-situ tests to evaluate the liquefaction potential which is defined by a safety factor calculated by 

the ratio between the Cyclic Resistance Ratio and the Cyclic Stress Ratio (CRR/CSR). Thereafter, this procedure was 

modified and improved, in particular by Seed [2], Seed and Idriss [3], Seed et al. [4]. Youd et al. [5, 6] in their 

contribution have modified the expression of the stress reduction factor (rd) to extend it whatever the depth of the soil 

deposit, Akhila et al. [7] have used an artificial intelligence techniques to predict the cyclic resistance ratio for clean 

sands. The contribution of Kuo et al. [8] in the improvement of this method were summarized in a proposed empirical 

simplified method to evaluate the liquefaction potential, Guoxing et al. [9] have developed from a liquefaction case 

history database a new mathematical model to predict the CRR curves. This procedure is based on simplifying 

hypothesis by considering the soil column as a rigid body with the assumption that the actual peak shear stress (τd) 

induced at depth, h, is always less than that predicted by the simplified procedure (τr) of Seed and Idriss (rd= τd / τr <1). 

Thus, Filali and Sbartai [10], in their study, showed that the dynamic cyclic shear stress (CSRD) can in many cases be 

greater than the Simplified Shear Stress (CSR) according to the used earthquake. This result (rd>1) was found in the 

study conducted by Farrokhzad [11] for many sites at significant depth and in the work presented by Sun et al. [12] at 

shallow depth for a few sites.  Therefore, rd, can be greater than 1 (rd>1), in this case, this procedure cannot be 
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considered as conservative, thus, the simplified procedure of Seed and Idriss [1] can’t be applied because it’s based on 

the assumption that rd<1, and all the modifications and improvements made in the literature are based on this 

assumption. For this reason, Filali and Sbartai [10], in order to generalize the use of the simplified procedure, have 

proposed a corrector factor in order to adjust the simplified CSR in the range where rd>1 which correspond to a 

maximum acceleration of the earthquake less than 0.30g (amax<=0.30g).  

In this paper, we will present a probabilistic analysis of liquefaction potential based on the proposed correction [10] 

in order to define the cyclic resistance ratio (CRR) curves used to characterize the boundary between liquefied and 

non-liquefied regions. The residual strength of liquefied soil, or liquefied shear strength, is defined as the shear 

strength mobilized at large displacement after liquefaction is triggered in a saturated soil. As the liquefaction potential 

is governed by this parameter, several works have been published in the literature, such as the study of Fadhil and Ali 

[13] in which they have performed a series of laboratory tests to improve the parameters of the shear strength. The 

structure of this article starts with an introduction in which a literature review related to liquefaction potential is 

presented. Followed by the presentation of the deterministic model of the CRR and CSR used in this study, the next 

section treats the used probabilistic analysis and the obtained result, followed by two case studies and a comparison 

with previous studies to valid the obtained results, and closed by a conclusion that summarizes the results and 

objective of this study. 

2. Deterministic Model  

The approach of Seed and Idriss [1] is the most widely used procedure in practice for estimating the liquefaction 

resistance of sandy soils. To represent the ground motions caused by earthquakes with one single parameter, a 

simplified procedure has been developed by Seed and Idriss [1] and updated in Youd et al. [6]. The resistance to 

liquefaction is evaluated by comparing a property index of the soil to the Cyclic Stress Ratio (CSR) given by the 

following equation for a magnitude earthquake adjusted to 7.5: 

CSR =
τcyc

σv0
′ = 0.65 × (

amax

g
) × (

σv

σv
′ ) × rd                                                                                                                (1) 

Where σv = the vertical total stress of the soil at the depth studied, σ′v = the vertical effective stress of the soil at the 

depth studied, amax = the peak horizontal ground surface acceleration, g = the acceleration of gravity and rd = the shear 

stress reduction factor. The variable rd is calculated in accordance with Youd et al. [6]: 

 𝑟𝑑 = 1 − 0.00765𝑧                             𝑧 ≤ 9.15𝑚                               

 𝑟𝑑 = 1.174 − 0.0267𝑧             9.15 ≤  𝑧 ≤ 23𝑚                                                                                                     (2) 

 𝑟𝑑 = 0.744 − 0.008𝑧                  23 ≤  𝑧 ≤ 30𝑚                          

  𝑟𝑑 = 0.5                                                         𝑧 > 30𝑚                               

After Filali and Sbartai [10], as the assumption rd<1 is verified only when amax>0.30g, in other word, when 

amax<0.30g which correspond to rd>1, the deformable and rigid body are not adjusted in accordance with the 

assumption on which is based the simplified procedure, and in order to generalize the use of the simplified method by 

adjusting the deformable and rigid body whatever the used  earthquake, the authors have proposed a new earthquake 

corrector factor, RC, in the range where amax<=0.30g in order to adjust the dynamic and simplified results when rd>1 

and ensure the reliability of the simplified method by giving the most conservative case for all earthquakes. The 

proposed correction [10] is defined by an earthquake corrector factor, RC, which is the ratio between the dynamic and 

the simplified shear stress expressed as follows: 

{
RC = 0.696 (

amax

g
)

−0.577

                               𝑖𝑓  𝑎𝑚𝑎𝑥 ≤ 0.30𝑔   

RC = 1                                                               𝑖𝑓  𝑎𝑚𝑎𝑥 > 0.30𝑔    
              (3)       

This correction can be applied only when amax≤0.30g, otherwise, Equation 1 is kept without correction (RC=1). 

Then, by applying this correction, the original form of CSR (Equation 1) can be rewritten in accordance with the 

following expression [10]: 

{
𝐶𝑆𝑅 = 0.65 × (

𝑎𝑚𝑎𝑥

𝑔
) × (

𝜎𝑣0

𝜎𝑣0
′ ) × 𝑟𝑑                         𝑖𝑓  𝑎𝑚𝑎𝑥 > 0.30𝑔   

𝐶𝑆𝑅 = 0.65 × (
𝑎𝑚𝑎𝑥

𝑔
) × (

𝜎𝑣0

𝜎𝑣0
′ ) × 𝑟𝑑 × 𝑅𝐶            𝑖𝑓  𝑎𝑚𝑎𝑥 ≤ 0.30𝑔    

                                                             (4)     
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2.1. Cyclic Resistance Ratio (CRR) 

Andrus and Stokoe [14] have collected a case history data based on Vs measurement, at over 50 sites (124 test 

arrays) and field performance data from 20 earthquakes, including a total of 193 cases for liquified and non-liquified 

sites. From this database, they have developed a bounding curve for fine content (FC) ≤5%, 20% and ≥35% and 

proposed a correlation between Vs1 and CRR expressed as:  

𝐶𝑅𝑅7.5 = 𝑎 (
𝑉𝑠1

100
)

2

+ 𝑏 (
1

𝑉𝑠1
∗ −𝑉𝑠1

−
1

𝑉𝑠1
∗ )                                                                                                                                   (5) 

Where Vs1* is the critical value of Vs1 equal to 220 m/s for FC≤5%, 210 m/s for FC≈20% and 200 m/s for FC≥35% , 

a and b are curve fitting parameters equal to 0.03 and 0.9 respectively to adjust the curves in the limit which separate 

liquefied and non-liquefied cases for earthquake magnitude of 7.5. Andrus et al. [15] have updated this case history 

data by extending it to 26 earthquakes and 139 test arrays to obtain a total of 225 for liquefied and non-liquefied cases. 

From this data, Andrus and Stokoe [16] have readjusted the CRR curves to a new boundary in accordance with fine 

content (Figs. 3-5) with new fitting parameters equal to a=0.022 and b=2.8 and a modified critical value of Vs1 

expressed as: 

{

Vs1
∗ = 215 m/s                                            for sand with  FC ≤ 5%                           

Vs1
∗ = 215 − 0.5(FC − 5) m/s                for sand with  5% < 𝐹𝐶 < 35%           

Vs1
∗ = 200

m

s
                                                 for sand and silt with  FC ≥ 35%         

                                                       (6)       

For clean sand, the proposed Andrus and Stokoe [16] relationship  based on Vs-CRR curves for non-cemented soil, 

Holocene age with different percentages of fines shown in the following equation:. 

𝐶𝑅𝑅7.5𝑐𝑠 = {0.022 (
(𝑉𝑠1)𝑐𝑠

100
)

2

+ 2.8 (
1

215−(𝑉𝑠1)𝑐𝑠
−

1

215
)} 𝑀𝑆𝐹                                                                                         (7) 

Where (Vs1) Cs is the overburden stress-corrected shear wave velocity defined as follows: 

(𝑉𝑠𝑙)𝑐𝑠 = 𝐾𝑐𝑠𝑉𝑠𝑙 = 𝐾𝑐𝑠𝑉𝑠 [
𝑃𝑎

𝜎𝑣0
′ ]

0.25

                                                                                                                                                     (8) 

Where Vs1 is the overburden stress-corrected shear wave velocity of sandy soils, pa is the reference stress of 100 kPa, 

and Kcs is a fines content (FC) correction factor. Kcs can be estimated by the relationships proposed by Juang et al. 

[17]:   

𝐾𝐶𝑆 = 1                                                             𝐹𝐶 ≤ 5%                             

𝐾𝐶𝑆 = 1 + (𝐹𝐶 − 5)𝑇                  5% ≤  𝐹𝐶 ≤ 35%                                                                                                         (9) 

𝐾𝐶𝑆 = 1 + 30𝑇                                            𝐹𝐶 ≥ 35%                            

𝑇 = 0.09 − 0.0109(𝑉𝑠𝑙 100⁄ ) + 0.038𝑥(𝑉𝑠𝑙 100⁄ )2                                                                                                    (10) 

The CRR7.5 should be corrected for the earthquake magnitude, overburden pressure, and static shear [3, 18, 19].  

𝐶𝑅𝑅𝑀𝑤
= 𝐶𝑅𝑅7.5𝑐𝑠(𝑀𝑆𝐹 )𝐾𝜎𝐾𝛼                                                                                                                                 (11) 

Where MSF is the magnitude scaling factor, and Kσ and Kα are factors for overburden and initial static stress ratio 

corrections, respectively. These factors are calculated by the formulae recommended by Boulanger and Idriss [19]. 

Magnitude Scaling Factor (MSF) 

Several equations have been proposed for the assessment of MSF according to the earthquake moment magnitude 

[3, 20]. Idriss [20] proposed the magnitude scaling factor as: 

𝑀𝑆𝐹 = 6.9 exp(− 𝑀𝑤 4⁄  ) − 0.058 ≤ 1.8                                                                                                                 (12) 

Overburden Correction Factor, Kσ  

The overburden correction factor Kσ can be estimated by the relationship proposed by Boulanger and Idriss [19]: 

𝐾𝜎 = 1 − 𝐶𝜎ln (𝜎𝑣0
′ 𝑃𝑎)⁄ ≤ 1.1                                                                                                                                   (13a) 

Where the coefficient Cσ can be expressed in terms of corrected shear wave velocity. 
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𝐶𝜎 = 1 (18.9 − 3.1[(𝑉𝑠𝑙)𝑐𝑠]1.976)⁄ ≤ 1.1                                                                                                                (13b) 

Static shear stress correction factor kα 

To take into account the influence of static shear stresses on CRR, Seed et al. [18] have proposed a correction factor 

Kα to correct the CRR. Several researches were conducted by Idriss and Boulanger [21, 22]. The author believes that 

these results can be used.  As the soil layers are considered horizontal, the value of Kα in this study is kept equal to 1 

3. Bayesian Mapping Function (BMF) 

Since the deterministic safety factor (Fs) is the most widely used in Geotechnical practice, it is interesting to relate 

it to the probability of liquefaction in order to facilitate the use of the probabilistic approach for engineers for making 

an adequate decision. Juang et al. [23] have proposed a mapping function approach which linked the deterministic Fs 

to the probability of liquefaction; this approach has been refined by Juang et al. [24, 25]. In this approach, the 

conditional probability of liquefaction for a given site is deduced from the information contained in the case history 

database [17, 25] in according to the following equation: 

𝑃𝐿 =
𝑓𝐿(𝐹𝑠)

𝑓𝐿(𝐹𝑠)+𝑓𝑁𝐿(𝐹𝑠)
                                                                                                                                                               (14) 

Where fL(FS) and fNL(FS) are the probability density functions of the calculated FS for the sets of liquefied cases and 

non-liquefied cases, respectively. Based on the obtained Equation 14, the probability of liquefaction is calculated for 

each of the 225 cases in the database using the original and the corrected version of the simplified procedure. 

Original procedure of Seed and Idriss (1971) 

The variation of the probability of liquefaction against the deterministic safety factor (Fs) calculated using the 

original version of the simplified procedure [1] is plotted in Figure 1 with that obtained by Juang et al. [26]. The set of 

the 225 points can be fitted in terms of mapping function which linked PL to Fs defined by the following equation: 

𝑃𝐿 =
1

1+(
𝐹𝑆

0.736
)

2.786                                                                                                                                                                         (15) 

The deterministic curve model is defined by Fs=1. Thus, the Andrus et al. [15] curves can be characterized with a 

probability of liquefaction of 30% based on Byesian mapping model, this result is similar to that obtained by Juang et 

al. [26] from the same database. From Equation 15, we can plot for a given value of PL the CRR boundary curves 

presented in Figure 2. This figure shows that the value of VS1CS converges to 215m/s for high values of CSR. 

 

Figure 1. Relationship between PL and Fs based on Bayesian Mapping function using the original version of the simplified 
procedure 
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Figure 2. Bayesian Mapping function along the case history database using the original version of the simplified procedure 

Corrected version of the simplified procedure (Filali and Sbartai, 2017) 

The safety factor calculated using Equation 4, for the CSR and Equation 7, for the CRR is used to recalculate the 

probability of liquefaction. By fitting the set of points presented on Figure 3, the Mapping function can be expressed 

by the relationship below:  

𝑃𝐿 =
1

1+(
𝐹𝑆

0.4693
)

2.719                                                                                                                                                          (16) 

In this equation, a value of Fs=1 corresponds to the deterministic curve model. Therefore, for this case, the Andrus et 

al [15] curves can be characterized with a probability of liquefaction of 11.3% based on Bayesian Mapping model. 

From Equation 16, we can plot for a given value of PL, the CRR boundary curves presented in Figure 4. This figure 

shows that the value of VS1CS converge to 215m/s for high values of CSR, this result is also the same as that obtained 

by Juang et al. [15] according to their Bayesian mapping model. 

The figure also shows that the boundary curve proposed by Andrus and Stokoe [16] is characterized by a PL=0.113, 

and in according to the corrected version of the simplified procedure, it is not conservative because it cannot be 

considered as a boundary curve, which separate the liquefied and non-liquefied cases and must be adjusted to the curve 

corresponding to PL=0.30 which represents the true boundary between the two zones.  

By fitting this curve using the Andrus and Stokoe [16] model, the cyclic resistance ratio, CRR7.5, can be expressed 

by the following equation: 

𝐶𝑅𝑅7.5 = {0.03433 (
(𝑉𝑠1)𝑐𝑠

100
)

2

+ 4.369 (
1

215−(𝑉𝑠1)𝑐𝑠
−

1

215
)} 𝑀𝑆𝐹                                                                                 (17) 

 

Figure 3. Relationship between PL and Fs based on Bayesian Mapping function using the corrected version of the simplified 
procedure 
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Figure 4. Bayesian Mapping function along the case history database using the corrected version of the simplified procedure 
with Equation 7 

By comparing this equation with that proposed by Andrus and Stokoe [16], we can say that only the curve fitting 

parameters have changed (a=0.03433, b=4.369). This result is reasonable, because, according to the corrected version 

of the simplified procedure, the values of the cyclic stress ratio, CSR, have changed, therefore, the boundary between 

the liquefied and nonliquefied cases may also change and the curve fitting parameters must be adjusted to the new 

position of the boundary. Since, the mathematical model of the true boundary is defined, we must recalculate the safety 

factor and the probability of liquefaction for all cases in the database using Equation 4 and 17. By the same manner, 

the mapping function deduced by fitting the set of points presented in Figure 5 can be expressed as follows: 

𝑃𝐿 =
1

1+(
𝐹𝑆

0.7303
)

3.734                                                                                                                                                                               (18) 

This equation shows that the deterministic boundary curve, which correspond to FS=1 is characterized by a 

probability of liquefaction of 24% instead 30%. The set of probabilistic boundary curves deduced from Equations 17 

and 18 are plotted in Figure 6. Then, the deterministic design decision is always made based on the safety factor which 

indicates that the liquefaction occur or no according to a reference value by choosing the most conservative case. The 

liquefaction boundaries plotted in Figure 6 show that the Andrus and Stokoe [16] CRR curve is characterized by a 

probability of 6% using the Bayesian mapping function with the deterministic model given by Equation 17 based on 

the corrected simplified method which correspond to a deterministic safety factor (FS) of 1.52, while the adjusted 

model proposed in this study shown in Equation 17 is related to a probability of 24%, which correspond to FS=1. 

Then, according to these results, the more conservative case is always given by the corrected simplified method. Thus, 

the set of curves shown in Figure 6 indicates a non-liquefaction for the zone above the boundary curve of PL=90% and 

a liquefaction for the zone below the boundary curve of PL=6%. The zone between PL=6% and PL=90% is an 

intermediate zone in which 6% and 24% represent the lower and the marginal probabilities, above 24% the risk of 

liquefaction increase with the probability of liquefaction. To define the severity of the liquefaction potential using a 

probabilistic analysis, Juang et al. [27] have proposed a liquefaction likelihood classification which can be used for 

probabilistic design decision using the corrected version of the simplified method. 

 

Figure 5. Relationship between PL and Fs based on Bayesian Mapping function using the corrected version of the simplified 

procedure with Equation 17 
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Figure 6. Bayesian Mapping function along the case history database using the corrected version of the simplified procedure 

with Equation 17 

Comparison with previous studies 

The correlation between shear wave velocity and liquefaction resistance has been studied by several authors. Based 

on field performance data from sites in Imperial Valley, Robertson et al. [28] developed a liquefaction resistance curve 

where the shape was based on an analytical result. Kayen et al. [29] have conducted a probabilistic analysis to provide 

an unbiased assessment of Vs-based in situ soil liquefaction triggering potential, and assess the probability of 

liquefaction triggering for use in performance-based engineering applications. Guoxing et al. [9], based on an updated 

calibration using an expanded database for evaluation of the soil liquefaction potential at nuclear power plant project 

sites with extremely high-risk potential have proposed a deterministic empirical liquefaction triggering correlation with 

its probabilistic version. A comparison between these liquefaction resistance correlations and the adjusted model 

proposed in this study are plotted on Figure 7. This figure shows clearly that the best fit is given by the corrected 

version of the simplified method which materialize the true liquefaction boundary expressed by Equation 17, the four 

other correlations in Figure 7 cannot be considered as boundary curves because according to the corrected version of 

the simplified method, the values of CSR for all cases in the database for which amax≤0.30g are adjusted through a 

corrector factor, RC, defined by Equation 3. Therefore, the plotted set of points of the case history database is 

translated upwards, which leads to move the boundary curve to a new position different to that defined by the original 

simplified method.  Then, in this figure, we have kept the original position of the plotted curves in order to show the 

effect of the proposed correction on these curves. 

4. Case Study  

4.1. Treasure Island Site 

Treasure Island is a man-made island located between San Francisco and Oakland. More than 29 million cubic 

yards of finely to medium-grained sand have been dredged from borrow areas in the San Francisco Bay and used as fill 

materials on the Yerba Buena Banks north of Yerba Buena Island. In this area, approximately 65 percent of the bottom 

sediments were composed of sand and the rest was soft clay. The Loma Prieta earthquake in October 17, 1989 induced 

significant liquefaction and ground failure in the region .The liquefaction related deformations resulted in damage to 

several structures and numerous broken underground utility lines. The profile of soil and shear wave velocity chosen in 

this study, are shown on the Figure 7 [16]. 

 

Figure 7. Profile of soil and shear wave velocity according to the depth (Treasure Island site) 
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In this example, we will evaluate the liquefaction potential with the original and the corrected version of the 

simplified procedure in order to define which of the two methods gives the more conservative case. Then, the cyclic 

stress ratio CSR is calculated by using both Equations 1 and 4; for the estimation of the cyclic resistance ratio, we will 

use Equation 5 adjusted to fines content ≤5% with fitting parameters of Andrus and Stokoe [16] and Equation 17.The 

peak ground acceleration amax value used for the calculation of CSR is taken equal to 0.1129g. The depth to the ground 

water table is kept 1.5m relative to the ground surface. The average value of the unit weight is taken equal to 17.6 

KN/m3 above the water table and 19.2 KN/m3 below the water table below ,the third and the fifth layers (Clayey sand) 

may be non-liquefiable by Chinese criteria [16]. In Figure 8, are shown the profiles of safety factor according to the 

depth computed by the original and the corrected version of the simplified procedure, the profile of the dynamic FS is 

deduced from a dynamic analysis with lumped mass discussed in Filali and Sbartai [10] by using equation 17 to 

estimate the cyclic resistance ratio. 

 
Figure 8. Safety factor according to the depth computed by the original and corrected version of the simplified method 

(Treasure Island site) 

Figure 8 shows that the more conservative case is given by the corrected version of the simplified procedure, and 

the profile of the corrected safety factor is very close to the dynamic profile. These results indicate that the maximum 

shear stress given by the corrected version which is almost equal to that computed from a dynamic analysis is always 

for this case greater than the shear stress estimated by the original simplified method, which implies that the stress 

corrector factor, rd, is greater than 1, and to confirm this, we have conducted a dynamic analysis using Shake91_input 

software [30] in which the Loma Prieta earthquake is simulated by the DIAM accelerogram applied at the bottom of 

the soil profile. In this analysis, we have calculated the maximum shear stress for soil profile using Shake91_input and 

the simplified method with the original and the corrected version using the maximum acceleration of DIAM 

accelerogram which is 0.1129g. The results are presented in Figure 9. This figure shows clearly that the maximum 

shear stress computed by the original simplified method is less than that given by the dynamic analysis conducted 

using Shake91_input (rd>1, amax<0.30g) while the corrected version of the simplified method gives values greater than 

or equal to those of the dynamic method (rd≤1). Then, for this site, the liquefaction potential evaluation must be 

conducted using the corrected version of the simplified method, because the original version cannot be applied since rd 

is greater than 1. 

 
Figure 9. Maximum shear stress according to the depth with dynamic and simplified analysis (Treasure Island site) 
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4.2. Petrochemical Zone of Skikda Site (Algeria) 

Based on the request of the National Petroleum Refining Company of Skikda department (NAFTEC), the laboratory 

has performed a geophysical investigation with three down-hole tests. The study site is located within the industrial 

zone of Skikda, it has a flat topography. The down-hole test SC02 detected the presence of a sandy horizon, reddish to 

brownish which extends up to depth 20 m and saturated with a mean diameter D50 varying between 0.11 and 1 mm. 

The average value of the unit saturated weight is taken between 19.6 and 20.5 KN/m3. The water table is assumed on 

the ground surface. The magnitude of the earthquake is in the range of 6.8 and the maximum acceleration at the surface 

is equal to 0.122g, the site is classified in the zone II according to the Algerian earthquake code RPA 2003. The profile 

of soil and shear wave velocity chosen in this study are shown on the Figure 10. 

 

Figure  10. Profile of soil and shear wave velocity according to the depth (Petrochemical zone site) 

In Figure 11, are shown the profiles of safety factor according to the depth computed by the original and the 

corrected version of the simplified procedure, the profile of the dynamic FS is deduced from a dynamic analysis 

performed with Shake_input software [30] in which the dynamic cyclic stress ratio (CSRD) was expressed as the ratio 

of the maximum shear stress and the vertical effective stress. 

 

Figure  11. Safety factor according to the depth computed by the original and corrected version of the simplified method 
(Petrochemical zone site) 

For this site, the conclusion is the same as the Treasure Island site. To confirm this, we have conducted a dynamic 

analysis using Shake91_input software [30] in which the Boumerdes earthquake of 21/05/2003 is simulated by the 

Azazga station accelerogram EW component applied at the bottom of the soil profile. In this analysis, we have 

calculated the maximum shear stress for soil profile using Shake91_input and the simplified method with the original 

and the corrected version using the maximum acceleration of the used accelerogram which is 0.122g. The results are 

presented in Figure 12. This figure shows clearly that the maximum shear stress computed by the original simplified 
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method is less than that given by the dynamic analysis conducted using Shake91_input (rd>1, amax<0.30g) while the 

corrected version of the simplified method gives values greater than or equal to those of the dynamic method (rd≤1). 

 

Figure  12. Maximum shear stress according to the depth with dynamic and simplified analysis (Petrochemical zone site) 

5. Conclusion 

In this study, we have critically compared the models of the probability of liquefaction obtained by the original 

simplified method [1] and the corrected version of this method [10] by using a Bayesian mapping function based on 

shear wave velocity test. The results show that the boundary curve is characterized in one hand, by PL=0.30 which 

correspond to Fs=1 by using the original simplified method, and in other hand, by PL=0.24 which correspond to Fs=1 

by using the corrected version of this method with the Andrus and Stokoe [16] shape of the CRR expressed by 

Equation 7. Then, the proposed model for the CRR curve of Andrus and Stokoe [16] must be adjusted to the new 

boundary in accordance with the corrected version of the simplified method because the boundary curve is obtained by 

plotting CSR against Vs from the case history data, and, as the CSR have changed for all sites in the database where 

amax<=0.30g, the boundary curve must also change and may be readjusted. This readjustment is materialized by the 

proposed Equation 17 from which the CRR curve is positioned on the true boundary which separate the liquefied and 

non-liquefied zones according to the corrected version of the simplified method. This correction is only valid for clean 

sand, then, other sands where FC>5% must be adjusted to clean sand according to VS1CS in order to be able to use the 

proposed correction. The case studies of Treasure Island and the petrochemical zone of Skikda sites show clearly that 

by using the corrected version of the simplified method the assumption rd<1 is always verified whatever the used 

earthquake and is not verified when the original simplified method is used for the two sites. 
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