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Abstract 

Micro-trenching is an innovative method for installing fiber optic cable in residential areas and business districts which 

minimizes surface scarring and potential negative social and environmental impacts. This method has three major steps 

including cutting a narrow trench in the pavement, cable installation and trench backfilling. This paper discusses a 

Simphony simulation model of the micro-trenching procedure and analyzes its productivity. Brief descriptions of the 

micro-trenching method and two field installations used to validate the model are included. A simulation model was 

developed for two different installation depths of 7.6 and 23 cm using two different methods. To provide an estimation of 

project duration, the impact of weather conditions on micro-trenching productivity was also considered. The developed 

model can be used for what if scenarios and for predicting the outcomes, which may be useful for studying the procedure 

and verifying if any productivity improvement can be achieved. The results indicate that the influence of installation 

depth is more significant than the impact of weather conditions. Reducing installation depth from 23 cm to 7.6 could 

improve productivity up to 50% while cold weather condition can reduce productivity by 18.8%. The simulation model 

demonstrates that the productivity can be improved up to 16% by overlapping two steps during the installation process: 

starting the cleaning procedure when a portion of cutting is completed. 

Keywords: Micro-Trenching; Vertical Inlaid Fiber (VIF); Surface Micro Cable Inlay (SMCI); Productivity Analysis; Simphony; 

Simulation; Fibre to the Home (FTTH); Productivity Improvement; Installation Depth; Cold Weather Condition. 

 

1. Introduction 

The number of Internet users has grown considerably over the last twenty years. The Internet has become the 

dominant source of both entertainment and information and the use of heavy bandwidth applications on mobile 

devices and personal computers increases every year [1]. Cisco, one of the most prominent networking equipment 

vendors, estimates consumption trends in North America to reach approximately 35,000 PB/month in 2020 ‎[2, 3].  

As overall bandwidth requirements increase significantly, much of the existing copper telecommunication 

infrastructure becomes inadequate for meeting data transmission demands. High capacity broadband networks are 

supported by fiber optic cables. When compared to existing copper cabling systems, fiber optic networks offer 

dramatic improvements in data transmission capacity. Fiber optic cable is smaller, lighter, less prone to interference 

                                                           
* Corresponding author: hashemia@ualberta.ca 

 
http://dx.doi.org/10.28991/cej-2020-03091607 

 

© 2020 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 6, No. 11, November, 2020 

2132 

 

 

and of high bandwidth and capacity [4]. Fiber Optic (FO) backbone networks improve communication systems, 

allowing information to transfer faster [1]. In many large North American cities, fiber optic services are installed in 

downtown areas and business districts [4, 5]. Such areas with highly concentrated population, ascending volume of 

electronic data transmission, overcrowded underground space and artistically landscaped ground surface render 

traditional trenching methods nearly impossible to implement [6]. As Internet Service Providers build extensive Fibre-

to-the-Home networks outside of urban cores, they encounter many of the same challenges. The traditional way of 

completing last-mile fiber optic installation or Fiber to the Home (FTTH) is cutting trenches into or under streets and 

installing conduits, splicing, and building entrance facilities. The consequences of this uncontrolled trenching are 

streets with patches and crumbling asphalt [4]. Besides, open-cut excavation does not turn out to be a reasonable and 

viable installation method due to the high costs of utility exploration and protection, surface restoration and 

landscaping, traffic control, and economic impact on surrounding businesses. It also reduces pavement longevity and 

produces other environmental impacts such as dust and noise [6]. 

An alternative fibre optic installation method that may be used to build a FO network cost-effectively with much 

less disruption and negative environmental and social impacts is micro-trenching. Micro-trenching is an innovative 

technique for installation of communication infrastructure specially fiber optic cables in roadways. It includes placing 

a cable or conduit inside a trench narrower than 20mm wide and up to 120-300mm deep ‎[7].    

There are three main steps of the micro-trenching procedure: 1) creation of the trench, 2) installation of conduit or 

cable, and 3) surface reinstatement. The first step of the micro-trenching procedure begins with marking the layouts to 

be trenched using spray paint, followed by cutting the micro trench using a saw, which is often referred to as a micro-

trencher.  

The road surface may shift due to the traffic weight, and even small movements and deflections can cause damage 

to the cables and ducts [8]. Therefore, a micro trench is excavated along the road gutter edge near the cement curb. 

This provides the trench with extra stability, and there is less potential for damage as the trench is not situated along 

the wheel path ‎[8, 9].  

After cutting the trench, it is necessary to clean and dry the trench before cable installation. Pressure washers are 

usually used for cleaning, and drying can be performed utilizing compressed air and a blowpipe. The second step of 

the procedure is cable or conduit deployment inside the trench. Since this method is commonly used for fiber optic 

deployment in city centers and business districts, future construction activities, excavation or infrastructure installation 

pose a major threat to the installed cables. Using conduits provides some protection from these hazards as well as frost 

and operational loads (Personal communication, TeraSpan, November 2012). Additionally, according to Telus, the 

main purpose of a conduit is to allow future installation without trenching (Personal communication, Telus, September 

2015). There are various types of conduits used for this purpose which provide stability on edge. Alternatively, cables 

may be placed inside metallic tubing which is covered by a Polyethylene (PE) jacket providing required crush and 

temperature resistance ‎[10-12].  

The third and last step in micro-trenching is surface reinstatement. The small size of a micro-trench prevents 

sufficient compaction; therefore, traditional asphalt cannot be a solution for surface reinstatement. The reinstatement 

material needs to flow freely and easily inside the trench, prevent water penetration, provide a strong bond to the 

trench side walls, and be stable enough to carry traffic load [13]. Hot liquid bitumen can be implemented for trench 

sealing using a proper nozzle [10]. The cable may not be secured in its location if the reinstatement is not done 

appropriately [13].  

Micro-trenching application depends on road composition. It is a preferred installation technique for asphalt 

surfaces with a compact material base [7, 10]. Applying this method in unpaved roads can be challenging since 

complete cleanliness of excavation is not feasible due to congestion of aggregates in the trench. Additionally, micro-

trenching causes rapid deterioration in the structural matrix of evolved roads that have been aged over centuries [7].  

Quality of backfilling material and also backfilling method have an important role in long-term sustainability of the 

micro-trench, particularly in cold regions [14, 15]. 

Micro-trenching provides minimal surface scarring and limits environmental and social disruptions. It is also a cost-

effective installation method due to reduced surface restoration and installation time [14, 15]. However, since this 

method provides shallow installation, cables are more susceptible to frost heave, freeze and thaw cycle and pavement 

rehabilitation process. 

Productivity is considered a key indicator in economic performance assessment [16]. To assess the success of a 

construction project, labour productivity as a key factor is often included [17]. Productivity is measured by the output 

value divided by the unit of resource input; high productivity results in lower per-unit cost to perform a task or 

operation [18]. Therefore, it is necessary to analyze micro-trenching productivity and offer suggestions for its 

improvement. 
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The objective of this paper is to analyze the productivity of micro-trenching installation. Utilizing time distributions 

of micro-trenching installation procedures gained from industry experts, a simulation model is developed and the 

impacts of weather conditions and installation depth on micro-trenching productivity are investigated. An amendment 

in the installation process is also suggested to improve the productivity which may be demonstrated by using the 

results of the modified model. Simulation results are considered reliable since the model is validated using field 

installation data.  

2. Methodology 

In order to investigate the productivity of micro-trenching, the installation process was divided into 5 steps and 

simulated using Simphony software: a computer simulation platform for modeling of the construction systems. Time 

distributions of each activity for winter and summer time and for two different installation depths were obtained from 

the industry experts based on their experience and fed to the model (personal communication with TeraSpan and JETT 

Networks, December 2014 and January 2015). In order to validate the model, field installations at two different depths 

were performed and the model results were compared to field data. This model also provides a seasonal comparison in 

addition to comparing results for two different installation depths. It must be noted that the generated output of micro-

trenching productivity is considered an estimate due to the lack of available data on micro-trenching installations. 

Notably, by employing more data, simulation may be expanded to be applicable to other installation depths and 

various seasonal conditions. 

A simulation model allows one to efficiently investigate different scenarios and observing the variations in results. 

Since the simulation is validated, in case of any modification in the procedure, the validity of the results will not be 

affected, and the outcome of the simulation is expected to be reliable. Having observed and investigated the micro-

trenching procedure, its productivity may be improved by modifying the timing of the installation steps. The obtained 

results demonstrate the productivity enhancement. Figure 1 shows the flowchart: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research Methodology Flowchart  

3. Micro-Trenching Field Installation 

In this study, two micro-trenching technologies, Vertical Inlaid Fiber (VIF) and Surface Micro Cable Inlay (SMCI) 

with installation depth of 23 cm and 7.62 cm were investigated. Both of the technologies are introduced briefly in the 

following section. In order to validate the model, simulation results were compared to data collected during field 

installations performed on October 2013 and June 2014 in a parking lot in Edmonton, AB.  

3.1. Vertical Inlaid Fiber (VIF) Technology 

Vertical Deflecting Conduit (VDC) (Figure 2) includes two robust and slim pieces zipped together to enclose the 

fiber optic cable. VDC provides cables with protection against frost, operational loads and construction activities. It 

also allows for flexibility in deployment, which is achieved by the possibility of cables being pulled, blown or zipped 

in the conduit [19]. 
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The installation procedure begins with marking the trench layout using spray paint followed by using a micro-

trencher to create a narrow ditch. Then cleaning is performed using a vacuum for liquid mud and a shovel for solid 

mud. Fiber optic cable is inserted in the VDC channels and zipped up. Afterwards, the conduit is laid vertically inside 

the trench. The final step of this procedure is surface reinstatement which includes filling the trench with a layer of 

sand on top of the conduit and then placing a layer of cold asphalt to provide the pavement surface with a fine finish.  

Installation specifications and cross section of VIF technology are provided in the Table 1 and Figure 4, 

respectively. 

3.2. Surface Micro Cable Inlay (SMCI) Technology 

Similar to VIF technology, this procedure also begins with marking the layout and cutting the trench. Then the 

trench is cleaned with both vacuum and shovel and dried with a blower. Water used in the cutting process has to be 

dried to ensure the adherence of reinstatement material. The FO cable used in this project (Figure 3) consists of a 

rugged central copper tube enclosing bundles of optical fibers and covered by a polyethylene (PE) jacket to provide 

corrosion, temperature and crush resistance [20]. Two of these protective layers allow direct buried deployment of 

cable inside the trench. Cables are filled with thixotropic gel to ensure protection from water ingress [20]. 

 

Figure 3. Fiber optic cable used in SMCI [19] 

In applying the SMCI technology, cable installation includes three steps. First, FO cable is laid in a vertical position 

inside the trench. After laying the cable, a layer of the foam spacer is placed inside the trench. The foam spacer is 

round closed cell foam that has enough flexibility to limit undesirable cable movements due to freeze and thaw cycles. 

Additionally, it protects the cable from moisture and water penetration. Then, a rubber strip made out of neoprene is 

placed on top of the foam spacer to secure and retain the cable in place. The final step, surface reinstatement, includes 

Figure 2. Vertical Deflecting Conduit (VDC) ‎[19] 
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filling the micro trench with uniformly graded sand, followed by using hot asphalt to seal the trench to avoid water 

ingress. 

Installation specifications and cross section of SMCI technology are provided in Table 1 and Figure 4, respectively. 

Table 1. Installations specifications- VIF and SMCI technology (units in cm) 

Description VIF technology SMCI technology 

Trench depth 22 7.6 

Trench width 1.5 0.9 

VDC thickness 5.2 NA 

FO cable thickness 0.6 0.6 

Foam spacer thickness NA 1 

Rubber strip thickness NA 1.2 

Sand layer thickness 7.2 3.8 

Hot bitumen sealer thickness NA 1.27 

Cold asphalt layer thickness 9 NA 

Existing Asphalt thickness Almost 9 Almost 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cross section of VIF and SMCI installations [19] 

4. Simphony Background 

As cited in Hajjar and AbouRizk [21], Simphony is a Microsoft Windows based simulation platform that is 

developed under the guidance of Natural Sciences and Engineering Research Council (NSERC) and Alberta 

Construction Industry Research Chair Program in Construction Engineering and Management. Simphony provides a 

consistent and standard environment for development and usage of special purpose simulation tools [22]. 

Special purpose simulation (SPS) is defined as “a computer-based environment built to enable a practitioner who is 

knowledgeable in a given domain, but not necessarily in simulation, to model a project within that domain in a manner 

where symbolic representations, navigation schemes within the environment, creation of model specifications and 

reporting are completed in a format native to the domain itself” [23]. Simphony is deemed to be a suitable approach 

for integration of simulation into a construction management procedure [24, 25]. 

5. Special Purpose Simulation (SPS) for Micro-Trenching Process 

A Special Purpose Simulation (SPS) was developed to estimate the micro-trenching projects duration and 

productivity. Specifically, it also investigates the impact of weather conditions and installation depth on micro-

trenching productivity. 
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In Simphony, a key modeling feature is an entity which represents material, resource or finished product. This 

software also calculates the total time required for the task completion. In this model, an entity is considered as one 

micro-trenching project; trench depth and project length are assigned as the entity attributes. 

In order to develop a model, the micro-trenching procedure was divided into 5 steps: 1) marking the layouts, 2) 

cutting the trench, 3) cleaning the trench and smoothing the corners, 4) cable installation and 5) surface reinstatement. 

Each step in the model requires a resource. Step 2) requires a micro-trencher, and all other steps require a two-person 

work crew.  

Duration estimates of each step for the two-person crew, found in Table 2, were fed into the simulation model. 

These duration estimates were obtained from industry experts based on their experience from past projects. The 

duration of each step and its labour productivity varies depending on different factors: ground conditions, weather, 

temperature, employee proficiency level and type of equipment. To consider all these aspects, the triangular 

distribution, which employs three scenario types - worst case, most-likely case and best case - was used, with different 

distribution estimates for winter and summer work.  

Table 2. Time distribution parameters (min), based on experts’ opinion. 

Time duration for 1 meter of installation- Depth of 23 cm-Summer time 

Activity Best case scenario Most-likely scenario Worst case scenario 

Marking the layout 0.4 0.5 0.65 

Cutting the trench 0.9 1.45 1.6 

Cleaning the trench and smoothing the corner 1.5 2.25 3 

Cable installation 0.3 0.58 0.8 

Surface reinstatement 2 3 3.5 

Time duration for 1 meter of installation- Depth of 23 cm-Winter time 

Activity Best case scenario Most-likely scenario Worst case scenario 

Marking the layout 0.5 0.57 0.75 

Cutting the trench 1 1.6 2 

Cleaning the trench and smoothing the corner 1.8 2.8 4 

Cable installation 0.4 0.7 1 

Surface reinstatement 2.5 3.5 4.5 

Time duration for 1 meter of installation- Depth of 7.6 cm-Summer time 

Activity Best case scenario Most-likely scenario Worst case scenario 

Marking the layout 0.25 0.34 0.4 

Cutting the trench 0.3 0.6 0.75 

Cleaning the trench and smoothing the corner 1 1.5 2.4 

Cable installation 0.4 0.5 0.6 

Surface reinstatement 0.7 0.8 1 

Time duration for 1 meter of installation- Depth of 7.6 cm-Winter time 

Activity Best case scenario Most-likely scenario Worst case scenario 

Marking the layout 0.25 0.38 0.5 

Cutting the trench 0.33 0.7 0.97 

Cleaning the trench and smoothing the corner 1.2 1.7 3.2 

Cable installation 0.43 0.55 0.7 

Surface reinstatement 0.8 0.9 1.25 

To validate the model, we compared the expert estimates to field installations done using the VIF and SMCI 

technologies, as described in Section 5. The simulation results were compared to the actual data gathered by direct 

observation of these two field installations. 

Productivity analysis was grouped into two categories: 1) seasonal and 2) installation depth. The analysis reflects 

the influence of weather conditions and installation depth on micro-trenching productivity. Simulation results with 

100,000 iteration for seasonal and installation depth comparison are provided in Table 4.Simulation results indicate 

that the winter weather conditions can reduce the microtrenching productivity by 16.72%, and by 18.8% for the 

installation depth of 7.6 cm and 23 cm respectively. However, installation depth was proven to have more impact on 
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productivity. When compared to deep installations, shallow installations are characterized with faster cutting, less 

waste material to clean and easier reinstatement. As the results indicate, deep installations reduce productivity by 

approximately 50%. 

Table 3. Micro-trenching productivity: (a) Seasonal comparison, (b) Installation depth comparison. 

(a) 

Description 
Productivity during summer time 

(m/hr) 

Productivity during winter time 

(m/hr) 

Percentage difference 

(%) 

Installation depth of 7.6 cm 15.6 12.99 16.72% 

Installation depth of 23 cm 8.02 6.51 18.80% 

(b) 

Description Installation depth of 7.6 (m/hr) Installation depth of 23 (m/hr) Percentage difference (%) 

Summer time 15.6 8.02 48.42% 

Winter time 12.96 6.51 49.84% 

5.1. Simulation Validation 

As stated previously, our model validation is achieved by comparing the simulation results (100,000 iterations) to 

the actual field installation data, as presented in Table 4. 

Table 4. Productivity result comparison for model validation. 

Description Simulation result (m/hr) Field installation result (m/hr) Percentage error (%) 

Installation depth of 7.6 cm-Summer time 15.6 14.42 8.14% 

Installation depth of 23 cm-Winter time 6.51 6.15 5.81% 

The slight differences between the simulation results and field installation productivity indicate that the simulation 

results are reliable. These minor differences may be caused by a variety in the equipment type used for cutting the 

trench, the cleaning procedure and lack of available project’s data. 

5.2. Productivity Analysis of Micro-Trenching 

Construction productivity plays a major role in project success. High productivity results in lower unit cost to 

perform a task or operation. Conducting productivity analysis may be challenging due to variable field conditions. It is 

also very time-consuming: it may take weeks to gather the required data to be able to conduct basic analysis. 

Monitoring productivity regularly allows for making necessary changes to optimize the project in case of unexpected 

events [18]. 

Productivity is calculated through the ratio of produced output to unit of resource input such as labour, energy, raw 

material etc. (Equation 1). Common productivity ratios, considering the resources used, are the total factor 

productivity or multi-factor productivity, in which the output is in relation to all used resources; and labour 

productivity, in which the output is in relation to only labour. In labour productivity calculation (Equation 2), labour is 

represented by the employed persons, working hours or labour cost [25]. Labour productivity is influenced by such 

factors as temperature, wind speed, relative humidity, precipitation, type of work and crew composition [17]. 

Generally, calculating labour productivity over time provides beneficial information for further investigation and 

evaluation of the system effectiveness and efficiency and enables managers to move toward saving costs and 

increasing performance [18]. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑠𝑒𝑑
 (1) 

𝐿𝑎𝑏𝑜𝑢𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐿𝑎𝑏𝑜𝑢𝑟 𝑖𝑛𝑝𝑢𝑡
 (2) 

In the construction industry, the amount of time required for completing a unit of an output is considered as the 

resource input. Output unit is selected with the consideration of the purpose of conducting productivity investigation. 

In our project, output unit is the 1 meter FO installation [18].  

Production rate (daily output), which may be used for prediction of project duration or estimation of required man-

hours for completing a job over a specific period of time, is obtained using Equations 3 to 5 [26]. In this study, micro-

trenching productivity is defined as installation meter per hour. 
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𝐷𝑎𝑖𝑙𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑚𝑒𝑡𝑒𝑟

𝑑𝑎𝑦
) =

𝐶𝑟𝑒𝑤 ℎ𝑜𝑢𝑟𝑠 (𝑐𝑟𝑒𝑤 −
ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
)

𝑈𝑛𝑖𝑡 𝐶𝑟𝑒𝑤 ℎ𝑜𝑢𝑟𝑠 (𝑐𝑟𝑒𝑤 −
ℎ𝑜𝑢𝑟𝑠
𝑚𝑒𝑡𝑒𝑟

)
 (3) 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑑𝑎𝑦𝑠) =
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑚𝑒𝑡𝑒𝑟)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑚𝑒𝑡𝑒𝑟

𝑑𝑎𝑦
)
 

(4) 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑙𝑎𝑏𝑜𝑢𝑟 ℎ𝑜𝑢𝑟𝑠) = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑚𝑒𝑡𝑒𝑟) × 𝑈𝑛𝑖𝑡 𝑙𝑎𝑏𝑜𝑢𝑟 ℎ𝑜𝑢𝑟𝑠 (𝑙𝑎𝑏𝑜𝑢𝑟
ℎ𝑜𝑢𝑟𝑠

𝑚𝑒𝑡𝑒𝑟
)  (5) 

Continuous data collection with the consideration of work methods, workers’ level of skill and motivation, and 

visual, nasal  and  thermal  condition of work  delivers  the  accurate  production  rate ‎ [27]; however, it is a time-

consuming and expensive approach. Alternatively, average performances under various conditions may also indicate 

the existing production rate. It must be noted that it is vital to present results validation and the work conditions 

associated with the data collection [27]. 

Productivity analysis was grouped into two categories: 1) seasonal and 2) installation depth. The analysis reflects 

the influence of weather conditions and installation depth on micro-trenching productivity. Simulation results with 

100,000 iteration for seasonal and installation depth comparison are provided in Figure 5.  

Figure 5. Simulation model for micro-trenching productivity analysis 

Simulation results indicate that the winter weather conditions can reduce the micro-trenching productivity by 

16.7%, and by 18.8% for the installation depth of 7.6 cm and 23 cm respectively. However, installation depth was 

proven to have more impact on productivity. When compared to deep installations, shallow installations are 

characterized with faster cutting, less waste material to clean and easier reinstatement. As the results indicate, deep 

installations reduce productivity by approximately 50%. 

Figure 6 demonstrates the productivity distribution of micro-trenching with different installation depths and 

weather conditions. X-axis represents the productivity and y-axis represents the frequency of productivity. These 

graphs are obtained using the simulation results with 100,000 iteration and an appropriate distribution function is fitted 

to probability bar charts. It can be seen that with a certainty level of 90%, the productivity of installation with depth of 

7.6 cm will be between 13.65-17.89 m/hr in the summertime and 11.03-15.26 m/hr in the wintertime. Corresponding 

distribution function is RiskBetaGeneral (α1, α2, min, max). For deep installation (depth of 23 cm), these values are 

7.27-8.99 m/hr in the summer and 5.83-7.38 m/hr in the winter; corresponding distribution function is RiskGamma (α, 

β). 
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(a) (b) 

  

(c) (d) 

  
Figure 6. Productivity distribution: (a) Summer time, installation depth of 7.7cm, (b) Winter time, installation depth of 7.7, 

(c) Summer time, installation depth of 22cm, (d) Winter time, installation depth of 22cm 

6. Productivity Improvement of Micro-Trenching 

As described in Section 4.5, the second step in the micro-trenching procedure is the micro-trench creation. In the 

field installations, it was observed that the crew tends to be idle during this step. Its productivity may be increased by 

conducting the cleaning process at the time of cutting. The overlapping of cutting and cleaning steps can start when a 

certain portion of cutting is completed leaving sufficient space for cleaning.   

In order to verify the productivity improvement, the simulation model can be modified in a way that the cleaning 

process starts after a portion of cutting is completed. Since the model developed for analyzing micro-trenching works 

properly and results are matched with the gathered site data and case studies, it can be concluded that the results from 

the simulation are reliable. 

Figure 7 demonstrates the modified simulation model used for micro-trenching productivity improvement analysis. 

Figure 8 demonstrates the percentage of productivity improvement for different completed portions of cutting before 

starting the cleaning process. It is clear that by increasing the completed portion of cutting before starting the cleaning 

process, the productivity improvement decreases. However, it is not feasible that both cutting and cleaning start at the 

same time since there must be sufficient space for the crew to clean the trench. Depending on project length, 5%-15% 

may be an appropriate percentage which results in almost 14-16% increase of productivity.  

Simulation results of the modified model were compared to an actual case study (VIF technology) performed in 

Langford, BC with productivity of 7.06 m/hr with a two-person crew. There is a 9.5% error between simulation results 

and actual productivity data when 5% of cutting is completed before starting the cleaning. 



Civil Engineering Journal         Vol. 6, No. 11, November, 2020 

2140 

 

 

 Figure 7. Modified simulation model to improve micro-trenching productivity 

Figure 8. Productivity improvement vs. completed portion of cutting before starting the cleaning 

7. Conclusions 

In this paper, a special purpose simulation (SPS) for micro-trenching productivity analysis is developed using two 

micro-trenching field installations with different methods including Vertical Inlaid Fiber (VIF) and Surface Micro 

Cable Inlay (SMCI) with installation depth of 23 and 7.60 cm, respectively. This model can assist in further 

investigation of the impact of weather conditions and installation depth on micro-trenching productivity. This model 

also can be extended to fit other conditions and other installation depths if more actual data is available. The following 

conclusions are driven from the study: 

 Results from the presented model indicate that cold weather conditions decrease the productivity up to 16.7% and 

18.8% for SMCI method with the installation depth of 23 cm and VIF method with the installation depth of 7.6 

cm, respectively.  

 Installation depth can also have a considerable impact on micro-trenching productivity. Shallow installations (7.6 

cm) were shown to be approximately 50% more productive in comparison with deep ones (23 cm). 
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 It was revealed that by overlapping some activities and reducing delay times, for example starting the trench 

cleaning procedure when a portion of cutting is completed, productivity could be increased by 14% and 16% for 

for SMCI and VIF methods, respectively.  

 This SPS can be used for estimating the project duration. What-if scenarios can also be applied to the developed 

simulation model, so the effectiveness of any modification method for the installation. 

It is worth mentioning that the results if this study is limited to only two field projects with two different 

installation methods and backfilling material. It is recommended that more case studies will be considered in future to 

enhance the prediction models. 

8. Acknowledgements 

The authors would like to thank TELUS Communications and MITACS for their financial and in-kind support in 

this research. TeraSpan and Jett Networks are also acknowledged for conducting field installations and their technical 

contributions. The authors’ appreciation is also extended to Ms. Delaina Lawson for editorial review of this paper. 

9. Conflicts of Interest 

The authors declare no conflict of interest. 

10. References  

[1] Saeed, Muhammad Osamah. Determining optimal fibre-optic network architecture using bandwidth forecast, competitive 

market, and infrastructure-efficient models used to study last mile economics. University of Toronto, 2011. 

[2] CISCO systems Inc. Form 10-K, Annual Report Pursuant to section 13 and 15(d), 2012. 

[3] CISCO2010. "Cisco Virtual Networking Index: Forecast and Methodology", 2009-2014. Available online: 

http://www.cisco.com/. (Accessed on 20 May 2020). 

[4] Gokhale, Sanjiv. "Deployment of fiber optic networks through underground sewers in North America." Journal of transportation 

engineering 132, no. 8 (2006): 672-682. doi:10.1061/(ASCE)0733-947X(2006)132:8(672). 

[5] Pacific, W. H., and IT Group. "The Feasability of Using Sewer Lines for Fiber-Optic Conduits." Prepared for the City of 

Portland June (2001). 

[6] Atalah, Alan, Choi Chang-Jin, and Keith Osburn. “Comparison Study of Installing Fiber Optic Cable in University Campuses 

Using Trenchless Techniques Relative to Open Cut.” Pipelines 2002 (October 23, 2002). doi:10.1061/40641(2002)70. 

[7] DCMS. "Microtrenching and Street Works: An Advice Note for Local Authorities and Communications Providers". 

Department for culture, Media and Sport, 2011. 

[8] Network Strategies. "Micro-Trenching: Can It Cut the Cost of Fibre to the Home? NETWORK STRATEGIES". (December 

2008). Available Online: http://www.strategies.nzl.com/wpapers/2008019.htm. (Accessed on 18 April 2020). 

[9] Liteaccess Technologies Inc. "Micro-Trenching Gives Big Returns for Broadband. Liteaccess Technologies Inc." 2010. 

Available Online: http://www.liteaccess.com/index.php?option=com_content&task=view&id=35&Itemid=14. (Accessed on 28 

April 2020). 

[10] ITU. "Construction, Installation and Protection of Cables and Other Elements of Outside Plant, Micro-Trench Installation 

Technique". Telecommunication standardization sector of ITU, 2003. 

[11] GM Plast. 2014. "Micro Trenching with Flatliner". GM PLAST. Available Online: http://www.gmplast.dk/_upload/catalog_ 

products_files/2/microtrenching.pdf. (Accessed on 14 April 2020). 

[12] TeraSpan. 2013. Vertical Inlaid Fiber (VIF). TeraSpan Networks. Available Online: http://www.teraspan.com/vif.php. 

[13] StirlingLloyd Polychem Ltd. Highway Maintenance, "Micro-Trenching Product in Action: Shetland Fiber Optic Network. 

StirlingLloyd Polychem Ltd.", 2012. Available Online: http://www.highwaymaintenanceproducts.co.uk/downloads/ 

PIA_Safe047(1E)_Mico_Trenching_Shetland_Islands_1329823520.pdf. (Accessed on 11 July 2020). 

[14] A2B fiber Inc. 2011. "Q-Trench Trial". A2B Fiber Inc. December. Available Online: http://a2bfiber.com/wp/?p=793. 

(Accessed on 13 March 2020). 

[15] i3group,. Auto Trenching Machine. Innovation in Infrastructure, 2012. Available Online: http://i3group.america.ws-

django.co.uk/auto-trenching-machine/. (Accessed on 28 April 2020). 

[16] OECD. "Productivity Measurement and Analysis", 2008. Available Online: http://www.oecd.org/std/productivity-

stats/44516351.pdf. (Accessed on 19 March 2020). 



Civil Engineering Journal         Vol. 6, No. 11, November, 2020 

2142 

 

 

[17] Khan, Zafar." Analysis and Modeling of Labor Productivity in Construction Operations", 2010. VDM Verlag. 

[18] Su, Yun-Yi.. "Construction Crew Productivity Monitoring Supported by Location Awareness Technologies." University of 

Illinois at Urbana-Champaign, 2010. 

[19] Vaseli, H., Hashemian, L., Bayat, A., Gay. L., Williams, I., Mezler, J., "Evaluation of Micro-trenching as a Fiber Optic 

Installation Method". CSCE, 2015. 

[20] JETT Networks. 2014. "JETT Networks Fiber Optics Solutions". JETT Networks Communication Technologies. doi: 

10.1093/gmo/9781561592630.article.a2262529. Available Online: http://jett.ca/index.php?/Fibre-Optic-Content/jett-tel-fibre-

optics-solutions.html. (Accessed on 18 March 2020). 

[21] Hajjar, Dany, and Simaan M. AbouRizk. "Application framework for development of simulation tools." Journal of Computing 

in Civil Engineering 14, no. 3 (2000): 160-167. doi:10.1061/(ASCE)0887-3801(2000)14:3(160) 

[22] Ruwanpura, Janaka Y., and Samuel T. Ariaratnam. “Simulation Modeling Techniques for Underground Infrastructure 

Construction Processes.” Tunnelling and Underground Space Technology 22, no. 5–6 (September 2007): 553–567. 

doi:10.1016/j.tust.2007.05.001. 

[23] Lueke, Jason S., Samuel T. Ariaratnam, and Simaan M. AbouRizk. “Application of Simulation in Trenchless Renewal of 

Underground Urban Infrastructure.” Proceedings of the 31st Conference on Winter Simulation Simulation---a Bridge to the 

Future - WSC ’99 (1999). doi:10.1145/324898.324931. 

[24] AbouRizk, Simaan M., Janaka Y. Ruwanpura, K. C. Er, and I. Fernando. "Special purpose simulation template for utility 

tunnel construction." In WSC'99. 1999 Winter Simulation Conference Proceedings.'Simulation-A Bridge to the Future'(Cat. 

No. 99CH37038), vol. 2, pp. 948-955. IEEE, 1999. doi:10.1109/WSC.1999.816804. 

[25] O’Grady, John. "Productivity in the Construction Industry: Concepts, Trends, and Measurement Issues". University of 

Toronto, 2014, Available Online: http://www.ogrady.on.ca/Downloads/Papers/Productivity%20in%20the%20Construction 

%20Industry.pdf. (Accessed on 19 April 2020). 

[26] Navab-Kashani, Reza. "Productivity Analysis of Closed Circuit Television (CCTV) Sewer Mainline Inspection". Edmonton, 

Alberta: University of Alberta, 2014. doi:10.7939/R3D119. 

[27] Karger, D. W., and F. H. Bayha. "Engineered Work Measurement: The Principles, Techniques, and Data of Methods-Time 

Measurement Background and Foundations of Work Measurement and Methods-Time Measurement, plus Other Related 

Material". New York: Industrial Press Inc 1987. 

https://doi.org/10.1061/(ASCE)0887-3801(2000)14:3(160)
https://doi.org/10.1109/WSC.1999.816804
https://doi.org/10.7939/R3D119

