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Abstract 

In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was 

proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often 

occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the 

premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the 

fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight 

was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the 

performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and 

compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization 

ability. This study provides a more effective solution to structural optimization problems. 

Keywords: Wolf Pack Algorithm; Improvement; Adaptive; Levy Flight; Structural Optimization. 

 

1. Introduction 

An important derivative of the long-term development of structural design theory is structural design optimization 

[1]. Design optimization is to make the initial structure into a structure that is more satisfactory to the researcher under 

certain constraints set by the researcher, according to a certain goal the researcher wants, such as the goal of 

minimizing the quality of the structure [2]. 

Social group living is a common natural phenomenon in which social groups are able to adapt to the principles of 

natural selection and survive intra-species competition. They increase collective interests by reducing their energy 

consumption [3-5]. Swarm intelligence is an algorithm that simulates the evolution or foraging behavior of natural 

organisms [6]. In recent decades, inspired by the phenomenon of animal groups, many optimized computational 

methods have been developed to solve complex problems. Therefore, the use of swarm intelligence algorithm to 

optimize the design of the structure is a novel and efficient method. Classic swarm intelligence algorithms are genetic 

algorithm [7], particle swarm optimization algorithm [8] and ant colony optimization algorithm [9]. New swarm 

intelligence algorithms are artificial fish swarm algorithm [10], artificial bee colony algorithm [11], butterfly 

algorithm [12], fruit fly algorithm [13], pollen algorithm [14] and chicken swarm algorithm [15]. Birds, fish, ants, bees 

and others exhibit powerful swarm intelligence through constant adaptation and cooperation, which give us solutions 
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to many complex new ideas and problems. These intelligent optimization algorithms have solved many complex and 

difficult problems, greatly increasing people's ability to deal with optimization problems, and they have effectively 

promoted the development of computational intelligence. However, in terms of calculation accuracy, further research 

is needed. 

The Wolf Pack Algorithm (WPA, Wolf Pack Algorithm) was a new swarm intelligence algorithm proposed by Wu 

Shenghu (2013) [16]. The algorithm has better performance in optimization when solving optimization problems, but 

it also has some shortcomings, such as slow convergence speed, low convergence accuracy and low robustness, etc. 

[17]. Wu et al. (2018) aimed at the problem of slow convergence in the later period, introduced interactive walking 

motion, and proposed a wolf swarm search algorithm with leadership strategy [18]. Wu and Fengming (2014) 

proposed an uncultivated wolf pack algorithm (UWPA Uncultivated Wolf Pack Algorithm) to solve the problem of 

high-dimensional function optimization [19]. Teng et al. (2018) used tent chaotic sequences to start individual 

positions, and proposed a wolf swarm optimization algorithm combining particle swarm [20]. Chen et al. (2018) 

introduced a differential evolution strategy and proposed an improved wolf pack algorithm (IWPA, Improved Wolf 

Pack Algorithm) based on differential evolution [21]. Zhang et al. (2017) introduced the idea of controlling adaptive 

parameters and chaos, and proposed an adaptively adjusted chaotic gray wolf optimization algorithm [22]. Kaveh and 

Zakian (2017) proposed an improved gray wolf algorithm by adding a few tunable parameters to provide proper 

adaptability for the algorithm and to optimize the structures using fewer structural analyses, while obtaining finer 

solution. These improved algorithms had improved the accuracy and convergence accuracy of the algorithm to some 

extent, but they were still some shortcomings [23].  

Based on this, in order to overcome the shortcomings of the wolf pack algorithm, based on the wolf pack 

algorithm, this paper proposes a search strategy based on Levi's flight strategy for the behavior of detecting the wolf, 

and puts forward an adaptive step size for the movement during the summoning and siege behavior. The improved 

method is such that the step size of each wolf movement is determined by the current position of the wolf and the 

current head wolf position. After testing, the proposed adaptive step size and Levy's flight strategy improved wolf 

pack algorithm (LWPA, Levy Flight and Adaptive Step Size Strategy Improved Wolf Pack Algorithm) greatly 

accelerates the convergence speed and improve the convergence accuracy, Finally, the improved wolf pack algorithm 

is used to optimize the design of the truss structure and compare with other algorithms. Experiments show that LWPA 

has better optimization performance 

2. Levy Flight Strategy and Adaptive Step Size Wolf Pack Algorithm 

2.1. Description of Intelligent Behavior and Rules 

2.1.1. Initialization of Wolves 

Let the size of the wolf pack be 𝑁, the dimension of the search space be 𝐷, and the position of the 𝑖 artificial wolf 

can be expressed as Equations 1 and 2: 

),( 1 D

iii xxX                                                     (1) 

min max min( )d

ix x rand x x                                                (2) 

Where  𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the maximum and minimum ranges of the search space respectively. 𝑟𝑎𝑛𝑑 ∈ (0,1) a 

random number. 

2.1.2. Wolf Generation Rules 

In the initial solution space, the artificial wolf with the best objective function value is selected as the head wolf, 

and the position of the artificial wolf is updated after each iteration. If there are multiple optimal artificial wolves at 

this time, one was randomly selected to become the head wolf. The head wolf does not perform the following 

intelligent behavior, and directly enters the iteration until it is replaced by another stronger artificial wolf. 

2.1.3. Walking Behavior Based on Levy Flight 

The optimal 𝑆_𝑠𝑢𝑚 artificial wolves, excluding the head wolf, are selected as detective wolves. 𝑆_𝑠𝑢𝑚 random 

selects the integer between [𝑛 𝛼 + 1⁄ , 𝑛/𝛼], and 𝛼 is the detective wolf scale factor. However, in practice, it was 

found that in the process of wandering, the detective wolf would only blindly follow the head wolf and approach the 

prey breath concentration at the head wolf position, without caring about whether there was a better prey breath 

concentration around him. In the later stage of the algorithm, it would lead to loss of diversity in the population, easy 

to fall into local convergence and premature convergence. Aiming at this defect, this paper uses levy flight to conduct 

global search for detective wolves in the group. Levy flight belongs to random walk, which is a good search strategy 

and can expand the search scope [24]. Through levy flight, the new generation of detective wolf is calculated as 

follows Equation 3: 
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( 1) ( ) ( )id idx t x t Levy                                                (3) 

Where, 𝑥𝑖𝑑(𝑡) represents the position of wolf 𝑖 in 𝑑 dimension of 𝑡 iteration, ⨁ is the point-to-point multiplication, 𝑐 is 

the random number of wolf 𝑖  position, determined by Equation 4, 𝐿𝑒𝑣𝑦(𝛿) represents the random search path, 

determined by Equation 5. 

( ( _ ))c rand size i position                                               (4) 

𝐿𝑒𝑣𝑦(𝛿)~0.01
𝑢

|𝑣|
1
𝛿

(𝑋𝑖 − 𝑋𝑖𝑏𝑒𝑠𝑡)                                         (5) 

In this equation, the value range of 𝛿 is 1 < 𝛿 < 3, in this paper 𝛿 is 1.5, 𝑋𝑏𝑒𝑠𝑡  represents the historical optimal 

wolf location, and the normal distribution of 𝑢 and 𝑣 is shown in Equation 6: 

𝑢~𝑁(0, 𝜎𝑢
2), 𝑣~𝑁(0, 𝜎𝑣

2)                                                           (6) 

𝜎𝑢 and  𝜎𝑣 is shown in Equation 7: 
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At this time, the function value of prey breath concentration perceived by the detective wolf is 𝑌𝑖𝑝. The direction of 

the function value of prey breath concentration, which is the largest and larger than the current function value’s 𝑌𝑖, is 

further selected to update the status of the detective wolf, and the above wandering behavior is repeated until the 

function value of a detective wolf 𝑖, 𝑌𝑖 > 𝑌𝑙𝑒𝑎𝑑  or the number of walks reaches the maximum number of walks 𝑇1𝑚𝑎𝑥.  

2.1.4. Running Behavior 

In the basic wolf pack algorithm, the wolf position change is determined by step size. For each fixed 𝐷 dimensional 

space, the corresponding [𝑚𝑖𝑛𝑑 , 𝑚𝑎𝑥𝑑]is fixed, so the step size corresponding to each iteration is fixed. If the step is 

too large, the accuracy of algorithm optimization will be affected. If the step is too small, the convergence speed of the 

algorithm will be affected. In other words, when the maximum number of iterations is reached, the optimal solution 

has not been found. Referring to the idea of Guo (2018) [25], the step size of wolf 𝑖 in each move is determined by the 

current position of the wolf and the position of the current head wolf. Therefore, adaptive step size is adopted in the 

attack and siege behavior as follows Equation 8: 

2
1,2,i leadstep rand x X d D   ，                                        (8) 

In Equation 8, rand represents random number between [0, 1]. When the wolf is far away from the leader, it 

approaches the leader with a larger stride, accelerating the convergence speed and avoiding unnecessary search. When 

close to the leader, approaching the leader with small steps to improve the precision of search. 

Different from previous wolf pack algorithms, this paper randomly selects all the wolves except the head wolf to 

participate in the summoning, not only the artificial wolves near the head wolf. In the course of the fierce wolf's 

running, when one of the fierce wolves perceives that the concentration of prey breath is higher at its location, it would 

replace the head wolf, selected the fierce wolf again and called until the concentration of prey breath at its location 

was lower than that of the head wolf. At the same time, the step size of summoning behavior adopts Equation 8, then 

the fierce wolf updates the current position according to Equation 9: 

*

d d2
( ) / 1,2,id id id lead lead id lead idx x rand x x x x x x d D       ，                                        (9) 

Where: 𝑥𝑖𝑑 
∗  represents the updated position of the wolf, 𝑥𝑖𝑑  is the current position of the wolf, and 𝑥𝑙𝑒𝑎𝑑𝑑  is the 

position of the head wolf. 

2.1.5. Siege Behavior 

Meanwhile, the wolves teamed up to hunt their prey. The moving step size is expressed in Equation 8, and the 

siege behavior of wolves is expressed in Equation 10: 

1 2
1,2,id id id d d idx x rand x G G x d D       ，                             (10) 

Where: 𝐺𝑑  is the location of prey in 𝑑 dimensional space, and 𝜆 is a random number evenly distributed between (-1, 

1). 
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2.1.6. Update Mechanism of "Strong Survival" Wolves 

The distribution of prey follows the principle of "from strong to weak", causing the weak wolf to starve to death. 

That is, the R artificial wolves with the worst objective function value are removed in the algorithm, and the R 

artificial wolves are randomly generated. In the actual hunting process, the number of each hunting is random, which 

also leads to the elimination of different numbers of weak wolves. Based on this, 𝛽 takes a random integer 

between [𝑛/(2 × 𝛽), 𝑛/𝛽], and 𝛽 is the update scale factor. 

2.2. Improved Description of the Wolf Pack Algorithm 

Step 1 Initialize the number 𝑁 of artificial wolves in the wolves and its location 𝑋𝑖 , the maximum number of 

iterations 𝐾𝑚𝑎𝑥 , the wolf scale factor 𝛼, the update scale factor 𝛽, the maximum number of walks 𝑇1𝑚𝑎𝑥 , and the 

maximum number of strikes 𝑇2𝑚𝑎𝑥 . 

Step 2 The head wolf is determined according to the rules of the head wolf. 

Step 3 The wolf detective performs the walking behavior according to Levi flight strategy Equations 3 to 7, until 

the function value of a certain wolf 𝑖 is 𝑌𝑖 > 𝑌𝑙𝑒𝑎𝑑 or the number of walk reaches the maximum number of walk 𝑇1𝑚𝑎𝑥, 

go to step4. 

Step 4 The fierce wolves perform the raid and attack the prey according to Equation 9. In the process of attack, if 

the function value of the prey's breath concentration is 𝑌𝑖 > 𝑌𝑙𝑒𝑎𝑑 , then 𝑌𝑖 = 𝑌𝑙𝑒𝑎𝑑 , the fierce wolf would be converted 

into head wolf and initiate summoning behavior; if 𝑌𝑖 < 𝑌𝑙𝑒𝑎𝑑, then continue to run until the function value of a wolf is 

less than the function value of the head wolf or the running number reach the maximum number of strikes 𝑇2𝑚𝑎𝑥, and 

turn to step5. 

Step 5 According to Equation 10, update the position of the artificial wolf participating in the siege and conduct a 

siege. 

Step 6 Implement the update mechanism of wolves.  

Step 7 Determine whether the algorithm satisfies the optimization accuracy requirement or the maximum number 

of iteration 𝐾𝑚𝑎𝑥 . If the requirement is met, the head wolf position is output, that is, the optimal solution of the 

problem sought, otherwise go to step2.    

The whole improved wolf pack system flow chart is shown in Figure 1.     

 

Figure 1. Wolf System Running Flow Chart 
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3. Experimental Simulation and Analysis 

3.1. Basic Test Functions and Parameter Settings 

The "U" in Table 1 indicates that the function is a unimodal one, "M" indicates a multimodal one, "S" indicates a 

separate one, and "N" indicates a non-separable one. The unimodal function has global optimal values but no local 

extreme value in the domain. Multimodal functions are more complex than single-mode functions. It is difficult for 

general algorithms to find global optimal values with multiple local optimum, is easy to fall into local extremes or 

oscillations between local values of the leader [26]. Therefore, multimodality is often used to test the global search 

performance of the algorithm and the ability to avoid premature convergence [27]. If a function with N variables can 

be expressed as the sum of N univariate functions, then it is separable, otherwise, it is inseparable [28]. Since the 

relationship between non-separable function variables is complex, it is difficult to find the global optimal value of the 

inseparable function [29]. In addition, for low-dimensional functions, many algorithms perform outperform high-

dimensional complex functions [30]. Parameters involved in the WPA, UWPA and IWPA algorithms are set with 

reference to [16, 19, 21]. In this paper, 𝑁 takes 50, 𝛼 takes 4, 𝐾𝑚𝑎𝑥  takes 1000, 𝛽 takes 4, 𝑇1𝑚𝑎𝑥(𝑇2𝑚𝑎𝑥) takes 10. 

3.2. Algorithm Comparison Verification 

In order to fully calculate the performance of the algorithm, LWPA, UWPA, WPA and IWPA algorithms were 

used respectively to perform 100 consecutive optimization calculations on 15 complex functions. The algorithm was 

evaluated from six indicators in Table 2. When the relationship between different calculation results and the optimal 

value exceeded e
-3

, it was considered a failure. The results were shown in Table 2.  

Table 1. 15 Functions for Testing Algorithm Performance 

Numbering Function Expression Dimension Feature Ranges 
Theoretical 

Optimal Solution 

1 Eason ))()(exp(coscos- 2

2

2

121   xxxx  2 UN [-100,100] min 𝑓 = −1 

2 Matyas     21

2

2

2

1 48.026.0 xxxxXf 
 

2 UN [-10,10] min 𝑓 = 0 

3 Booth      221

2

21 5272  xxxxXf  
2 MS [-10,10] min 𝑓 = 0 

4 Bohachevs1 
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  7.04cos4.0

3cos3.02

2

1

2

2
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pixxxXf  
2 MS [-100,100] min 𝑓 = 0 
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1

22

2

2
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8 Bohachevs3     3.043cos3.02 21

2

2

2
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
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
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Table 2. Four Algorithms are Applied to the Comparison of 15 kind of Functions 

Numbering Function Method 
Optimal 

Value 

Worst 

Value 

Average 

Value 
Expectation 

Success 

Rate % 

Time 

Consuming/S 

1 Eason 

LWPA 

UWPA 

WPA 

IWPA 

-1 

-1 

-0.90099 

-0.99994 

-1 

-0.999985 

-0.90099 

-0.952511 

-1 

-0.999999 

-0.2606 

-0.985008 

1e-7 

0 

0.1601 

1.59e-4 

100 

100 

12 

34 

1.38406 

2.75053 

33.1102 

3.9878 

2 Matyas 

LWPA 

UWPA 

WPA 

IWPA 

1.43e-8 

8.22e-07 

-127.83 

-41.57 

1.59e-5 

0.02727 

-6897.11 

-2.6805 

4.16e-6 

0.00433 

-2474.76 

-19.5752 

2.03e-11 

4.24e-05 

1426.25 

105.045 

100 

86 

21 

46 

1.49761 

2.91316 

35.1129 

7.3495 

3 Booth 

LWPA 

UWPA 

WPA 

IWPA 

1.96e-9 

3.41e-8 

2 

1.44e-9 

5.10e-6 

6.06e-8 

2.00101 

0.11456 

5.76e-6 

1.24e-8 

2.00001 

0.01852 

1.50e-10 

1.81e-8 

1.0808 

6.64e-4 

100 

100 

32 

47 

1.55476 

1.9993 

29.5487 

3.4539 

4 Bohachevs1 

LWPA 

UWPA 

WPA 

IWPA 

1.09e-7 

6.79e-3 

7.69e-10 

2.59e-13 

2.37e-6 

0.59589 

171.208 

7.58e-3 

8.20e-7 

0.16607 

14.0621 

1.67e-4 

3.34e-13 

0.02667 

915.964 

6.63e-7 

100 

98 

11 

91 

3.0969 

4.40591 

34.0251 

3.4207 

5 Eggcrate 

LWPA 

UWPA 

WPA 

IWPA 

2.50e-8 

2.34e-5 

6.07e-13 

9.56e-17 

2.94e-6 

6.81e-4 

9.21e-7 

5.24e-6 

9.21e-7 

1.75e-4 

6.68e-8 

1.59e-7 

6.54e-13 

2.15e-8 

1.69e-14 

4.13e-13 

100 

100 

100 

100 

0.98280 

7.99349 

43.9853 

3.6798 

6 Schaffer 

LWPA 

UWPA 

WPA 

IWPA 

2.95e-8 

4.76e-4 

3.02e-11 

1.478e-9 

0.00098 

0.03727 

0.12699 

0.03722 

0.00082 

0.01027 

0.01926 

0.01310 

1.03e-5 

3.47e-5 

7.72e-3 

8.97e-5 

100 

48 

12 

24 

0.88572 

1.50288 

63.9457 

6.8185 

7 
Six Hump Camel 

Back 

LWPA 

UWPA 

WPA 

IWPA 

-1.0316 

-1.0316 

-1.85e-8 

-1.0316 

-1.0316 

-1.0312 

-4.47e-13 

-0.5329 

-1.0316 

-1.0315 

-2.27e-9 

-0.9738 

0 

8.14e-9 

1.49e-17 

7.50e-3 

100 

100 

8 

12 

1.04521 

5.35863 

59.4475 

3.5639 

8 Bohachevs3 

LWPA 

UWPA 

WPA 

IWPA 

1.28e-7 

2.17e-5 

6.14e-7 

2.66e-7 

8.74e-4 

0.26921 

175.978 

0.2308 

3.72e-4 

0.05028 

9.33313 

4.16e-2 

4.50e-7 

2.72e-3 

616.702 

2.89e-2 

100 

13 

14 

26 

2.5020 

3.40373 

33.8626 

3.5567 

9 Bridge 

LWPA 

UWPA 

WPA 

IWPA 

-3.0054 

-3.00538 

-3.0054 

-3.0053 

-3.0054 

-3.0053 

-2.70512 

-2.62407 

-3.0054 

-3.0053 

-2.9399 

-2.97342 

0 

1.36e-9 

0.01522 

4.48e-3 

100 

80 

6 

8 

1.1380 

15.3302 

61.2830 

5.6074 

10 Trid6 

LWPA 

UWPA 

WPA 

IWPA 

-50 

-127.83 

-33.5 

-41.57 

-48.495 

-6897.11 

-33.5 

-2.6805 

-49.7808 

-2474.76 

-33.5 

-19.5752 

0.20695 

1426.25 

1.14e-16 

105.045 

95 

95 

0 

0 

7.1294 

35.1129 

7.5918 

7.3495 

11 Sumsquares 

LWPA 

UWPA 

WPA 

IWPA 

1.08e-6 

1.02e-5 

3.00538 

3.34e-6 

4.71e-6 

3.41e-4 

6897.11 

7.96e-2 

2.49e-6 

9.99e-5 

2326.73 

2.91e-3 

1.69e-12 

3.88e-9 

1.88e+6 

8.99e-5 

100 

100 

0 

70 

2.6682 

1.6034 

20.9048 

11.5815 

12 Sphere 

LWPA 

UWPA 

WPA 

IWPA 

2.27e-7 

0.00102 

3.00538 

6.42e-4 

4.56e-7 

0.00571 

6897.11 

0.28189 

3.66e-7 

0.0023 

1790.03 

0.01368 

5.30e-15 

6.09e-7 

2.94e+4 

1.17e-3 

100 

80 

0 

1 

1.87461 

1.55440 

67.0066 

26.6643 

13 Rastrigin 

LWPA 

UWPA 

WPA 

IWPA 

2.11e-10 

52.7886 

2082.85 

2.29e+2 

3.68e-8 

157.196 

3105.82 

4.85e+2 

1.43e-8 

100.765 

2497.08 

3.43e+2 

1.16e-8 

240.213 

523.516 

4.23e+3 

100 

0 

0 

0 

8.56372 

6.9872 

207.87 

56.7631 

14 Quadric 

LWPA 

UWPA 

WPA 

IWPA 

6.85e-16 

3474.1 

7.90e+10 

7.61e+7 

1.50e-5 

500129 

5.20e+10 

3.03e+8 

1.61e-5 

128464 

1.24e+10 

1.60e+8 

1.42e-11 

5.36e+9 

1.19e+10 

1.17e+15 

100 

0 

0 

0 

29.8425 

27.5142 

377.928 

140.585 

15 Ackley 

LWPA 

UWPA 

WPA 

IWPA 

1.155 

2.21122 

20.5291 

19.38 

2.81 

3.90741 

21.4804 

20.1071 

2.25 

3.07391 

21.1953 

19.8043 

0.5136 

0.11495 

0.1876 

2.41e-2 

100 

0 

0 

0 

37.7076 

66.8509 

367.249 

232.951 
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Table 3. Effect of 𝑻𝒎𝒂𝒙 on the algorithm 

Function 
Standard deviation 

6 8 10 12 14 16 

Eason 2.40E-08 8.40E-09 9.60E-09 1.40E-09 2.60E-08 2.10E-08 

Booth 3.20E-11 4.20E-11 7.50E-11 4.10E-11 3.20E-11 2.60E-11 

Bridge 5.60E-15 5.60E-15 5.60E-15 5.60E-15 5.60E-15 5.60E-15 

Sumsquares 3.20E-07 3.40E-07 5.50E-07 3.80E-07 3.60E-07 3.00E-07 

Sphere 7.10E-14 4.50E-15 7.80E-16 1.90E-15 8.70E-14 6.90E-14 

Quadric 4.10E-16 2.40E-19 4.20E-19 8.30E-18 8.50E-17 5.40E-16 

Ackley 5.30E-17 5.30E-17 5.30E-17 5.30E-17 5.30E-17 5.30E-17 

Table 4. Effect of 𝜷 on the algorithm 

Function 
Standard deviation 

2 3 4 5 6 7 

Eason 4.00E-08 8.70E-08 1.20E-09 8.60E-08 6.40E-08 5.90E-08 

Booth 6.10E-11 9.50E-11 1.90E-12 8.50E-11 7.50E-11 6.30E-11 

Bridge 5.60E-15 5.60E-15 5.60E-15 5.60E-15 5.60E-15 5.60E-15 

Sumsquares 3.20E-07 4.40E-07 1.20E-08 5.40E-07 3.90E-07 3.40E-07 

Sphere 1.60E-14 5.20E-15 2.90E-16 4.30E-15 3.90E-15 2.30E-14 

Quadric 2.80E-17 1.40E-18 2.80E-19 8.30E-16 6.90E-15 5.30E-15 

Ackley 5.30E-17 5.30E-17 5.30E-17 5.30E-17 5.30E-17 5.30E-17 

3.3. Analysis of Main Parameters of LWPA  

Although LWPA had some advantages, it involved many parameters, and the main parameters had different effects 

on the performance of the algorithm. 𝑇1𝑚𝑎𝑥  (𝑇2𝑚𝑎𝑥) is the maximum number of times in the process of wolf migration 

(running), and 𝛽 is the proportional coefficient of wolf renewal. According to the characteristics of the 15 functions, 

they are divided into seven categories. And the sizes of 𝑇𝑚𝑎𝑥  and 𝛽  are changed respectively to conduct 50 

optimization calculations for these 7 functions. The effects of 𝑇𝑚𝑎𝑥  and 𝛽 on the algorithm performance is shown in 

Tables 3 and 4. 

    
       (a) Convergence curves of 𝑓1                                    (b) Convergence curves of 𝑓2 
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(c) Convergence curves of 𝑓3                           (d) Convergence curves of 𝑓4 

        
                (e) Convergence curves of 𝑓5                                             (f) Convergence curves of 𝑓6 

        
               (g) Convergence curves of 𝑓7                                                    (h) Convergence curves of 𝑓8 
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(i) Convergence curves of 𝑓9                                                   (j) Convergence curves of 𝑓10  

        
(k) Convergence curves of 𝑓11                                                  (l) Convergence curves of 𝑓12  

        
(m) Convergence curves of 𝑓13                                               (n) Convergence curves of 𝑓14  
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 (o) Convergence curves of 𝑓15  

Figure 2. Convergence curves of 15 test functions 

3.4. Results Analysis 

a) It can be seen from the comparison results of various algorithms in Table 2. Eason and Matyas are unimodal, 

low-dimensional and non-separable functions, LWPA and UWPA have been successfully optimized and have good 

performance, they both were close to the optimal. Even the precision of standard deviation of UWPA was better than 

LWPA, while the precision of IWPA and WPA was poor. In terms of time, UWPA consumed twice as much time as 

LWPA. 

b) Booth, Bohachevs1 and Eggcrate are multimodal, low-dimensional separable functions, the convergence 

accuracy of LWPA was significantly higher than that of the other three algorithms, reaching more than 1e-6. In terms 

of time consumption, LWPA and UWPA took the shortest time, followed by IWPA, and WPA took the longest. 

c) Schaffer, Six Hump Camel Back, Bohachevs3 and Bridge are multimodal, low-dimensional non-separable 

functions, WPA and IWPA were immersed in local optimization, leading to the failure of optimization, LWPA and 

UWPA were successfully optimized and LWPA had better optimization performance. Meanwhile, LWPA had the 

shortest time, which was significantly less than the other three algorithms. 

d) For Trid6, a unimodal, high-dimensional non-separable function, LWPA and UWPA were successfully 

optimized and perform better. In terms of time consumption, except for WPA, which took a long time, the other three 

algorithms had the same time consumption. 

e) Sumsquares and Sphere are unimodal, high-dimensional separable functions, LWPA and UWPA optimization 

was successful, and the optimization accuracy of LWPA was significantly better than the other three algorithms, 

reaching 1e-7 or more. However, in terms of time consumption, UWPA was slightly better than LWPA. 

f) Rastrigin and Quadric are multimodal, high-dimensional and separable functions, as the number of dimensions 

increased, only LWPA optimization was successful and the accuracy was high. Both LWPA and UWPA took less 

time. 

g) Ackley, a multimodal, high-dimensional and non-separable function, only LWPA optimization was successful, 

and the time was also the shortest. 

In conclusion, both in terms of accuracy and time consumption, LWPA was more accurate and effective in 

handling function problems than other three algorithms, especially for multimodal, high-dimensional complex 

functions, the effect was better. The effect of UWPA was second, IWPA and WPA were worse. 

It can be seen from Table 3 that as 𝑇𝑚𝑎𝑥  increased, the standard deviation showed a tendency to decrease first and 

then increase. If the value of 𝑇𝑚𝑎𝑥 is too small, the search efficiency of the wolves would be reduced, and it would 

take a long time to find the optimal solution. If the value of 𝑇𝑚𝑎𝑥  is too large to ignore the optimal solution, the 

required accuracy cannot be achieved. In summary, 𝑇𝑚𝑎𝑥  takes 10. 

As can be seen from Table 4, as T increased, the standard deviation tended to decrease first and then increase. If 𝛽 

is too small, the updated number of wolves is too large, which makes it difficult for the wolves to gather, resulting in 

the reduced optimization effect of the algorithm. However, if 𝛽 is too large, the updated number of wolves is too 

small, resulting in a sharp decline in the diversity of wolves, and it is easy to fall into local optimization. To sum up, 𝛽 

takes 4. 
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To further illustrated the superiority of the LWPA algorithm, Figure 2 showed the convergence curves of the 

LWPA, UWPA, IWPA, and WPA in each test function. As can be seen from the figures, for unimodal, low-

dimensional, non-separable and complex functions, when the algorithm iterated to 300 times, the LWPA algorithm 

had found the optimal value and tended to be stable, while the other three algorithms also tended to be stable but had 

poor accuracy when iterating to 400 times. For simple low-dimensional functions, UWPA worked best in the early 

search, but in the latter part of the algorithm, the search efficiency was not high, it took to a long time and easy to fall 

into a local optimal. For complex functions, the convergence accuracy of LWPA was significantly higher than the 

other three algorithms. When the number of dimensions increased to 30, 60, 120, or even 200 dimensions, the 

optimization effect of UWPA, IWPA, and WPA was obviously poor, resulting in a long search time in the early stage 

and a local optimum in the later stage. Therefore, the LWPA has been improved very well for the problem that it was 

liable to fall into the local optimum in the later stage. From the above comparison, it can be seen that compared with 

the other three algorithms, the optimization performance of the LWPA has improved significantly in terms of 

convergence speed and convergence accuracy, which further illustrated the correctness of the improvement direction. 

4. LWPA for Optimization of Truss Structures 

4.1. Truss Structural Design Optimization 

4.1.1. Optimization Model 

The problem of truss optimization model with cross-sectional area as design variable can be described as Equations 

11 and 12: 

)(min xWF  ，                                           (11) 

 𝑠. 𝑡. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, Λ, 𝑝                                                                                              (12) 

Where: 𝑔𝑖(𝑥) is the constraint function; 𝑝 is the number of constraints. 

4.1.2. Objective Function 

ii

n

i

LAAW 



1

)(                                                (13) 

In Equation 13: 𝑊(𝐴) is the weight of the structure, 𝐴𝑖 is the cross-sectional area of the 𝑖 member, 𝐿𝑖 is the length of 

the 𝑖 member, 𝛾 is the material density, 𝑛 is the number of design variables. 

4.1.3. Constraint Condition 

Each bar must meet the requirements for strength, stiffness, stability, and cross-sectional dimensions, and the 

constraints are as follows Equations 14 to 16： 

01
][




 i ，                                                            (14) 

01
max




 j ，                                              (15) 

maxmin AAA  i
.                                                                   (16) 

In the Equation:
i is the axial normal stress of the i  rod; ][  is the allowable stress of the material; j is the 

displacement of node j ;
max is the allowable displacement of node j ;

maxmin A、A are the upper and lower limits of the 

section of the member respectively. 

5. Validation: Structural Design Experiments 

5.1. A 25-bar Spatial Truss 

The topology and nodal numbers of a 25-bar spatial truss structure are shown in Figure 3. The material density is 

considered as 2768 kg/m
3
 and the modulus of elasticity is taken as 68950 Mpa. Twenty-five members of this truss are 

divided into eight groups of cross-sectional areas as design variables, and they are shown in Table 5. Results of 

optimization are reported in Table 6 admitting superiority of LWPA relative to other algorithms, because it reaches to 

fine solution after a number of iterations less than those of the others. Convergence curves of best runs for LWPA and 

other three algorithms are drawn in Figure 4. 
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Figure 3. The 25-bar Spatial Truss Structure 

Table 5. Load Cases of the 25-bar Spatial Truss Structure 

Node number 𝑭𝒙 𝑭𝒚 𝑭𝒚 

1 4.448 44.482 -22.241 

2 0 44.482 -22.241 

3 22.241 0 0 

6 22.241 0 0 

Table 6. Comparison of Optimal Designs for the 25-bar Spatial Truss Structure 

Element 

group 

Optimal cross-sectional area（cm2） 

(GA) (FA) (WPA) (LWPA) 

𝐴1 0.0643 0.0643 0.0643 0.0643 

𝐴2 − 𝐴5 14.243 14.318 14.49 12.229 

𝐴6 − 𝐴9 17.925 18.862 18.952 19.482 

𝐴10 − 𝐴11 0.0643 0.0643 0.0643 0.0643 

𝐴12 − 𝐴13 0.0643 0.0643 0.0643 0.0643 

𝐴14 − 𝐴17 4.4807 4.8872 4.3382 4.3641 

𝐴18 − 𝐴21 10.318 9.9621 9.7581 10.949 

𝐴22 − 𝐴25 17.551 17.042 17.78 17.161 

Weight (kg) 265.92 249.76 246.67 243.11 

 

 

Figure 4. Convergence curve of 25 bar truss structure 
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5.2. A 72-bar Spatial Truss 

A 72-bar spatial truss structure is shown in Figure 5. The cross-sectional areas members are employed as design 

variables and are parted into 16 groups. The material density is considered as 2768 kg/m
3
 and the modulus of elasticity 

is taken as 68950 Mpa, and the maximum displacement of each bar in all directions can't exceed 6.35 mm, and 

maximum allowable stress is [-172.375, 172.375], and the optimized results are shown in Table 7. Form Table 7, the 

total weight of the optimized structure is 321.58kg, and it is less than the GA for (348.71-321.58)/321.58=8.43%; and 

it is less than the FA for (334.58-321.58)/321.58=4.04%; and it is less than the standard WPA for (329.13-

321.58)/321.58=2.34%. Meanwhile, it can be seen from Figure 6 that the improved wolf pack algorithm can search for 

the global optimal solution, which has higher convergence speed and convergence accuracy than GA, FA, and WPA. 

Especially in the early stage of iterative calculation, the effect is very obvious. Obviously, the optimization effect 

obtained by the improved wolf pack algorithm is better than GA, FA and WPA.  

 

Figure 5. The 72-bar Spatial Truss Structure 

Table 7.  Comparison of Optimal Results for the 72-bar Spatial Truss Structure 

Element 

group 

Optimal cross-sectional area（cm2） 

(GA) (FA) (WPA) (LWPA) 

𝐴1 − 𝐴4 2.9872 3.3411 3.3437 3.5017 

𝐴5 − 𝐴12 7.8591 7.7587 7.8688 7.934 

𝐴13 − 𝐴16 0.643 0.643 0.643 0.643 

𝐴17 − 𝐴18 0.643 0.643 0.643 0.643 

𝐴19 − 𝐴22 8.765 9.0202 8.1626 8.0215 

𝐴23 − 𝐴30 8.1461 8.2477 7.9612 7.9796 

𝐴31 − 𝐴34 0.643 0.643 0.6432 0.643 

𝐴35 − 𝐴36 0.643 0.643 0.643 0.643 

𝐴37 − 𝐴40 13.45 12.045 12.266 12.817 

𝐴41 − 𝐴48 8.0732 8.0401 8.1845 8.1129 

𝐴49 − 𝐴52 0.6454 0.645 0.6451 0.645 

𝐴53 − 𝐴54 0.6451 0.645 0.6451 0.645 

𝐴55 − 𝐴58 16.685 17.382 17.963 17.336 

𝐴59 − 𝐴66 8.1592 8.0561 8.1292 8.101 

𝐴67 − 𝐴70 0.643 0.643 0.643 0.643 

𝐴71 − 𝐴72 0.643 0.643 0.643 0.643 

Weight（kg） 348.71 334.58 329.13 321.58 
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Figure 6. Convergence curve of 72 bar truss structure 

5.3. A 200-bar Planar Truss 

The 200-bar planar truss structure is shown in Figure 7. The 200 structural members of this planar truss are 

categorized as 29 groups using symmetry. It can be seen from the Table 8 that the structure weight of LWPA is less 

than that of GA for (12956.8-11573.4)/11573.4=11.95%; it is less than that of FA for (12171.2-11573.4)/11573.4= 

5.16%; it is less than that of the standard for (11951.6-11573.4)/11573.4=3.26%; Meanwhile, it can be seen from the 

iterative relationship curve in Figure 8 that LWPA can search for the global optimal solution, which has higher 

convergence speed and accuracy than GA, FA and WPA, especially in the initial effect of the iterative algorithm. 

When the number of iterations reaches about 140 times, it basically converges to the global optimal solution. 

Obviously, the improved algorithm in this paper is superior to the algorithms in the literature in terms of optimization 

effect. 

 

Figure 7. The 200-bar Spatial Truss Structure 
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Table 8. Comparison of Optimal Results for the 200-bar Spatial Truss Structure 

Element 

group 

Optimal cross-sectional area（cm2） 

(GA) (FA) (WPA) (LWPA) 

𝐴1 2.238 0.665 0.645 0.677 

𝐴2 6.947 6.107 6.102 6.956 

𝐴3 0.645 0.664 0.645 1.126 

𝐴4 0.645 0.665 0.645 0.68 

𝐴5 13.82 19.54 12.21 12.64 

𝐴6 2.239 1.461 1.74 2.171 

𝐴7 0.645 0.645 0.645 0.677 

𝐴8 23 27.27 31.19 19.08 

𝐴9 2.339 0.664 3.281 0.677 

𝐴10 31 33.92 25.69 29.68 

𝐴11 2.839 2.073 2.984 2.582 

𝐴12 38.4 32.21 34.38 33.82 

𝐴14 2.239 3.479 4.674 0.677 

𝐴15 42.4 38.59 39.88 49.23 

𝐴16 6.155 4.56 4.986 2.946 

𝐴17 2.239 0.665 0.645 0.677 

𝐴18 55 48.42 64.16 48.69 

𝐴19 0.645 0.645 0.645 3.758 

𝐴20 60 54.8 58.48 54.61 

𝐴21 6.155 3.676 5.356 5.426 

𝐴22 11.38 9.433 1.635 0.677 

𝐴23 85.81 65.54 71.81 67.47 

𝐴24 2.239 0.665 1.497 3.36 

𝐴25 85.81 72.71 78.75 73.57 

𝐴26 13.82 8.183 7.261 7.067 

𝐴27 31 46.34 35.62 44.34 

𝐴28 60 78.49 63.08 66.46 

𝐴29 110.8 85.75 91.83 86.98 

Weight（kg） 12956.8 12171.2 11951.6 11573.4 

 

 

Figure 8. Convergence curve of 200 bar truss structure 
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6. Conclusion 

Structural design optimization is a problem we have to discuss in the course of social development, and how to 

intelligently use intelligent algorithms to solve structural optimization is the key. In this paper, a new improved WPA 

algorithm is proposed for optimal design of truss structures. To enhance WPA, a few step and strategy are introduced 

to provide the algorithm with suitable flexibility for challenging optimization problems like those incorporated in 

structural optimization. Fifteen test functions and three truss structure cases are employed to show the performance of 

the presented LWPA compared to WPA and other well-known algorithms. Optimization results and comparison with 

other algorithms show that the stability of LWPA optimization algorithm is apparently improved and the efficiency is 

obviously remarkable. In general, the improved wolf pack algorithm is not only suitable for high-dimensional and 

complex functions, but also effectively solves the problems of several common truss structural design optimization, 

providing a good ideas for more complex structural optimization problems. Future research will focus on how to 

combine the improved wolf pack algorithm with other intelligent algorithms to solve engineering optimization 

problems. 
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