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Abstract 

The present study deals with buckling, free vibration, and bending analysis of Functionally Graded (FG) and porous FG 

beams based on various beam theories. Equation of motion and boundary conditions are derived from Hamilton’s 

principle, and the finite element method is adopted to solve problems numerically. The FG beams are graded through the 

thickness direction, and the material distribution is controlled by power-law volume fraction. The effects of the different 

values of the power-law index, porosity exponent, and different boundary conditions on bending, natural frequencies and 

buckling characteristics are also studied. A new function is introduced to approximate the transverse shear strain in 

higher-order shear deformation theory. Furthermore, shifting the position of the neutral axis is taken into account. The 

results obtained numerically are validated with results obtained from ANSYS and those available in the previous work. 

The results of this study specify the crucial role of slenderness ratio, material distribution, and porosity condition on the 

characteristic of FG beams. The deflection results obtained by the proposed function have a maximum of six percent 

difference when the results are compared with ANSYS. It also has better results in comparison with the Reddy formulae, 

especially when the beam becomes slender. 

Keywords: Functionally Graded Materials; Finite Element Method; Buckling Analysis; Free Vibration. 

 

1. Introduction 

A composite material is made of two or more constituent material with different mechanical properties. This new 

material has physical and chemical characteristics, unlike that of the individual components. In laminate composite 

structures, isotropic elastic layers are joined together to provide mechanical and advanced material properties. The 

typical problem with laminate composite is the concentration of stress at the site of separation of the different layers, 

which causes cracks and the delamination phenomenon. In functionally graded materials (FGMs), because the changes 

from one material to another are trivial, there is no delamination [1]. FGMs are categorized as composite materials that 

have contiguous conversion in the properties of materials from one plane to another, thus reducing the stress 

concentration existed in conventional composites [2]. FGMs have several potential advantages that made their use 

more common in comparison with laminated composites [3]. These advantages are including reducing in-plane and 

transverse stresses along with thickness, proportional distribution of residual stress, improved thermal properties, 

greater fracture and corrosion resistance, and reducing stress concentration factors [1].These features have led to their 

widespread use in various scientific and engineering applications, such as mechanical, structural, aerospace, nuclear, 

armory and, etc. FGMs are typically made of isotropic components (e.g., metals and ceramics). FGMs are also used as 
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thermal barrier structures in environments with high thermal inclinations (e.g., gas turbine blades) [4]. In such 

applications, the ceramic provides heat and corrosion resistance, and metal provides strength and toughness. Porous 

FGMs (PFGMs) are a new class of FGMs that have been used widely in various areas of engineering and science. The 

wide application of porous FGMs in engineering fields is due to their rigidity-weight ratio, which makes them 

extremely attractive [5].  

Functionally graded (FG) beams as structural elements have various applications; therefore, knowing their static 

and dynamic characteristic is extremely important for engineers. Various beam theories have been developed for 

studying the behaviour of FG beams. The simplest beam theory is the Euler-Bernoulli beam theory (EBBT), also 

called Classical Beam Theory (CBT). The EBT ignored the transverse shear deformation effect; therefore, the results 

of this theory are so inaccurate and suitable for slender beams [6]. The First-order Shear Deformation Theory (FSDT) 

has been developed to assume the effect of the transverse shear deformation effect. In the FSDT, the free stress 

boundary condition has been estimated by a shear correction factor. The Higher-order Shear Deformation (HSDT) 

theories have been developed to predict the behaviour of FG beams accurately. In these theories, the transverse shear 

deformation is approximated by a function [7, 8]. Various higher-order functions have been proposed [9].  

Plenty of research has been done to study the mechanical behaviour of FG and PFG beams. In 2001, Sankar, 

investigated an elasticity solution for simply supported FG beams under sinusoidal load [10]. In 2011, Alshorbagy et 

al. [6] studied the free vibration of the Euler-Bernoulli FG beam. Eltaher et al. (2013) [11], investigated the natural 

frequency of FG nano beams by considering the effect of the position of the neutral axis. In 2013, Li et al. [12], 

exploited the relationship between buckling loads of Timoshenko FG beams and isotropic Euler-Bernoulli beam 

theory. Lee et al. [13], used the transfer matrix for studying the free vibration of FG beams using the Euler-Bernoulli 

beam theory. In 2015, Simsek, [14], investigated the vibration characteristic of bi-directional Timoshenko FG beams 

by assuming various boundary conditions. Jing et al. [15] exploited the static and free vibration characteristic of FG 

beams by coupling the Timoshenko beam theory and the Finite volume method. In 2017, the finite element method 

(FEM) was used by Kehya and Turan (2016) [8] for investigating the buckling and free vibration of FG beams using 

first-order shear deformation theory. Simsek (2010) [9] investigated the natural frequency of FG beams by using 

various higher-order shear deformation theories. Pradhan [16] studied the free vibration behaviour of FG beams by 

assuming various shear deformation theory. Giunta et al. [17] were used the meshless method for studying the bending 

characteristics of three-dimensional FG beams. Frikha et al. (2016) [18] introduced a new higher-order mixed beam 

element for bending analysis of FG beams. Xia et al. (2019) [2] investigated the relationship between static behaviour 

of FG Reddy-Bickford beams and homogenous classical beams. Patil [19] studied the vibration of FG beams using the 

differential quadrature method. In 2020, Pham et al. [20] investigated semi-rigid connections in FG structures using the 

fuzzy static finite element method. Beam elements have been helpful in solving a large number of engineering 

problems. Several beam theories exist to analyze the structural behaviour of slender bodies such as columns, arches, 

blades, aircraft wings, and bridges. The demand and application of FG beams are increasing nowadays. FGMs in the 

form of a beam or beam-like structures are widely used in engineering applications such as wind turbine blades. 

Therefore, knowing their mechanical characteristic is crucial for engineers [21]. It should be noted that a lot of 

engineering problems have been solved in the form of beam-like structures [22-24]. 

The present work deals with the study of static, buckling, and free vibration characteristic of unidirectional FG 

beams and porous FG beams. Hamilton’s principle is used to obtain the equations of motion and the essential 

boundary conditions for different beam theories. The FEM is used for numerical solving of various FG and PFG beam 

problems. FGM and PFGM beams for the various parameters like length to thickness ratio, power-law and porosity 

index, and boundary conditions are studied. The accuracy and effectiveness of this paper are verified by a comparison 

between the results obtained by ANSYS software and those available in previous research. A SOLID-186 element 

having three degrees of freedom per node has been employed in the ANSYS software. The functionally graded 

material beam with a uniform variation of the material property through the thickness is estimated as a laminated 

section containing a number of isotropic layers. The power law is used to determine material properties in each layer. 

Ten by forty mesh and twenty number of layers are found to give good accuracy from convergence studies. As a part 

of this study, a new polynomial function is introduced to approximate the shear strain. In the previous study, the effect 

of the neutral axis position is not significant for various analyses. Moreover, the effect of the power-law index on the 

shear correction factor is not considered for different analyses, including bending, free vibration, and buckling. 

2. Mathematics and Formulation 

2.1. Constitutive Relation 

Various prevalent methods are existed methods for acquiring the effective mechanical properties of materials. These 

methods are the rule of mixture, the Murray-Tanaka method, and Hill's own adaptive approach [25]. In the present 

paper, the rule of the mixture is used to obtain the effective material properties. 
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 Figure 1. (a) Geometry and coordinates in FG beams, (b) General coordinates and material gradation in porous FG beams, 
(c) Cross-section and material gradation in FG beams 

Where ,  L h  and b  are the length, the height, and width of the beam, respectively. 

2.2. Rule of Mixture 

In Figure 1, it can be seen a general FGM beam, which is made of two different materials (e.g., steel and ceramic), 

in which the mechanical properties are changing smoothly through the thickness. In Figure 2-a, the effect of the 

various power-law index is shown. According to the power-law distribution, mechanical properties of the FG beam can 

be defined as: 
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                                                                               (1.b) 

Where; ,  b tf f  show the material properties of the beam at the bottom and the upper face of the beam. Also, the 

parameter n  depicts the non-negative power-law index, which relates to the distribution of material properties along 

with the thickness of the beam. The component ,  u bV V and 
pV  are the volume fraction of the upper and lower surfaces 

and porous media, respectively.  indicates the porosity condition in which 0   means there is no porosity. The 

distribution of porous FGMs for various   is shown in Figure 2-b. 

3. Kinematic 

Consider a beam in Figure 1, a global coordinate system is assumed, the x-coordinate coincide with the beam axis, 

z-coordinate is taken along the thickness, and y-coordinate is along the width of the beam. The displacement field of 

the beam can be expressed as follows based on different theories: 

3.1. Euler-Bernoulli Beam Theory (EBBT) 

The governing displacement equation of Euler-Bernoulli beam with 3 degrees of freedom per node is given by: 

0
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                                                                                                                                  (2) 

Displacement field equation in matrix form is: 
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Using Equation 2, the strain field equation can compute as bellow: 
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Figure 2. (a) Volume fraction vision along with the thickness (b) The effect of porosity on the volume fraction 

By assuming Hook’s law, the strain-stress relationship describes as below: 

  ( ) ( )xx xxE z E z z                                                                                                                                        (5) 
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Using Hamilton’s principle and applying the variational method to Equations 3 and 5, the general displacement 

field of the beam is: 
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                                                                     (7) 

Where ,  S K  and V are strain energy, kinetic energy, and work done by external forces, respectively.  

Dear User
Line
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The constitutive matrix ˆ[ ]D  and inertia matrix ˆ[ ]  is given by: 
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                                                                                               (8) 

3.2. First-order Shear Deformation Beam Theory (FSDBT) 

The axial and transverse displacement equations of a FG beam with three degrees of freedom per node based on 

First-order shear deformation theory are expressed as: 
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Displacement field equation in the matrix form: 
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Using Equation 9.a, the only non-zeros strain-displacement field equations are given by: 
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By considering Hook’s law, and using Equation 9.a, the stress field equation describes as below: 
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Where;  is the shear correction factor, which indicates the variation of shear stress thorough the beam thickness. In 

composite materials, the shear correction factor  is not constant and depends on both the cross-section shape and the 

distribution of material along with the beam thickness [7]. Herein, for the sake of brevity, the mathematical 

formulation of the shear correction factor is neglected; therefore, for more information, the [7] can be seen. In Table 1, 

some shear correction factor is calculated and shown. 

Table 1. The shear correction factor concerning the power-law index 

n 0.0  0.2  1.0  2.0  5.0  10.0  

  0.8333  0.8437  0.8304  0.7795  0.6783  0.6902  
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Applying Hamilton’s principle and variational method to Equations 10 and 11, the general displacement field of the 

beam is: 
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                                                                   (13) 

Where; ,  S K  and V are strain energy, kinetic energy, and work done by external forces, respectively. 1t  and 2t are 

the initial and final times, respectively. 

The constitutive matrix ˆ[ ]D  and inertia matrix ˆ[ ]  is described as follow: 
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3.3. Higher-order Shear Deformation Beam Theory (HSDBT) 

The general displacement equations of Higher-order shear deformation beam with 4 degrees of freedom per node 

are given by: 
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Equation 15.a can be rewritten in the matrix form as follows: 
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Where; ( )f z  is a function which approximates the shear strain through thickness. ( )f z  denotes the derivative of 

( )f z with respect to the z . 

Using Equation 15.a, the strain field equation of HSDT is of the form of: 
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By assuming Hook’s law, and using Equation 16, the stress field equations describe as below: 
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Using Hamilton’s principle and applying the vibrational method to Equations 16 and 17, the general displacement 

field of the beam is: 
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Where; ,  S K   and  V  are the strain-energy, the kinetic energy, work done by axial forces, and virtual work done 

by an external force. 1t  and 2t are the initial and final times, respectively. 

It is useful to introduce the constitutive matrix ˆ[ ]D  inertia matrix ˆ[ ] are as follows: 
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The shear strain function is introduced as below: 
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                                                                                                                              (21) 
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The stress-free boundary condition is satisfied on the bottom and top surface of the beam by both functions. 

( , ) 0
2

xz

h
x                                                                                                                                                                (22) 

3.4. The Position of the Neutral Axis 

In FG materials, due to the variation of the mechanical properties, the position of the neutral axis is changing [11]. 

The effect of the power-law index and material properties is shown in Figure 3. The position of the neutral axis can be 

computed by using the following formulation: 

0

( )
( )

(2 4)( )( )

t bl

t b

l

E z zdz
nh E E

z
n E EE z dz


 

 




                                                                                                                        (23) 

Where; ,  ,  ,   b tE E h n is denoting modulus of Elasticity of upper and bottom surface, the height of the beam and power-

law index, respectively. 

 
Figure 3. The effect of power-law exponent on the position of the neutral axis 

4. Finite Element Formulation 

There are various numerical methods used for solving engineering problems [26-28]. In the present paper, the Finite 

Element Method (FEM) is used to solve the governing equations. The equations of motion in the previous sections, are 

numerically solved by the FEM for bending, buckling, and free vibration problems. FEM formulation of each beam 

theories describe separately as follow: 

4.1. Euler-Bernoulli Beam Theory (EBBT) 

In EBBT, the Lagrange shape function approximates the in-plane displacement. Also, the Hermite cubic shape 

function is used for the estimation of the transverse displacement and rotation. 
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Where;  and  i iN H  are Lagrange and cubic Hermite cubic shape functions. For more information, see Alshorbagy et 

al. (2011) [6]. 
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4.2. First-order Shear Deformation Beam Theory (FSDBT) 

In FSDBT, the Lagrange shape function is used for both in-plane and transverse displacements and also rotation. 
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                                                                                           (25) 

4.3. Third-order Shear Deformation Beam Theory (TSDBT) 

In TSDT, the Lagrange shape function estimated the in-plane displacement, and the Hermit shape function 

estimated the transverse displacement and rotation, respectively. 
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The element Stiffness, mass, and geometric stiffness matrix, respectively can be calculated as below: 
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                                                         (27) 

The components ,e eK M and e

GK  denote the element stiffness, mass, and geometric stiffness matrix, respectively. 

Here the Gaussian quadrature is used to solve the integration. Where Ng is indicate the number of gauss points. The 

construction of finite element analysis is demonstrated as follows: 

Structures of FEM code for FG beam analysis 

a: Read input data 

    Geometric data: (node coordinates, element connectivity, and ...) 

    Mechanical properties: (Young’s modulus, Poisson ratio, and …) 

b: Calculating constitutive matrix  

c: for loop over elements do 

d:      for loop over gauss points do 

e:            Calculating strain matrix [B]  

f:            Calculating element stiffness matrix [𝐾]𝑒, [𝑘𝑔]𝑒  

               Calculating element mass matrix [𝑀]𝑒,   

               Calculating the force matrix 

g:      end  

h: Assembling the element stiffness, mass and force matrices in the global coordinate system 

i: end 

j: Applying boundary conditions 

k: Solving equations for static, free vibration and buckling analyses 

l: Display results 
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4.4. The Validity of New Shear Strain Function 

In this section, the accuracy of the new polynomial shear strain function ( )f z is investigated. A simply supported-

simply supported homogenous beam with Young's modulus of 210 E GPa , Poisson's ratio of 0.3   under 

concentrated force 0q at the center of the beam is considered. The deflection of the mid-point of the present function is 

compared with Reddy’s third-order shear deformation theory and also the exact solution obtained in [29].  

The results in Table 2 are presented in a nondimensionalized form 
3

3

0

10 wEIw
q L

 . Where 0,  ,  ,  ,   and w w q E I L

are dimensionless deflection, normal deflection, point load, Young's modulus, second moment of inertia, and length of 

the beam, respectively. 

The Equation 28 is used for calculation of percentage error in results in comparison with the exact elasticity 

solution: 

      solution
( ) 100%

   solution

value by numerical method value by exact
error

value by exact


                                                         (28) 

Table 2. Maximum dimensionless deflection for homogenous beam (L / h = 2)  

Theory nel=10  %Error  nel=20  %Error  nel=30  %Error  nel=40  %Error  

Present 26.1117  4.8810  25.2847  1.5593  25.0112  0.4607  24.9006  0.0165  

Reddy 26.3797  5.9575  25.5157  2.4871  25.1625  1.0684  25.0093  0.4531  

Elasticity [29] 24.8965  0.00  24.8965  0.00  24.8965  0.00  24.8965  0.00  

Where; nel indicates the number of elements used for beam mesh. 

5. Numerical Results 

In this section, FG beams are analyzed differently under various boundary conditions, including clamped-free  

(C-F), simply support-simply support (S-S), and clamped-clamped (C-C). For more detailed information on boundary 

conditions, Simsek (2010) [9] to be seen. Functionally graded material of beam is a composition of aluminum (AL) (as 

metal) and alumina (Al2O3) (as ceramic). Two different kinds of material are used for numerical analysis. The 

following material properties are used for numerical modeling. For bending and free vibration, material 1 from Ref. 

[16] is used. For buckling problems, material 2 from Kehya and Turan (2016) [8] is utilized. 

2 3 2 3 2 3

3

3

3

Material 1: 70 GPa,             2700 kg/m ,         0.23

                   380 GPa,       3800 kg/m ,      0.23

Material 2 : 70 GPa,             2702 kg/m ,         

Al Al Al

Al O Al O Al O

Al Al Al

E

E

E

 

 

 

  

  

  

2 3 2 3 2 3

3

0.3

                   380 GPa,        3960 kg/m ,      0.3Al O Al O Al OE    

 

The properties alter according to the power-law. Thus, the upper surface is pure alumina, while the bottom surface 

is pure aluminum. The results of buckling analysis are compared with those available in Kehya and Turan (2016) [8]. 

Bending and free vibration results of FG beams are compared with those obtained and normalized from ANSYS solid 

186 (see Figure 4). Simply supported condition for brick element gives inaccurate results; therefore, analyzing with 

simply support boundary condition is neglected. The FG beams are designed by solid 186 (20 nodes 3D element) with 

20 layers. The cross-section mesh is 40 10 , and the length of the beam is meshed with 30 elements (see Figure 4-a).  

5.1. Static Analysis 

In this section, the bending behaviour of the FG beam under point load 0q is investigated. For this analysis, the 

material one is used. The boundary condition is clamped-free, simply supported, and clamped-clamped. Tables 3 to 5 

contain the dimensionless maximum deflection of FG beams. It can be observed that the results obtained by CBT are 

underestimated. The FSDBT results are good where the beam is deep, and the shear is dominant. HSDBT results are 

accurate enough in a different situation. The CBT has better results where the shear stress has not prevailed (slender 

beam). The maximum error values for the higher-order shear deformation results are less than seven percent when 

compared with ANSYS results. The new proposed function has better results in a fixed-fixed situation. The deflection 

of the FG beam is increased, by increasing in power-law index and porosities since the stiffness of FG beams is 

decreased. 
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Table 3. Maximum non-dimensional deflection 
3 3

m 0
(w = 10 wE I / q L )  of C-F FGM beam under point load 

L/h Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

ANSYS Solid 186 79.475 128.987 167.627 207.200 85.867 151.254 210.243 93.147 181.287 285.395 

CBT 74.553 123.074 157.986 187.241 80.426 143.015 197.189 87.323 171.904 269.566 

FSDBT 76.686 125.759 161.523 163.130 82.694 145.573 199.563 89.732 172.860 261.277 

HSDBT 76.735 126.288 162.357 194.192 82.727 146.523 202.148 89.760 175.780 275.309 

Present 76.681 126.212 162.285 194.185 82.669 146.439 202.068 89.698 175.686 275.215 

20 

ANSYS Solid 186 74.667 123.038 157.967 187.396 80.455 143.020 197.225 97.385 171.952 269.646 

CBT 74.553 123.074 157.986 187.241 80.426 143.015 197.189 87.323 171.904 269.566 

FSDBT 70.917 115.944 149.267 179.424 76.424 133.916 183.878 82.868 158.527 239.493 

HSDBT 74.739 123.348 158.353 187.807 80.623 143.314 197.606 87.531 172.235 270.049 

Present 74.731 123.336 158.337 187.785 80.615 143.301 197.587 87.523 172.221 270.027 

Where; w and w are dimensionless and normal deflection of the FG beams, respectively. ,   and mE I L denote 

Young's modulus of the considered metal, second moment of inertia, and length of the FG beams, respectively. Also, 

0q indicates the point load. 

Table 4. Maximum non-dimensional deflection 
3 3

m 0
(w = 10 wE I / q L )  of S-S FGM beam under point load 

L/h Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

CBT 4.659 7.692 9.873 11.702 5.027 8.938 12.323 5.458 10.743 16.864 

FSDBT 5.180 8.434 10.889 13.373 5.576 9.7237 13.368 6.039 11.494 17.361 

HSDBT 5.199 8.486 10.953 13.416 5.595 9.805 13.547 6.060 11.701 18.263 

Present 5.185 8.466 10.832 13.410 5.580 9.782 13.525 6.044 11.676 18.237 

20 

CBT 4.660 7.692 9.873 11.702 5.027 8.938 12.323 5.458 10.743 16.846 

FSDBT 4.455 7.280 9.376 11.292 4.800 8.407 11.545 5.205 9.948 15.029 

HSDBT 4.706 7.760 9.965 11.843 5.076 9.012 12.427 5.510 10.826 16.966 

Present 4.704 7.757 9.961 11.837 5.074 9.009 12.422 5.508 10.822 16.960 

Table 5. Maximum non-dimensional deflection 
3 3

m 0
(w = 10 wE I / q L )  of C-C FGM beam under point load 

L/h Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

ANSYS Solid 186 1.618 2.576 3.416 4.4613 1.736 2.968 4.163 1.885 3.509 5.469 

CBT 1.165 1.923 2.468 2.925 1.257 2.234 3.080 1.364 2.685 4.209 

FSDBT 1.682 2.682 3.516 4.646 1.801 3.056 4.237 1.941 3.563 5.372 

HSDBT 1.692 2.698 3.519 4.590 1.812 3.081 4.273 1.953 3.621 5.591 

Present 1.676 2.675 3.495 4.576 1.795 3.055 4.246 1.935 3.592 5.559 

20 

ANSYS Solid 186 1.193 1.969 2.523 3.019 1.286 2.275 3.150 1.397 2.742 4.287 

CBT 1.165 1.923 2.467 2.925 1.257 2.234 3.080 1.364 2.685 4.209 

FSDBT 1.137 1.854 2.391 2.901 1.224 2.138 2.939 1.327 2.527 3.817 

HSDBT 1.211 1.990 2.558 3.064 1.305 2.308 3.183 1.416 2.767 4.326 

Present 1.209 1.987 2.554 3.059 1.303 2.304 3.178 1.414 2.763 4.323 

5.2. Buckling analysis 

In the following section (Table 6), the buckling behaviour of the FG beam is studied by assuming material 2 (see 

Kehya and Turan (2016) [8]). For buckling analysis, the following stability equation ([ ] [ ]) 0cr GK N K u   is solved. 

The first three dimensionless critical buckling load of the FG beam is extracted. The critical buckling load of clamped-

clamped FG beams by various power-law and the length-to-depth ratio is investigated. The results are compared with 

those available and obtained by Kehya and Turan (2016) [8]. The FSDBT results are overestimated where the beam is 

slender ( / 20)L h  , whereas, the CBT results are overestimated when the beam is thick ( / 5)L h  . Both higher-order 

shear deformation theories have accurate results when compared with those available in Kehya and Turan (2016) [8]. 
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An obvious outcome here is that the results of the proposed model are approximately close to the results of Kehya and 

Turan (2016) [8]. Maximum differences of higher-order shear deformation results are almost five percent. By 

increasing the power-law index, the differences are increased. Increasing in Both power-law and porosity exponent has 

a significant effect on buckling loads. The buckling load decreases when the power-law and porosities are increased.  

Table 6. The non-dimensional first three buckling critical loads 
2

cr cr m(N = N L / E I)  of C-C FG beam 

L/h crN  Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

1 

[8] - 79.3903 61.7449 49.5828 - - - - - - 

CBT 156.791 94.608 72.704 60.095 145.382 81.416 58.131 133.944 67.733 42.407 

FSDBT 122.479 79.691 60.919 46.568 119.076 69.895 50.482 110.556 59.893 39.718 

HSDBT 127.641 79.620 60.901 46.829 119.266 69.694 50.072 110.757 59.224 38.119 

Present 127.864 79.748 60.938 46.682 119.469 69.800 50.097 110.939 59.307 38.139 

2 

CBT 287.258 172.778 131.309 106.785 266.418 148.685 401.819 245.525 123.696 76.299 

FSDBT 193.962 123.538 93.138 66.931 182.131 109.630 78.566 170.026 95.254 63.290 

HSDBT 194.614 123.865 93.672 68.147 182.774 109.711 78.387 170.647 94.664 61.425 

Present 195.604 124.454 93.968 97.999 183.684 110.209 78.612 171.476 95.069 61.592 

3 

CBT 470.089 281.448 210.651 167.651 436.128 242.193 167.775 402.079 201.478 121.755 

FSDBT 278.509 180.051 134.246 92.070 262.608 161.320 114.872 246.225 141.797 94.370 

HSDBT 281.249 181.865 136.205 94.912 265.226 162.655 115.616 248.709 142.157 92.818 

Present 283.280 183.143 136.935 94.848 267.087 163.748 116.193 250.402 143.062 93.265 

20 

1 

[8] - - - - - - - - - - 

CBT 175.350 106.189 82.643 69.628 162.547 91.382 66.203 149.713 76.025 48.418 

FSDBT 182.218 111.045 86.140 71.138 168.294 96.275 70.064 155.334 81.448 53.921 

HSDBT 172.577 104.795 81.511 68.215 160.082 90.309 65.446 147.542 75.260 48.028 

Present 172.595 104.805 81.511 68.189 160.099 90.317 65.446 147.556 75.266 48.028 

2 

CBT 356.277 215.702 167.711 141.084 330.271 185.627 134.330 304.202 154.433 98.226 

FSDBT 360.633 221.589 171.547 140.211 335.178 192.421 139.890 309.615 163.091 107.999 

HSDBT 342.680 208.760 162.091 134.323 318.137 180.224 130.503 293.469 150.523 96.168 

Present 342.866 208.863 162.145 134.274 318.304 180.306 130.541 293.617 150.585 96.193 

3 

CBT 687.887 416.237 323.036 271.005 637.700 358.196 258.663 587.389 297.996 189.065 

FSDBT 679.597 419.084 323.580 260.927 632.282 364.704 264.763 584.681 309.871 205.264 

HSDBT 647.076 395.596 306.396 250.790 601.343 342.237 247.477 555.297 286.575 183.254 

Present 647.355 395.747 306.410 250.464 601.594 342.360 247.482 555.522 286.669 183.262 

Where; 
crN and crN are dimensionless and normal critical buckling load of the FG beams, respectively. ,   and mE I L

denote young's modulus of the considered metal, second moment of inertia, and length of the FG beams, respectively. 

5.3. Free Vibration  

The first three dimensionless frequencies  of C-F, S-S, and C-C of FG and PFG beams are illustrated in Tables 7 

to 9, respectively. Various boundary conditions, length-to-depth ratio ( / )L h are considered. The effect of different 

values of the power-law index n and porosity index  on the vibration characteristic of the FG beams is investigated. 

For free vibration analysis, the following eigen-value equation 2([ ] [ ]) 0K M u   is solved [30-32]. The results of 

different theories are compared with those obtained from ANSYS solid 186. The CBT overestimates the frequencies 

due to the neglect of shear deformation. The FSDBT loses accuracy when the FG beams become slender. 

In most cases, results obtained from higher-order shear deformation theories have less than one percent differences 

in comparison with those obtained from ANSYS. The maximum difference in results is less than five percent. The 

results of the new proposed shear deformation have less difference with ANSYS when the FG beams become slender. 

By increasing in porosities, the FG beam vibrations decrease. An increase in the power-law index ,n leads to decreasing 

the values of frequencies. While the power-law index tends to zero (full-ceramic), the frequency values are increased. 

The first three mode shapes of FG beams are plotted in Figure 4-b for clamped-clamped FG beams of ( / 5)L h  , 

1n  and 0.0  . 
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Table 7. The first three non-dimensional frequencies 2 0.5 0.5

eq eq
(ω= ωL ρ / hE )  of C-F FGM beam 

L/h i  Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

1 

ANSYS Solid 186 0.9691 0.9131 0.9162 0.9877 0.9657 0.8868 0.8715 0.9394 0.8630 0.8152 

CBT 0.9832 0.9240 0.9285 1.0176 0.9923 0.9034 0.8786 1.0031 0.8738 0.7988 

FSDBT 0.9629 0.9085 0.9123 0.9931 0.9609 0.8905 0.8804 0.9585 0.8671 0.8348 

HSDBT 0.9624 0.9065 0.9099 0.9907 0.9717 0.8873 0.8626 0.9828 0.8595 0.7875 

Present 0.9629 0.9069 0.9103 0.9908 0.9722 0.8877 0.8629 0.9833 08598 0.7877 

2 

ANSYS Solid 186 5.2826 5.0152 4.9685 5.2396 5.2752 4.8817 4.7433 5.1459 4.7741 4.4838 

CBT 5.8985 5.5139 5.5082 6.0088 5.9527 5.3856 5.1976 6.0175 5.2023 4.7132 

FSDBT 5.2451 4.9719 4.9412 5.2051 5.2454 4.8982 4.8072 5.2440 4.7985 4.6055 

HSDBT 5.2270 4.9529 4.9298 5.2148 5.2880 4.8677 4.6986 5.3592 4.7391 4.3261 

Present 5.2437 4.9666 4.9407 5.2196 5.3047 4.8806 4.7080 5.3760 4.7508 4.3336 

3 

ANSYS Solid 186 7.8880 7.9937 7.9145 9.9068 7.8787 7.8466 8.8496 7.6840 7.8908 7.9016 

CBT 7.8603 7.8873 7.9151 7.9376 7.9524 7.8932 7.8227 8.0633 7.9006 7.7021 

FSDBT 7.8589 7.8713 7.8834 7.8860 7.8590 7.8698 7.8800 7.8590 7.8679 7.8754 

HSDBT 7.8588 7.8704 7.8817 7.8857 7.9508 7.8736 7.7822 8.0615 7.8774 7.6512 

Present 7.8588 7.8708 7.8821 7.8858 7.9505 7.8741 7.7826 8.0615 7.8780 7.6518 

20 

1 

ANSYS Solid 186 0.9911 0.9319 0.9366 1.0264 0.9878 0.9081 0.8999 0.9847 0.8808 0.8330 

CBT 0.9903 0.9312 0.9364 1.0267 0.9994 0.9106 0.8864 1.0103 0.8809 0.8075 

FSDBT 1.0149 0.9590 0.9629 1.0481 1.0129 0.9404 0.9301 1.0106 0.9170 0.8836 

HSDBT 0.9884 0.9296 0.9347 1.0243 0.9975 0.9091 0.8850 1.0084 0.8796 0.8064 

Present 0.9885 0.9297 0.9348 1.0244 0.9976 0.9092 0.8851 1.0085 0.8797 0.8064 

2 

ANSYS Solid 186 6.1451 5.7819 5.8058 6.3438 6.1040 5.6366 5.5808 6.1083 5.4697 5.1703 

CBT 6.1884 5.8181 5.8491 6.4120 6.2453 5.6889 5.5362 6.3133 5.5034 5.0421 

FSDBT 6.2953 5.9517 5.9710 6.4796 6.2846 5.8403 5.7714 6.2715 5.6965 5.4877 

HSDBT 6.1078 5.7505 5.7782 6.3117 6.1656 5.6268 5.4752 6.2346 5.4480 4.9949 

Present 6.1112 5.7535 5.7814 6.3155 6.1689 5.6295 5.4779 6.2378 5.4503 4.9971 

3 

ANSYS Solid 186 16.9269 15.9399 15.9838 17.3895 16.8802 15.5482 15.3759 16.8344 15.0983 14.2623 

CBT 17.2489 2116 16.2909 17.8537 17.4075 15.8508 15.4162 17.5970 15.3324 14.0354 

FSDBT 17.3541 16.4194 16.4514 17.7714 17.3295 16.1228 15.9186 17.2986 15.7830 15.1563 

HSDBT 16.7361 15.7817 15.8412 17.2229 16.9008 15.4547 15.0285 17.0962 14.9790 13.7352 

Present 16.7572 15.8002 15.8611 17.2467 16.9213 15.4716 15.0458 17.1162 14.9940 13.7490 

Where;  and  are dimensionless and normal frequency of the FG beams. ,   and eq eqE h  denote equal density, 

equal Young's modulus of FG beams, and height of the FG beams, respectively.  

Table 8. The first three non-dimensional frequencies 2 0.5 0.5

eq eq
(ω= ωL ρ / hE )  of S-S FGM beam 

L/h i  Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

1 

CBT 2.7353 2.5554 2.5555 2.7978 2.7602 2.4948 2.4099 2.7900 2.4082 2.1824 

FSDBT 2.6264 2.4813 2.4864 2.6866 2.6222 2.4347 2.4037 2.6171 2.3741 2.2843 

HSDBT 2.6184 2.4597 2.4566 2.6559 2.6448 2.4073 2.3260 2.6760 2.3310 2.1192 

Present 2.6209 2.4917 2.4581 2.6558 2.6474 2.4092 2.3272 2.6786 2.3327 2.1201 

2 

CBT 7.8368 7.5908 7.4450 7.5565 7.9249 7.5061 7.1567 8.0306 7.3695 6.6629 

FSDBT 7.8568 4.8469 7.8380 7.8298 7.8571 7.8474 7.8384 7.8574 7.8479 7.8369 

HSDBT 7.8270 7.4927 7.3113 7.4287 7.9137 7.3890 6.9986 8.0175 7.2287 6.4864 

Present 7.8273 7.4955 7.3138 7.4288 7.9140 7.3922 7.0014 8.0180 7.2326 6.4896 
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3 

CBT 10.4797 10.0092 10.1267 10.9471 10.5791 8.8515 9.7208 10.6982 9.6369 9.1275 

FSDBT 9.2071 8.7465 8.6968 9.1405 9.2097 8.6203 8.4656 8.2094 8.4490 8.1181 

HSDBT 9.1507 8.9266 8.9957 9.3625 9.2640 8.8603 8.7422 9.3966 8.7600 8.3490 

Present 9.1779 8.9476 9.0108 9.3648 9.2915 8.8798 8.7548 9.4242 8.7775 8.3584 

20 

1 

CBT 2.7783 2.6116 2.6255 2.8785 2.8038 2.5535 2.4849 2.8343 2.4701 2.2629 

FSDBT 2.8440 2.6877 2.6982 2.9353 2.8387 2.6364 2.6066 2.8324 2.5704 2.4767 

HSDBT 2.7669 2.6021 2.6155 2.8643 2.7625 2.5448 2.4763 2.8232 2.4623 2.2563 

Present 2.7674 2.6025 2.6160 2.8649 2.793 2.5452 2.4767 2.8236 2.4626 2.2566 

2 

CBT 11.0782 10.4013 10.4456 11.4489 11.1797 10.1670 9.8792 11.3011 9.8307 8.9866 

FSDBT 11.2593 10.6461 10.6785 11.5799 11.2406 10.4479 10.3233 11.2177 10.1920 9.8179 

HSDBT 10.9023 10.2550 10.2930 11.2333 11.0061 10.0325 9.7482 11.1296 9.7112 8.8860 

Present 10.9095 10.2612 10.2997 11.2413 11.0131 10.0382 9.7540 11.1364 9.7162 8.8905 

3 

CBT 24.7892 231754 23.1896 25.3285 25.0148 22.6354 21.8957 25.2843 21.8656 19.8772 

FSDBT 24.9194 23.5821 23.6216 25.4905 24.8857 23.1598 22.8622 24.8431 22.6114 21.7740 

HSDBT 23.9478 22.4933 22.4961 24.3855 24.1839 22.0108 21.3048 24.4636 21.3123 19.4260 

Present 23.9814 22.5219 22.5261 24.4201 24.2166 22.0368 21.3306 24.4955 21.3352 19.4462 

Table 9. The first three non-dimensional frequencies 
2 0.5 0.5

eq eq
(ω= ωL ρ / hE )  of C-C FGM beam 

L/h i  Theory 
𝜶 = 𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

n=0.2 n=1 n=2 n=5 n=0.2 n=1 n=2 n=0.2 n=1 n=2 

5 

1 

ANSYS Solid 186 5.2299 5.0122 4.9606 5.1645 5.2246 4.8845 4.7686 5.0965 4.7968 4.5411 

CBT 6.1801 5.8020 5.8230 6.3775 6.2369 5.6715 5.5063 6.3409 5.4841 5.0075 

FSDBT 5.1690 4.9400 4.9115 5.1012 5.1747 4.8779 4.7958 5.1789 4.7915 4.6168 

HSDBT 5.1489 4.9215 4.9054 5.1277 5.2145 4.8534 4.7048 5.2905 4.7463 4.3745 

Present 5.1734 4.9422 4.9221 5.1355 5.2390 4.8730 4.7194 5.3152 4.7643 4.3865 

2 

ANSYS Solid 186 12.1074 11.7140 11.4841 11.6668 12.1230 11.4455 11.1008 11.8573 11.3048 10.6935 

CBT 15.7035 15.0231 14.9322 15.5251 158840 14.6923 14.1313 16.1004 14.2045 12.8297 

FSDBT 11.9607 11.4979 11.3338 11.4483 11.9981 11.4109 11.1529 12.0330 11.2767 10.8481 

HSDBT 11.9336 11.4851 11.3785 11.6231 12.1065 11.3731 10.9769 12.3056 11.1822 10.3056 

Present 12.0301 11.5688 11.4883 11.6646 12.2037 11.4530 11.0395 12.4037 11.2569 10.3589 

3 

ANSYS Solid 186 15.8091 15.9454 15.7048 15.6509 15.7821 15.6291 15.4867 15.3895 15.6826 15.5109 

CBT 16.2039 15.8352 15.9141 16.7125 16.3563 15.8150 15.6505 16.5394 15.8006 15.3448 

FSDBT 15.7139 15.6698 15.6219 15.5824 15.7146 15.6731 15.6261 15.7154 15.6767 15.6301 

HSDBT 15.7137 15.6649 15.6108 15.5805 15.8970 15.6547 15.3655 16.1175 15.6399 15.0336 

Present 15.7139 15.6668 15.6125 15.5805 15.8972 156571 15.3672 16.1178 156427 15.0351 

20 

1 

ANSYS Solid 186 6.2311 5.8673 5.8906 6.4264 6.2118 5.7199 5.6636 6.1924 5.5513 5.2501 

CBT 6.2967 5.9212 5.9541 6.5278 6.3545 5.7900 5.6364 6.4237 5.6015 5.1345 

FSDBT 6.3744 6.0303 6.0491 6.5537 6.3642 5.9188 5.8492 6.3516 5.7747 5.5644 

HSDBT 6.1725 5.8170 5.8448 6.3736 6.2319 5.6941 5.5422 6.3025 5.5160 5.0615 

Present 6.1777 5.8215 5.8497 6.3795 6.2369 5.6982 5.5464 6.3074 5.5197 5.0649 

2 

ANSYS Solid 186 16.8496 15.8869 15.9253 17.2788 16.8038 15.5003 15.3290 16.7576 15.0584 14.2358 

CBT 17.2974 16.2632 16.3491 17.9206 17.4564 15.9025 15.4748 17.6465 15.3842 14.0937 

FSDBT 17.2512 16.3402 16.3678 17.6296 17.2301 16.0519 15.8488 17.2027 15.6767 15.1031 

HSDBT 16.5823 15.6619 15.7197 17.0411 16.7496 15.3480 14.9310 16.9476 14.8887 13.6713 

Present 16.6113 15.6876 15.7475 17.0742 16.7881 15.3715 14.9552 16.9754 14.9096 13.6906 

3 

ANSYS Solid 186 32.2322 304377 304549 32.8330 32.1582 29.7249 29.3529 32.0838 28.9112 27.3173 

CBT 3.7305 31.7045 31.8574 34.9081 34.0407 30.9996 30.1469 34.4116 29.9868 27.4467 

FSDBT 33.0417 31.3410 31.3388 33.5249 33.0158 30.8199 30.3948 32.9786 30.1353 29.0245 

HSDBT 31.4829 29.8095 29.8814 32.1783 31.8173 29.2491 28.4363 32.2112 28.4196 26.1139 

Present 31.5721 29.8885 29.9664 32.2779 31.9043 29.3217 28.5107 32.2961 28.4830 26.1737 
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                               (a)  

(b) 

Figure 4. (a) FG beam mesh in ANSYS (b) Three first mode of FG beams from ANSYS (L / h = 5, n = 1, α = 0)  

6. Conclusions 

In the present paper, static, buckling and free vibration of various FG beams by various beam theories are studied. 

Hamilton’s principle is used for acquiring the equation of motion. Different boundary conditions, power-law index, 

and porosity conditions are assumed for estimating the behaviour of FG beams. The shift of the neutral axis position is 

taken into account in the analysis. A new polynomial function is introduced for approximating the shear strain along 

with the thickness. For validation of the results of the free vibration and bending results, FG beams are modeled in 

ANSYS (solid 186). The results specify the influences of the slenderness ratio (L/h), material distribution, porosity 

index, on the characteristics of the beam as follow:  

 The proposed shear strain function satisfies the stress-free boundary condition on the bottom and top surface of 

the beam. The numerical results show that significant accuracies can be reached using the new proposed shear-

strain function. Therefore, the shear correction factors do not require, which is common in classic beam theories; 

 By increasing in slenderness ratio (L/h), the deflection, natural frequencies, and critical buckling load are 

increased, respectively; 

 Non-dimensional frequencies increase with a decrease in power-law and porosity index; 

 The stiffness of the FG beam is following a decreasing pattern by increasing the porosity and power-law index. 

Therefore, the deflection increases, while the critical buckling load is decreased; 
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 The CBT bending results is underestimated, while the buckling and free vibration results are overestimated, 

especially in the thick beam; 

 The FSDBT results are less inaccurate when the results are compared with HSDBT and ANSYS results. Due to 

the dependency of a shear correction factor to the power-law index, obtaining various shear correction factor is 

unendurable; 

 Both HSDBTs have accurate results when the results are compared with ANSYS results. The proposed model 

has less error, especially when the beam becomes slender. Therefore, the proposed function can be used in 

practical applications to obtain more accurate results. 
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