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Abstract 

The multivariate approach of flood characteristics such as flood peak flow (P), volume (V), and duration (D) is much 

beneficial in recognizing the critical behaviour of flood episodes at a river basin scale. The incorporation of 2-

dimensional copulas for establishing bivariate flood dependency frequently appears, but it could be more comprehensive 

if we focus all the three flood characteristic simultaneously. In such circumstances, incorporation of vine or Pair-Copula 

Construction (PCC) could produce a better approximation of joint probability density and much practical approach in the 

uncertainty analysis, in comparison with conventional trivariate copula distribution. This study demonstrated the efficacy 

of parametric vine copula in the modelling of trivariate flood characteristics for the Kelantan River basin in Malaysia. 

The D-vine tree structure is selected where the Gaussian and Frank copula is recognized for bivariate flood pairs (P-V) 

and (P-D) pairs in the first stage, using the maximum-pseudo-likelihood (MPL) estimation procedure. Similarly, the 

Gumbel copula is selected in the modelling of conditioned data obtained through the conditional distribution function of 

bivariate copulas selected in the previous stage based on the partial differentiation, also called h-function. Finally, the full 

density function of the 3-dimension structure is derived and compared with the observed flood characteristics. 

Furthermore, tail dependence properties and behaviour of D-vine copula are also investigated, which reveals for well 

capturing the general behaviour of Gaussian and Frank copula fitted to flood pair (P-V) and (V-D) and reproduces the 

overall flood correlation structure fairely well. Both the primary ‘OR’ and ‘AND’ joint return periods for trivariate flood 

events are estimated which pointing that ‘AND’ joint case produces higher return value than ‘OR’ case. 

Keywords: Flood; Kelantan River Basin; Copula Function; D-vine Model; h-function. 

 

1. Introduction 

The designing and planning of flood defence infrastructure system often demand the accurate estimation of the 

specified exceedance probabilities or design quantiles of the flow characteristics for assessing the hydrologic risk.  

Flood is a multivariate probabilistic consequence, usually exhibited a complex dependency shown among its triplet 

intercorrelated vectors, flood peak flow, volume and its durations series [1-3]. The frequency analysis of flood 

episodes is the statistical approach of establishing the interrelationship between the magnitude of flood events (or 

flood event quantiles) and their frequency of occurrence using the most logical and parsimonious probability 

distribution functions [1, 4, 5]. In the earlier studies, the univariate flood frequency approaches were frequently 

incorporated for estimating the univariate return periods or assessing flood risk [4]. However, on later, numerous 

studies recognized the drawback or unreliability of the single variable flood modelling approach which would be 
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attributed for underestimation or overestimation in the assessments of hydrologic risk and thus referred towards the 

multivariate joint probability analysis by integrating the multiple flood characteristics in visualizing the pair-wise 

dependency measures [5, 6].  

Recently, the copula function is recognized as the most dynamic statistical tool in the establishment of joint 

probability distribution analysis in comparison with the traditional (or conventional) multivariate functions, due to its 

flexibility in the selection of the marginal distributions and their joint dependence structure separately [7-9]. De 

Michele [10], firstly incorporated copulas in establishing the joint dependence structure of the storm intensity and 

duration samples. After that, numerous kinds of literature incorporated the 2-dimensional copulas framework for 

tackling the different hydro-climatic observations such as flood, drought or rainfall [2, 11-13]. Readers are advised to 

follow Saklar [7], Nelsen [8] and Genest and Favre [14] for the detailed study about the essential mathematical 

theorems and terminologies associated with copula function and also, ‘International Association of Hydrological 

Sciences (or IAHS)’ which provided an extensive collection of literature related to copulas function in the field of 

hydro-climatological modelling.  

Most of the existing copula-based methodology is frequently focused in the establishment of bivariate flood 

distribution analysis [11, 15]. However, the more comprehensive hydrologic risk analysis can be achieved through 

accounting all the relevant intercorrelated flood characteristics at the same time, i.e., using the trivariate joint copula 

distribution modelling. In actuality, the potential damage could likely depend upon the several associated flood 

variables such that ignorance of spatial dependency among its multiple vectors might be attributed for underestimation 

of uncertainty distributed over the estimated design quantiles and thus often demands more flood variables [3, 16]. 

Also, dealing with multiple flood design variables would limit the applicability of analysing only based on the 

bivariate joint analysis but, due to the trivariate flood characteristic, it could be demanding for simultaneous 

accountability of its all intercorrelated vectors [17-19]. Therefore, accountability of multiple relevant flood 

characteristics could provide a better demonstration of their mutual dependence structure and a logical risk-based 

decision making for solving several water-related queries. Minimal literature focused on the multivariate analysis 

through incorporating higher dimensional copula families by integrating more than two variables in defining the 

trivariate joint analysis and their associated return periods such as Zhang and Singh [2], Graler et al. [3], Reddy and 

Ganguli [18], Daneshkhan et al., [19], Madadgar and Moradkhani [20], Fan and Zheng [21] and references therein. 

In the development of the higher dimension copula distribution framework, literature often targeted an interactive 

set of conventional trivariate copulas structure, but all such attempts usually surrounded with few statistical constraints 

and issues [19, 22, 23]. Few incorporations based on some standard trivariate copulas framework such as Grimaldi and 

Serinaldi [24] introduced the mono-parametric and asymmetric or fully nested Archimedean (or FNA) based Frank 

distribution function along with the Gumbel logistic distributions for flood characteristics. Similarly, Serinaldi and 

Grimaldi [25], also introduced and pointed out the significance and flexibility of FNA copula framework for the 

trivariate flood events. On another side, Genest et al. [26] pointed out the effectiveness of meta-elliptical copulas in the 

treatment of annual spring flood characteristics. They thus revealed that it could be flexible and effective in the 

handling of multidimensional observation because it exhibited a correlation matrix and which significantly preserved 

the pairwise dependencies exhibited among the random variables. This study also pointed out that the applicability of 

meta-elliptical copulas might be ineffective under the low probabilities unless the asymptotic properties of data will be 

justified through the strong arguments. Similarly, Reddy and Ganguli [18] study demonstrated the efficacy of the fully 

nested Archimedean or FNA class copula along with the Student’s t copula function for the annual flood 

characteristics. The same study also pointed out the importance of considering the trivariate return period (derived 

from both joint and conditional distribution) in comparison with bivariate or univariate return periods in the 

hydrologic risk assessments.  

Fan and Zheng [21] pointed the adequacy of the Entropy copula in conjunction with the Gibbs sampling procedure 

in the treatment of flood characteristics and concluded that this copulas function could be easily projected into any 

higher dimension distribution space. Besides the above incorporation, Kao and Govindaraju [27] demonstrated the 

modelling efficacy of Plackett family of copulas for the rainfall characteristics, Madadgar and Moradkhani [20] 

modelled the drought characteristics using the trivariate Gumble and t copula also, Song and Singh [28] performed a 

frequency analysis of drought events using meta-elliptical copulas.  

According to Daneshkhan et al. [19], it might be quite ineffective to reflect and recognize all the possible joint 

concurrency exhibited among multivariate characteristics through conventional (or standard) trivariate copula 

distribution approach. Also, resolving the mutual dependencies of multivariate extreme via the conventional copula 

framework is quite complicated due to the higher degree of uncertainty as well as complex dependence structure of the 

hydrologic characteristics thus it often demands the estimation of tail dependence coefficient for the various tail 

dependency in a precise manner through adopting a comprehensive multivariate methodology [19, 23].  

In such circumstances, the incorporation of the vine or pair-copula construction (or PCC) in the modelling of the 

multidimensional complex hydrologic phenomenon could be the right choice and an effective way of uncertainty 
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analysis in comparison with standard trivariate copulas [22, 23, 29]. The applicability of vine or pair-copula 

framework seems much popular in the field of financial data analysis and their risk management [30]. However, in the 

recent decades, such incorporation is also recognized and accepted in the treatment of hydrologic observations such as 

in the modelling of drought episodes [28,  31], flood episodes [3, 19], rainfall or storm distribution modelling [32, 33]. 

The implementation of vine or pair-copula framework is entirely based on the fact that it breaks or segregates the full 

multivariate density through the nesting of pair-copulae, which is based on the conditional mixing procedure [29]. In 

other words, the multiple best-fitted bivariate (or 2-dimension) copulas are often employed for each random pair and 

their conditional and unconditional distribution to form a nesting framework instead of selecting a fixed copula for all 

the intercorrelated flood vectors and thus often reveals for higher flexibility in the construction of higher dimension 

hydrologic framework. Under the regular vine framework, the canonical vine, also called C-vine and D-vine are two 

holistic decomposition approach of the pair-copula approximation, [30, 34].  

The D-vine structure is highly flexible in comparison with C-vine, especially in the presence of a known variable 

that controls the level of mutual dependency within the samples [19, 23]. The strength of dependency or degree of 

mutual concurrencies among the multivariate characteristics further decided in the selection of either the D-vine or C-

vine structure [3, 34]. According to Graler et al. [3] and Hobaek et al. [35], the manner through which the 

decomposition of vine copula will be performed, which will further decide their approximation capability with the 

multivariate observations and which further reveals that the conditioning process of the vine or PCC model is not rigid 

or fixed. Readers are advised to follow Czado et al. [34] for the extended details over the selection procedure of the 

regular vine framework also, Kurowicka and Cooke [36] and Aas and Berg [37] for the details study over the C- and 

D-vine copula structure. 

Flood becoming a crucial and most severe natural disaster for the Kelantan River basin, especially during the wet 

monsoon circulation in Malaysia and perceiving for increasing in term of their frequency and magnitude [38]. Such 

that, in the year 2002, intense and prolonged precipitation attributed for flooding and affected 714, 287 people, 

similarly, in the year 2014, much heavy precipitation caused flooding in most of the part of the eastern coast of 

Kelantan river basin and which affected more than 200,000 people [39].  

In actuality, the downstream area of the Kelantan River basin is at the highest risk of devastating flood events 

according to the study performed by Nashwan et al. [40]. Multivariate analysis of flood episodes could be a practical 

approach and much beneficial for hydrologist and water practioner in recognizing the critical behaviour of flood 

episodes at a river basin scale and for solving different water-related issues. In this literature, we incorporated and 

tested the vine or pair-copula framework to analyze the block (annual) maxima-based flood characteristics for the 

Kelantan river basin in Malaysia. The 3-dimensional joint probability framework is simulated using the parametric 

vine or pair-copula framework approach in the trivariate distribution modelling of flood characterization and 

estimating the multivariate (i.e., trivariate and bivariate) primary joint return periods. 

 The structure of this paper as follow, as a prerequisite, the brief details on the theoretical aspect in constructing the 

3-dimension vine or pair-copula distribution framework is discussed in the next section (or Section-2). In the third 

section, the vine copula-based methodology is incorporated to a case study for the annual flood characteristics in the 

Kelantan River basin which further comprises, the selection of appropriate vine tree structure (i.e., D- or C-vine) and 

then simulation of vine structure by fitting most appropriate 2-dimensional copulas in a stage-wise hierarchical nesting 

manner and also, estimating the primary joint return periods for the trivariate (and bivariate) flood episodes. The 

fourth section provides the research conclusions. Figure 1 illustrates the methodological flow diagram, indicating the 

steps of analysis. 
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Figure 1. Methodological flow diagram of vine copula framework for trivariate flood distribution analysis 

2. Theoretical Framework 

2.1. Construction of 3-Dimension Vine or Pair-Copula  

According to Nelsen [8], copula function interlinks the multivariate distribution to their univariate probability 

functions, also called the marginal distribution, and their idea was firstly given by Saklar [7]. Multivariate copula 

function modelled the univariate marginal density of individual intercorrelated random variables independently from 

their joint dependence structure. According to Sklar’s theorem [7], if (X, Y) be bivariate random variables with 

continuous marginal distributions such as, u1 = FX(x), and u2 = FY(y) , then it can be characterized uniquely by 

using the Copula function or C, and defined on the unit square;  

HX,Y(x, y) = C[FX(x), FY(y)] = C(u1, u2) (1) 

Where, C = bivariate copula under investigation; FX(x) = FY(y) = cumulative distribution function (or CDF) of 

univariate observations i.e., X and Y; HX,Y(x, y) = bivariate joint probability density function (or PDF), which can be 

expressed in terms of its univariate marginal functions and the associated dependence function C, as revealed from 

Equation 1. Also, if FX(x) and FY(y)  are continuous which indicates the copula C must be unique [11, 41]. 



Civil Engineering Journal         Vol. 6, No. 8, August, 2020 

1474 

 

 

Conversely, if FX(x) , FY(y)  and the copula C[x, y]  is given, then Equation (1) must defines the bivariate joint 

distribution functions with its marginal distributions FX(x) and FY(y). Similarly, if fX(x) and fY(y) are the PDF of 

variable X and Y, then the joint probability density can be defined through Equation (2), as given below; 

fX,Y(x, y) = c(FX(x), FY(y)) fX(x)fY(y) (2) 

Where, c is the density function of bivariate copula C and which can be further expressed as  

c(𝑢1𝑢2) = 𝜕2𝑐(𝑢1𝑢2) 𝜕𝑢𝜕𝑣⁄  (3) 

The construction of vine or PCC framework is solely based on the principle of stagewise hierarchical nesting 

procedure, also called the conditional mixing of the bivariate (or 2-dimension) copulas where the decomposition of 

full multivariate density into a simple local building block are carried out through the conditional independence or 

pair-copula [3, 23, 29]. Thus, such conditional mixing approaches attributes for higher flexibility in the modelling of 

trivariate flood characteristics. At the beginning of vine construction, the marginal empirical distribution functions are 

obtained by transforming the samples of all the three flood characteristics, P, V, D, within the range [0, 1] using the 

rank order transformation S (see Equation 4).  

Figure 2 illustrates the 3-dimensional parametric vine framework. In the first tree (or Tree-1) structure, all the 

relevant pairwise joint association between the flood characteristics are modelled using the best-fitted bivariate copula 

function, i.e., between (V-P) pair and (P-D) pair (where we placed the flood variable, P between the other two 

variables, V and D, and which is solely based on the strength of dependencies exhibited among the flood 

characteristics, see section 3.2.1 for further details). In this demonstration, we introduced the different varieties of 

bivariate copula families in the establishing the mutual dependency between flood characteristics such as the 

Archimedean copulas (i.e., Clayton, Frank, Gumbel, Joe) [10, 11, 15] and one Elliptical copula [i.e., Gaussian or 

normal copula] [42, 43]. In actuality, the Clayton and Gumbel family only capture the positive dependencies, but the 

Frank copula significantly captures the entire range of dependencies (i.e., τθ ∈ [1, −1]).   

According to Aas et al. [23] and Graler et al. [3], the bivariate copulas fitted to flood pairs (V-P) and (P-D) in the 

first tree (or Tree-1) can be conditioned under the flood characteristics, P, using the partial differentiation which is also 

called the h-function (i.e., h(v, p, θ) and h(d, p, θ))  to obtain the conditional cumulative distribution functions 

(CCDFs), FV|P and FD|P using the Equations 5 and 6 as given below; 

S(y) =
rank (y)

n + 1
 (4) 

h(v, p, θ) = FV|P(v|p) =
∂CVP(v, p)

∂p
 (5) 

h(d, p, θ) = FD|P(d|p) =
∂CDP(d, p)

∂p
 (6) 

The copulas dependence parameter in the first tree of vine structure (see, Figure 2) i.e., (θvp, θpd)) are estimated 

from the original flood characteristics P, V and D using the maximum-pseudo-likelihood (or MPL) estimation 

procedure, which is based on maximizing the pseudo log-likelihood function [15, 44, 45]. After that, the transformed 

data (obtained using Equation 5 and 6), are employed to determine the unknown copula dependence parameters in the 

second tree (or Tree-2) and thus used to fit another bivariate copula CVD|P. The best-fitted bivariate copulas in both 

Tree-1 and Tree-2 are selected using the Cramer-von Mises (or CvM) test statistics which is further based on the 

parametric bootstrapping procedure that uses the CvM test statistics, 𝑆𝑛 [46, 47]. Finally, the full density function 

cPVD(p, v, d) of the 3-dimensional copula can be derived using the Equation 7 [19, 23]; 

cPVD(p, v, d) = cVD|P (FP|V(p|v), FD|V(d|v)) . cVP(v, p). cPD(p, d) (7) 
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Figure 2. Construction of 3-dimensional vine or PCC framework based on stage-wise hierarchical nesting of bivariate 

copulas for the flood characteristics, flood volume (V), peak (P) and duration (D) 

3. Applications 

3.1. Description of Study Area and Flood Characteristics 

This experiment targeted the daily basis streamflow discharge records from the period (1961-2016) of the Kelantan 

river basin, which are collected at the Gulliemard Bridge gauge station (located at the downstream region) [see Figure 

3] and delivered by the Drainage and Irrigation Department, Malaysia. The geographical location of this river basin 

is Lat 4° 30′ N to 6° 15′ N and Long 101°E to 102° 45′ E. This river is originating from Tahan mountain range to the 

South China Sea (a north-eastern portion of Peninsular Malaysia). The drain area of this river is about 13100 km
2
. 

According to DID report [38], the estimated runoff of this river basin is about 500 m
3
sec

−1
 where the variations of 

annual precipitations are in between 0 mm (dry period)-1750mm (wet or north-eastern monsoonal period). According 

to Hussain and Ismail [48], the frequency of flood episodes has highest in the Gulliemard Bridge, Lebir and Galas 

gauge stations in compare with the Nenggiri gauge station. Nashwan et al., [40] literature also revealed that the risk of 

devasting flood episodes in the downstream portion of this river basin is higher. 

    Annual (Maximum) series or block (annual) maxima and Peak over Threshold (or POT) are the two holistic 

technique widely accepted in the frequency analysis of hydrologic extreme [49]. In this experiment, we adopted the 

block (annual) maxima approach in the delineation of the triplet intercorrelated flood vectors, i.e., P, V, D series from 

the daily basis streamflow discharge records collected at the Gulliemard Bridge gauge station. For each observation 

year, there are only one flood episodes at the target site which is characterized through pointing the maximum 

discharge flow value, also called flood peak flow, P and their hydrograph volume, V and duration, D series are 

extracted corresponding to each flood peak using the algorithm as described in the literature such as Zhang and Singh 

[2], Yue and Wang [6]. Table 1, defines the descriptive behaviour of the derived annual flood events characteristics 

and also Figure 4, illustrates the histogram distribution of the derived annual flood characteristics and which indicates 

the existence of positively skewed distribution behaviour.   

Table 1. Summary statistics of the flood episodes characteristics 

Descriptive statistics P (m3/sec) V (m3) D (days) 

Sample Size 50 50 50 

Mean 6078 19122 19.04 

Std. Deviation 4639 14623 10.851 

Coef. of Variation 0.76324 0.76473 0.56993 

Skewness (Pearson) 1.506 1.590 2.210 

Kurtosis (Pearson) 1.883 2.864 6.252 

Min 916.3 3182.3 7 

Max 20586 74740 64 
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In the multivariate distribution analysis, it is often an essential concern to check the existence of stationarity within 

individual flood characteristics before introducing into univariate or multivariate copula framework. For this, Ljung 

and box [50] based hypothesis testing also called Q-statistics, are undertaken [51]. Therefore, the Q-statistics for the 

sample size ‘m’ with ‘t’ defines the total no of lag being tested with sample autocorrelations at the specific lag, i.e., 𝜌𝑡̂ 

are given below;  

Q = m(m + 2)∑ ρ̂t
2 m − t⁄

h

t=1

 
(8) 

Where, Null hypothesis (H0) = zero autocorrelation or independent distributions; and Alternative hypothesis (H1) = 

existence of serial correlation (or autocorrelation). The Q-statistics and their associated p-value for different lag size 

(i.e., 30, 20, 15, 10 and 5) are listed in Table 2 and which indicates for almost zero first-order autocorrelations because 

their estimated statistics are less than the critical value for each of the univariate series of flood characteristics by 

accepting the null hypothesis (H0) at 5% or 0.05 significance level against their alternative hypothesis (Ha). 

 

Figure 3. Geographical location of the study area )Gulliemard Bridge gauge station located at the downstream region of 

Kelantan River basin in Malaysia( 

 

Figure 4. Histogram distribution of annual flood characteristics 
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Table 2. The Q-statistics and their corresponding p-value  

Flood vectors Box-Ljung test Lag size (30) Lag size (20) Lag size (15) Lag size (10) Lag size (5) 

P (peak) 

X-squared (Q-statistics) 18.87 14.88 13.34 9.72 4.89 

df 30 20 15 10 5 

P-value 0.9427 0.7828 0.5762 0.4655 0.4295 

V (volume) 

X-squared (Q-statistics) 14.72 11.98 10.68 7.49 0.49 

df 30 20 15 10 5 

P-value 0.9912 0.9167 0.7747 0.6779 0.9922 

D(duration) 

X-squared (Q-statistics) 23.34 15.70 13.96 6.17 3.03 

df 30 20 15 10 5 

P-value 0.8009 0.7349 0.5287 0.8007 0.6946 

Note 
Critical value (at 5% level of 

significance) 
43.77 31.41 25 18.31 11.07 

3.2. Modelling Flood Characteristics using Vine (or PCC) Model 

The fitting procedure of the vine or pair-copula distribution framework to the delineated trivariate flood 

characteristics, i.e., flood peak (P), volume (V) and duration (D) comprise a series of computation task. The first stage 

of modelling comprises the selection of an appropriate vine tree structure (i.e., either D- or C-vine) that will be solely 

depending upon the strength of dependencies among flood characteristics pair and then after, to select the most 

parsimonious bivariate copulas families for pair-copulas in establishing different joint distribution pairs of flood 

characteristics and estimation of their dependence parameters. Different statistical tools are available that can support 

in the selection of most logical vine tree structure such as, graphically based, i.e., scatter plot, Kendall's plot, chi-plot 

and also analytically based correlation coefficients measures. Such tools can also be employed to select the most 

parsimonious parametric bivariate copula family for the underlying flood characteristics for describing the dependence 

structure. 

3.2.1. Selection of Appropriate Vine Tree Structure 

Figures 5, 6 and 7 illustrated the scatter plots, chi plots [52] and Kendall’s plots [53] for analyzing the degree of 

interassociation and strength of dependency between flood attribute pairs. In actuality, the Chi-plot uses data ranks, 

also 𝜆𝑖 values measure the distance of bivariate random observations (say 𝑝𝑖𝑣𝑖) from the center of the data sets within 

the range of [-1, 1]. Thus, their values will tend to positive or negative for positively or negatively correlated random 

pairs, Also, the control limits 𝜒𝑖   are the another measuring factor in chi-plot that are placed at 𝜒 = ± 𝑐𝑝 √𝑛⁄  [52]. 

Therefore, in the case of stronger dependency exhibited, the random observations must be outside the control limit of 

chi-plot otherwise, inside the control limit region can be indicated for independence between random pairs. Similarly, 

Kendall’s plot is analogous to quantile-quantile (Q-Q) plot such that, deviation of random observations from the main 

diagonal of K-plot reveals the existence of mutual correlation otherwise could be revealing for independence when the 

plot tends to be linear [14, 53]. Based on the above graphical investigation, it could be revealed that flood peak-

volume (P, V) pair exhibited strong and positive correlation structure while the flood pairs volume-duration (V, D) 

and peak-duration (P, D), both exhibited weak and negative correlation. Table 3 indicates the correlation coefficient 

statistics and thus, which support the similar conclusion taken from the graphical-based flood characteristics plots. 

Therefore, it must be concluded that the dependencies between the flood pairs (P, V) and (P, D) is higher than (V, D) 

that means the flood peak, P must be placed between the other two variables flood volume, V and duration, D, as 

graphically illustrated in Figure 2. According to Graler et al. [3], the choice of the conditioning variable (i.e. P, in 

Figure 2) is not unique, and different choices might lead to different results also, according to Hobaek et al. [35], 

different vine copula decomposition procedure differently approximates the multivariate distribution. Overall, it must 

be concluded that the D-vine copula could be a right choice and thus employed in this study for constructing 3-

dimensional flood characteristics and which are more flexible than the canonical or C-vine copula because the D-vine 

model construction provides higher flexibility in the selection of which flood attribute pairs to model than C-vine [23, 

34]. 

Table 3. The correlation coefficients statistics between the flood characteristics 

Dependence measure Peak-Volume(P-V) Volume-Duration(V-D) Peak-Duration(P-D) 

Pearson’s correlation (r) 0.7387784 -0.1079511 -0.0061526 

Kendall’s correlation(τ) 0.60759499 -0.0225141 -0.0741828 

Spearman’s correlation (ρ) 0.79425677 -0.0343127 -0.094851 
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Figure 5. The scatter plots of the flood characteristics 

 

Figure 6. Chi plot of the pairwise flood characteristics; between flood peak-volume (P-V) pair which shows positive 

dependence structure and between volume-duration (V-D) pair and flood peak-duration (P-D) pair shows negative and 

weak dependence structure   



Civil Engineering Journal         Vol. 6, No. 8, August, 2020 

1479 

 

 

 
Figure 7. Kendall plot (or K-Plot) of the pairwise flood characteristics; between flood peak-volume (P-V) pair which shows 

positive dependent and between volume-duration (V-D) pair and flood peak-duration (P-D) pair shows negative and weak 

dependent   

3.2.2. Simulation of Vine Tree by Fitting 2-Dimensional Copulas  

After the selection of the appropriate vine framework, the bivariate joint dependence structure of the flood attribute 

pairs is defined through selecting the most appropriate 2-dimension (or bivariate) copulas function, such as CPV for (P-

V) flood pairs and CPD for (P-D) pair copulas (referred to Figure 2). Similarly, the bivariate copulas, i.e., CPV and CPD 

are conditioned under the variable P (i.e., flood peak) [23] and thus the conditional CDFs, also called the h-functions 

are derived using the Equations 5 and 6, in defining the realization demands in the second tree (or Tree-2) of vine 

structure. Finally, a bivariate copulas CVD|P is fitted to the conditioned observations i.e., FV|P(v|p) and  FD|P(d|p). 

Actually, the conditional cumulative distribution values are estimated for all the triplet flood characteristics in the vine 

tree structure.  

Before initiating the copula fitting procedure for vine framework, we introduced commonly used univariate 

probability functions which belongs to parametric families such as Gamma-3P, Generalized Extreme Value (GEV), 

Generalized Gamma-3P, Inverse Gaussian-2P, Johnson SB-4P, Lognormal-2P and Weibull-2P, as a candidate function 

for defining the marginal structure of P, V and D series individually. All the univariate distribution fitting procedures 

along with their parameter estimations are carried out using the Easyfit software. The empirical observations are 

retrieved from commonly used Gringorten based position-plotting formula [11, 54]. The best-fitted probability 

function is selected for each individual flood characteristics using different goodness-of-fit (GOF) test statistics such 

as Kolmogorov-Smirnov (or K-S) test and Anderson-Darling (or A-D) test [55], based on information criteria statistics 

such as Akaike Information criteria (or AIC) [56], Schwartz’s Bayesian Information criteria (or BIC) [57] and 

Hannan-Quinn Information criteria (HQC) [58]. Table 4 illustrates the GOF test statistics, which clearly pointed out 

that the flood peak flow is best modelled by the Lognormal-2P distribution, volume series by the Johnson SB-4P 

distribution and duration series by the Gamma-3P distribution.  

Figure 2 illustrated the D-vine structure incorporated in the present demonstration. The pair copula exhibited three 

bivariate copula functions, i.e., CPV and CPD in the first tree (or Tree 1) and CVD|P in the second tree of the vine 

structure. In this demonstration, we introduced and investigated different copulas families which include one Gaussian 

copula that belongs to the Elliptical family and the Archimedean copula families such as the Gumbel, Frank, Clayton 

and Joe copula, as a possible candidate model. In actuality, the Gumbel, Clayton and Joe, copula cannot be used for 

negatively correlated flood characteristics (i.e., Kendall’s tau < 0), which is only applicable in the modelling of 

positively correlated random variables. The copula dependence parameters fitted to the observed flood characteristics 

are estimated using the Maximum-Pseudo-Likelihood (MPL) estimation procedure [46, 47] and their estimated values 

are listed in Table 5. The Cramer-von Mises (CvM) test statistics ‘Sn’ with the parametric bootstrapping procedure is 

employed to evaluate the adequacy of hypothesized copulas fitted to bivariate flood pairs (P-V) and (P-D), i.e., CPV 
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and CPD copulas, which is often considered as one of the most potent model compatibility testing. Therefore, minimum 

the value of ‘Sn’ test statistics must indicate for minimum gap or dispensary between empirical and derived parametric 

copulas, in other words, this copula would be most justifiable and effective for establishing the bivariate joint 

relationship. Overall, from the Table 5, it must be concluded that the Gaussian copula and the Frank copula recognize 

as most justifiable for defining bivariate joint dependence structure of flood pairs (V, P) and (P, D) in the first tree (or 

Tree-1) of vine structure. Figure 8 illustrated the density and contour plot derived from the bivariate copulas fitted in 

the first tree between the flood pairs V-P and D-P while Figure 9 indicates the bivariate contour plot derived from joint 

CDFs of the Gaussian copula (CVP) and the Frank copula (CDP). Similarly, based on GOF test statistics, the Gumbel 

copula is recognized as the most parsimonious bivariate structure to model the variable (V, D) conditional on P, in the 

second tree (or Tree-2) (see Figure 10, which illustrates the surface plot of bivariate Gumble copula fitted with 

conditioned observation in the second tree of vine structure). Therefore, for the 3-dimensional case of flood 

characteristics, the three selected bivariate copulas such as CPV, CPD, and CVD|P are introduced and composed into the 

3-dimension vine copula using the Equation 7. Simulation of the flood characteristics taken from the vine or pair-

copula model is based on the simulation approach as discussed by the literature such as Aas et al. [23]. Figure 11 

illustrates the comparison based on scatter plot between the observed and simulated flood characteristics and which 

indicates a good agreement based on the fitted models, in other words, the vine model reproduces the overall flood 

correlation structure reasonably well. 

Table 4. Goodness of fit (a) based on Kolmogorov-Smirnov and Anderson-Darling test statistics (b) based on information 

criteria statistics such as AIC, BIC and HQC 

(a) Peak Volume Durations 

Functions p-value KSn (d- max) Adn (d-max) p-value KSn (d- max) ADn (d-max) p-value KSn (d- max) ADn (d-max) 

GEV(3P) 0.99655 0.05451 0.21667 0.99931 0.04897 0.24945 0.82259 0.086 0.35244 

Gamma (3P) * 0.8802 0.08007 0.26953 0.98701 0.06089 0.21109 0.89254 0.07865 0.37708 

Log-Normal (2P) * 0.9977 0.05293 0.19412 0.98539 0.06157 0.2338 0.60127 0.10511 0.4602 

Weibull (2P) 0.81311 0.0869 0.73212 0.89172 0.07875 0.63575 0.23928 0.14235 1.5472 

Inv. Gaussian (2P) 0.98175 0.06293 0.38095 0.81919 0.08633 0.48954 0.87056 0.08114 0.60496 

Gen.Gamma (3P) 0.66896 0.09944 0.45939 0.89941 0.07782 0.36811 0.28097 0.13672 0.91168 

Johnson SB (4P) * 0.84788 0.84788 14.822 0.99811 0.05222 0.17314 0.56249 0.1084 11.874 

Notes. K-S test stands for Kolmogorov-Smirnov test; A-D test stands for Anderson-Darling test 

* Indicates that Lognormal (2P), Johnson SB (4P) and Gamma (3P) distribution exhibited minimum test statistics i.e., K-S and A-D values for describing flood peak, volume and duration 

series. 

 

(b) Peak Volume Duration 

Functions AIC BIC HQC AIC BIC HQC AIC BIC HQC 

GEV(3P) -374.335 -368.599 -372.15 -268.985 -263.249 -266.8 -336.32 -330.583 -334.135 

Gamma (3P) * -216.301 -210.565 -214.12 -210.107 -204.371 -207.92 -343.62 -337.88 -341.438 

Log-Normal (2P) * -379.344 -375.52 -377.89 -371.028 -367.204 -369.57 -327.46 -323.633 -326.001 

Weibull (2P) -329.681 -325.857 -328.23 -342.868 -339.044 -341.41 -292.91 -289.085 -291.453 

Inv. Gaussian (2P) -362.489 -358.665 -361.03 -344.722 -340.898 -343.27 -325.76 -321.938 -324.306 

Gen.Gamma (3P) -321.553 -315.817 -319.37 -338.918 -333.182 -336.73 -290.95 -285.21 -291.856 

Johnson SB(4P) * -340.899 -333.251 -337.99 -381.821 -374.173 -378.91 -223.65 -216.006 -220.742 

Notes. AIC stands for Akaike information criteria; BIC stands for Bayesian information criteria; HQC stands for Hannan-Quinn information criteria 

* Indicates that Lognormal (2P), Johnson SB (4P) and Gamma (3P) distribution exhibited minimum values of AIC, BIC and HQC test statistics for describing flood peak, volume and 

duration, thus could be further indicated for the better performance 

Table 5. Copula dependence parameters based on the maximum pseudo likelihood (MPL) estimator and their 

corresponding goodness-of-fit (GOF) test statistics via parametric bootstrap technique for the (P-V) pair of Tree 1, (P-D) 

pair of Tree 2, (V-D|P) pair of Tree 2 

𝐓𝐫𝐞𝐞: 𝟏 (𝐂𝐏𝐕), Between (P-V) pair N=1000(No. of bootstrap sampling) 

Copula family Parameter Estimates 𝛉̂ Sn (p-value) Sn 

Gaussian* 0.8333772 0.013444 0.9356 

Clayton 2.600312 0.035144 0.1923 

Gumbel-Hougaard (GH) 2.311711 0.027751 0.2063 
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Frank 7.878869 0.02383 0.464 

Joe 2.553838 0.083346 0.0004995 

[Note: Bold letter indicated via * denotes that the Gaussian copula exhibiting minimum Sn value, which means the performance of Gaussian copula for P-V is 

much consistence that the other copula functions. (𝜏 ∗) in the last column of above table indicated the estimated kendall’s tau value from derived copulas fitted 

to observed random series] 

𝐓𝐫𝐞𝐞: 𝟏 (𝐂𝐏𝐃), Between (P-D) pair N=1000(No. of bootstrap sampling) 

Copula family Parameter Estimates 𝛉̂ Sn (p-value) Sn 

Gaussian -0.1276312 0.032132 0.486 

Clayton NA NA NA 

Gumbel-Hougaard (GH) NA NA NA 

Frank* -0.6942 0.031215 0.4001 

Joe 2.553838 NA NA 

[Note: Bold letter indicated via * denotes that the performance of Frank copula is most satisfactory that other copulas. NA denotes that for Gumbel-Hougaard, 

Clayton and Joe copulas can’t be used for negatively dependent data (i.e., only positively correlated random variables can be simulated [i.e., Kendall’s tau > 0]] 

𝐓𝐫𝐞𝐞: 𝟐 (𝐂𝐕𝐃|𝐏), Between (VD|P) pair N=1000(No. of bootstrap sampling) 

Copula family Parameter Estimates 𝛉̂ Sn (p-value) Sn 

Gaussian 0.58356 0.02131 0.558 

Clayton 0.69281 0.083018 0.006494 

Gumbel-Hougaard (GH)* 1.637 0.015227 0.9456 

Frank 3.8077 0.025713 0.474 

Joe 2.005 0.01943 0.7298 

[Note: Bold letter indicated via * indicates that the performance of GH copula is most satisfactory that other copulas which exhibited the minimum Sn statistics 

value and highest p-value. 
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Figure 8. 3-dimension density and contour plot generated from the bivariate copula distribution between flood pairs, P-V 

and P-D in the first tree of vine structure 

 
 

Figure 9. Bivariate contour plot derived based on the joint cumulative distribution of gaussian copula (CV|P) 

and frank copula (CD|P) fitted with flood characteristics in the first tree of vine structure (Note: black colour 

data represents the observed flood characteristics)   



Civil Engineering Journal         Vol. 6, No. 8, August, 2020 

1483 

 

 

 

Figure 10. 3-D surface plot of bivariate copula fitted with the conditioned observations, 𝐅𝐕|𝐏(𝐯|𝐩) 𝐚𝐧𝐝  𝐅𝐃|𝐏(𝐝|𝐩) in the 

second tree of vine structure 
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Figure 11. Comparing simulated from the vine or pair-copula models and observed flood characteristics [Note: light colour 

indicates simulated samples and dark colour indicates observed samples] 

3.3. Estimating Return Period of Flood Characteristics 

Accounting of multiple interactive flood characteristics, i.e., P, V, D through the multivariate analysis of extreme 

episodes is much beneficial and useful in recognizing the critical behaviour of flood episodes at a river basin scale and 

for making a justifiable risk-based decision making in both structural and non-structural water-related issues. 

According to Salvadori and De Michele [9] and Salvadori [59], the primary joint return periods are estimated using the 

inclusive probability such as, “OR” and “AND” case. The primary joint return period for “OR” case for the trivariate 

and bivariate events can be estimated as; 
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T(V,P,D)
OR (v, p, d) =

1

1 − P(V ≤ v, P ≤ p, D ≤ d)
=

1

1 − C(x1, x2, x3) 
 (9) 

Where x1 = FV(v), x2 = FP(p) and x3 = FD(d)  is the univariate marginal distributions of the flood characteristics 

and C(x1, x2, x3) is the trivariate copula function. 

Similarly, the “OR-joint” case for bivariate events; 

T(V,P)
OR (v, p) =

1

1−P(V≤v,P≤p)
=

1

1−C(x1,x2) 
, for V-P pair (10) 

T(P,D)
OR (p, d) =

1

1−P(P≤p,D≤d)
=

1

1−C(x2,x3) 
, for P-D pair (11) 

T(V,D)
OR (v, d) =

1

1−P(V≤v,D≤d)
=

1

1−C(x1,x3) 
, for V-D pair (12) 

Similarly, the “AND-joint” return periods for trivariate and bivariate flood characteristics are estimated as; 

T(V,P,D)
AND (v, p, d) =

1

1 − FV(v) − FP(p) − FD(d) + FV,P(v, p) + FP,D(p, d) + FV,D(v, d) − FV,P,D(v, p, d)
 

=
1

1 − FV(v) − FP(p) − FD(d) + C(x1, x2) + C(x2, x3) + C(x1, x3) − C(x1, x2, x3)
 

(13) 

T(V,P)
AND(v, p) =

1

1 − FV(v) − FP(p) + FV,P(v, p)
=   

1

1 − FV(v) − FP(p) − FD(d) + C(x1, x2)
 (14) 

T(P,D)
AND(p, d) =

1

1 − FP(p) − FD(d) + FP,D(p, d)
=   

1

1 − FP(p) − FD(d) + C(x2, x3)
 (15) 

T(V,D)
AND(v, d) =

1

1 − FV(v) − FD(d) + FV,D(v, d)
=   

1

1 − FV(v) − FP(p) − FD(d) + C(x1, x3)
 (16) 

At first, the univariate return periods are obtained from the best fitted marginal distribution of the flood 

characteristics, i.e., lognormal-2P for peak(P), Johnson SB-4P for volume (V) and Gamma-3P for duration (V) series 

(see Table 6). The joint return periods for ‘OR’ and ‘AND’ case for the trivariate flood distributions using the PCC 

model as well as bivariate distribution are derived from the Equation (9-16), and their value are listed in the same 

Table 6. It is clearly revealed that the primary joint return periods in “AND” cases produce a higher return than the 

joint return in ‘OR’ cases for both the bivariate and trivariate distribution (based on PCC model). For example, 

consider a flood event of peak, P = 2599 m
3
s

-1
, volume, V= 6933.5 m

3
 and duration, D =27 (days), the bivariate 

primary joint return period between P-V, P-D and V-D for ‘OR’ and ‘AND’ cases are T
AND

PV = 1.34 years and T
OR

PV 

= 1.146 years, T
AND

PD = 7.67 years and T
OR

PD = 1.198 years, T
AND

VD = 6.96 years and T
OR

PD = 1.16 years. Similarly, 

considering all the flood characteristics at the same time or simultaneously, their corresponding trivariate primary joint 

RPs for ‘OR’ and ‘AND’ cases are T(V,P,D)
AND = 74.04 years and T(V,P,D)

OR = 1.26 years thus clearly indicates that T(V,P,D)
AND  

is greater than T(V,P,D)
OR .  

     Investigating the tail dependence properties and their coefficient is an essential aspect in the extreme value 

analysis otherwise might be attributed for underestimation of hydrologic risk [22]. In this study, we also investigated 

the tail dependence behaviour of the derived D-vine copula for the flood characteristics extracted from the fitted 

copulas through both the graphical and analytical observation. In the graphical approach, we visualized and compared 

the scatter plot, Chi-plot and Kendall or K-plot of the random observations derived from the bivariate Normal (or 

Gaussian) copula, CVP (as fitted to (V, P) flood pair) and the Frank copula CPD (as fitted to (P, D) flood pair) with the 

D-vine copula fitted to (V, P) and (P, D) pairs (refer to Figures 12 and 13). From the Figures 12 and 13, it is revealed 

that vine copula is much consistent and well capturing the general behaviour of both the Normal copula fitted for (V, 

P) pair and Frank copula fitted for (P, D) pair, based on the scatter plot (i.e., the first row of Figures 12 and 13). Also, 

based on Chi-plot and K-plot it indicates the quite similar tail dependencies behaviour of both the Normal copula and 

vine copula for (V, P) and the Frank copula and vine copula for (P, D) flood characteristics (see 2
nd

 and 3
rd

 row of 

Figures 12 and 13). The non-parametric estimation of tail dependence coefficient, based on the Caperaa-Fougeres-

Genest estimator  λU
CFG [60] is employed to estimate the tail dependence of the fitted vine model, as given below; 

λU
CFG = 2 − 2exp(

 1
n

∑ log

[
 
 
 √log(

1
Mi

) log(
1
Ni

)

log(
1

max(Mi,Ni)
2)

]
 
 
 

n
i=1

)

 

 
(17) 



Civil Engineering Journal         Vol. 6, No. 8, August, 2020 

1486 

 

 

Where  (𝑀1 , 𝑁1), (𝑀2 , 𝑁2), …… . . , (𝑀𝑖 , 𝑁𝑖) are the random observations simulated from the PCC model fitted to the 

flood characteristics. Thus, using the Equation (16), the tail dependence coefficients 𝜆𝑈
𝑃𝐶𝐶  (see Table 7) are estimated 

for each flood attributes pairs i.e., (V-P), (P-D), (V-D) based on the sample generated from fitted vine or pair-copula 

model.  

Table 6. Comparison of return periods (RPs) for flood characteristics estimated based on the pair-copula model (trivariate 

RPs, i.e., TOR
PVD, TAND

PVD), 2-D copula models (bivariate RPs, i.e., 𝐓𝐏𝐕
𝐎𝐑, 𝐓𝐏𝐕

𝐀𝐍𝐃 … ..)  and univariate marginal distributions 

(univariate RPs, i.e., T(P), T(V) and (TD)) 

P V D 𝐓𝐏𝐕
𝐎𝐑 𝐓𝐏𝐕

𝐀𝐍𝐃 𝐓𝐏𝐃
𝐎𝐑 𝐓𝐏𝐃

𝐀𝐍𝐃 𝐓𝐕𝐃
𝐎𝐑 𝐓𝐕𝐃

𝐀𝐍𝐃 T(P) T(V) T(D) 𝐓𝐏𝐕𝐃
𝐎𝐑  𝐓𝐏𝐕𝐃

𝐀𝐍𝐃 

2597 13729.8 20 1.25 1.89 1.14 3.742 1.40 5.39 1.268 1.85 2.80 1.06 4.28 

2599 6933.5 27 1.146 1.34 1.198 7.67 1.16 6.96 1.26 1.208 5.66 1.26 74.04 

5189.7 23008.7 10 2.104 3.85 1.078 2.730 1.116 4.107 2.25 3.44 1.17 1.27 13.95 

6111.8 24127.8 13 2.48 4.46 1.23 4.46 1.30 5.66 2.78 3.71 1.48 1.46 199.68 

4895.2 16354.7 11 1.79 2.69 1.105 2.76 1.124 2.83 2.101 2.20 1.26 1.42 14.21 

4191.5 11022.15 20 1.43 1.97 1.358 5.56 1.28 4.47 1.78 1.55 2.80 1.48 40.54 

18339.4 74740 16 30.07 191.09 1.86 72.31 1.91 307.06 31.43 149.9 1.92 1.63 12.97 

Table 7. Tail dependence coefficients for the flood attribute pairs based on the D-vine or PCC model 

Flood pairs 𝝀𝑼
𝑷𝑪𝑪 

(V, P) 0.3542107 

(P, D) 0.0131994 

(V, D) 0.039963 

 

Figure 12. Scatterplot, Chi-plots and Kendall or K-Plots of the Gaussian (or Normal) copula and the D-vine copula fitted to 

flood characteristics (V-P) 
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Figure 13. Scatterplot, Chi-plots and Kendall or K-Plots of the Frank copula and the D-vine copula fitted to flood 

characteristics (P-D) 

4. Conclusions 

The necessity of multivariate flood distribution analysis is often an essential concern among the hydrologist, which 

usually reveals an effective outcome during the assessments of hydrologic risk. The higher dimension flood 

distribution modelling in the light of the standard trivariate copula function usually surrounded with few statistical 

constraints and issues. In such circumstances, the incorporation of the vine or pair-copula construction (or PCC) could 

be the logical choice for revealing a comprehensive and practical approach in the uncertainty analysis and which is 

solely based on stagewise hierarchical nesting procedure. In this demonstration, the parametric vine copula 

distribution framework is incorporated for the block (annual) maxima flood characteristics collected at the Gulliemard 

Bridge gauge station in the Kelantan River basin in Malaysia. Tests for stationarity or existence of serial correlation 

(or autocorrelation) within the individual time series of flood characteristics is often a pre-requisite before introducing 

the random samples into a univariate or a multivariate framework. It was found that the time series of the flood 

characteristics do not exhibit any significant trend. Different dependency measures graphical approaches such as 

scatter plot, Kendall’s plot, chi-plot and also analytically based correlation coefficients statistics are estimated to select 

the most appropriate vine tree structure. Investigation revealed that the D-vine copula could be a right choice and thus 

employed in constructing the hierarchical nesting structure of 3-dimensional flood characteristics where the flood 

variable, P is placed in between variable, V and D because the dependency between (P-V) and (P-D) is higher than (V-

D). In actuality, the D-vine copula usually exhibited higher flexibility in the selection of which flood attribute pairs to 

model, in comparison with the canonical or C-vine copula [23, 34]. Different copulas families which include the 



Civil Engineering Journal         Vol. 6, No. 8, August, 2020 

1488 

 

 

Gaussian copula that belongs to the Elliptical family and the Archimedean copula families such as the Gumbel, Frank, 

Clayton and Joe copula, are introduced and test as a possible candidate model in demonstrating the pair-wise (or 

bivariate) joint dependency modelling of flood characteristics, i.e., (P-V) and (P-D) in Tree-1 and also, the bivariate 

copulas fitted to the conditioned observations in the Tree-2 of the selected D-vine structure (see Figure 2). The vector 

of unknown copula dependence parameters, in both Tree-1 & Tree-2 are estimated using the Maximum-Pseudo-

Likelihood (MPL) estimation procedure where the best-fitted bivariate copulas are selected using the Cramer-von 

Mises (CvM) test statistics ‘Sn’ with the parametric bootstrapping procedure.  

The Lognormal-2P distribution, Johnson SB-4P distribution and Gamma-3P distribution are identified as possible 

univariate marginal distribution for the flood peak flow, volume and duration series based on the GOF test statistics. 

Firstly, the Gaussian copula and Frank copula are selected for defining the bivariate joint dependence structure of 

flood pairs (V, P) (i.e., 2-D copula fitted to peak-volume pair, CPV) and (P, D) (i.e., 2-D copula fitted to peak-duration 

pair, CPD) in the first tree of vine structure (see Figure 2). Similarly, the Gumbel copula is recognized as the most 

justifiable bivariate structure in the modelling of the variable (V, D) conditional on P (i.e., the conditioned 

observations, FV|P(v|p) and  FD|P(d|p)), in the second tree of vine framework. The scatterplot between observed and 

simulated flood characteristics are investigated and which indicating on an excellent agreement or in words the fitted 

D-vine distribution reproduces overall flood correlation structure reasonably well. The tail dependence behaviour of 

the fitted D-vine copula is also investigated for flood characteristics extracted from the fitted copulas through both the 

graphical and analytical observation and which reveals that vine copula is well capturing the general behaviour of both 

the fitted Normal and Frank copula for flood pairs (V, P) and (P, D). The primary joint return periods for trivariate 

(also, bivariate) flood events are examined and revealed that “AND” return period produces higher return value than 

‘OR’ joint case. Unless the modelling efficacy of vine copula model is investigated in the above demonstration and 

from few existed kinds of literature, but it is still surrounded with the few modelling issues and constraints such that 

selection of best-fitted parametric copulas in the vine framework is often a tough challenge [19]. In such 

circumstances, the non-informative vine methodological approach, also called the minimum information-based vine 

construction could facilitate higher flexibility and accentuate the potential of traditional parametric vine approach, 

especially when the length of the observation samples under consideration are limited [13]. Daneshkhan et al. [19] 

study already demonstrated the performance of minimum information pair-copula and thus revealed that it could be 

possible to approximate multivariate density to any level of desired precision. All the above-raised issues can be 

considered as a future research purpose for the same river basin in order to achieve much comprehensive 

approximation of joint probability density and practical flood hazard assessments. 
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