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Abstract

This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal
control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of
convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the
determination of the order of convergence, which plays a very important role in applications. The paper uses the
discretization method of the differential problem and the method of integral estimates. The reduction of a differential
multidimensional mixed problem to a difference one is based on the approximation of the desired solution and its
derivatives by difference expressions, for which the error of such an approximation is known. The idea of using integral
estimates is typical for such problems, but in the multidimensional case significant technical difficulties arise. To estimate
errors, we used multidimensional analogues of the integration formula by parts, Friedrichs and Poincare inequalities. The
technique used in this work can be applied under some additional assumptions, and for nonlinear multidimensional mixed
problems of parabolic type. To find a numerical solution, the variable direction method is used for the difference problem
of a parabolic type equation. The resulting algorithm is implemented using program code written in the Python 3.7
programming language.

Keywords: Approximation of a Three-Dimensional Parabolic Problem; Optimal Control; Convergence of the Gradient Method; Integral
Estimates; Functional Convergence Estimation, CFD.

1. Introduction

The heat equation is used to find the dependence of the temperature of the medium on the spatial coordinates and
time, for given coefficients of heat capacity and heat conductivity. This is a second order partial differential equation,
which is a parabolic type equation. Since the need to determine temperatures in the whole space is often absent, when
setting the problem, additional conditions are introduced that determine the restrictions on the solution of the problem
for a given area. For example, one of these conditions is to set the temperature distribution at the boundary of the
region (the Dirichlet problem).
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The process of finding the temperature distribution at given times is a laborious task. Since differential problems
of a continuous nature cannot be programmed due to the limited capabilities of computer technology, such problems,
by discretizing them, reduce to similar difference problems. Such a transition is carried out using difference schemes.

The main task of approximation is to find such an approximate function that least, in a certain sense, deviates from
a given continuous function. Due to the fact that when solving continuous problems, the differential operators are
replaced by finite-difference analogues, which are written in the form of algebraic equations, problems arise for
determining the convergence and approximation error.

Note that when switching from a differential operator to a finite-difference analogue, a humerical solution is
obtained that differs from the original solution. In such cases, an analysis is performed that determines the
approximation order. For example, in Godunov and Ryabenkii (1987) study, the one-dimensional optimal control
problem of the heat conduction process and the gradient descent method are considered, on the basis of which the
approximation order of the finite-difference problem was obtained [1]. The optimality criterion is based on the
gradient descent method, ideas leading to the assertion of the type of maximum principle by L. S. Pontryagin [2-4],
lead to significant complications and are not considered in this paper. Approximation of optimization problems is
considered by many researchers. An important work is Serovaiskii (2013) [5], from which methods for obtaining
estimates of the boundedness of the target functional are used.

In modern works, attention is paid to the convergence of functionals in optimization problems of different nature.
A hyperbolic boundary value problem with a quadratic cost functional is considered in Edalatzadeh et al. (2020) study
[6]. An important point is the use of a similar technique of integral estimates to obtain optimal control in an explicit
form. Criteria for the existence of optimal forms in Banach spaces were established in Edalatzadeh (2016 and 2019)
studies [7, 8]. For a differential operator in divergent form and for an integro-differential operator in Deligiannidis et
al. (2020) and Mukam and Tambue (2020) researches [9, 10] using integral estimates in suitable spaces, weak
convergence of the numerical method was established and the order of convergence of the functional sequence to the
solution was found.

The technique developed in this paper will be transferred to parabolic problems with variable coefficients, as well
as to nonlinear cases. The possibility of such a step is considered plausible due to the Guillén-Gonzélez et al. (2020)
and Biccari et al. (2020) works [11, 12].

The aim of this work is to estimate the approximation of a finite-difference analogue for the heat equation of three
spatial variables. The solution to the difference problem is constructed using the variable direction method.

Note that the original result on the convergence estimation of the sequence of the target functional in 3-
dimensional space is established and the constants in the O symbols are directly calculated. We can briefly formulate
the sequence of actions and steps that are used in the work:

« Statement of the differential problem;

 Analysis of the differential problem, obtaining an estimate of the norm of the solution depending on the control
function;

« Building a sequence of discrete tasks;

Obtaining expressions for errors between solutions to differential and discrete problems;

Estimation of errors using the technique of Sobolev spaces and the establishment of target inequality.

Based on the discretization of the three-dimensional heat conduction problem, a numerical algorithm is developed,
with the help of which a software package is created to determine the time required for uniform distribution of heat in
the rod.

2. The Problem Statement

The following is a third-order differential heat equation that describes the process of heating a body in space:

aof  ,(0*f  9*f  O*f
E =a (W a—yz ﬁ + u(x. Y,z t) (1)
(x,y,2,)€Q = Q3 x(0,7),03 = (0,1,) x (0,1,)) x (0,1;)
For which the following boundary conditions are given;
of
— =vY,y,2z1),0<t<T;
aQS aQ (2)

flizo = @(x,9,2),0<x<1,0<y<1,0<z<1,
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Where f(x,y,z, t)- is the solution of the boundary value problem, u(x, y, z,t) — is a control function that shows the
temperature at the point (x, y, z), at the moment of time ¢, a2 — is the thermal conductivity coefficient, ¢ (x,y,z) — is
the temperature of the rod at the initial moment of time at each point, ¥(x,y,z,t) —is a given function from
L,[(0,L,) x (0,1,) x (0,1,)]. Questions of representation of solutions, existence and uniqueness are stated in
Vladimirov (1981) and Shubin (2003) works [13, 14].

We denote that the control belongs to the following set:
U=Su(xy,zt)eL,(Q): f u?(x,y,z,t)dxdydzdt < R? ¢, 3)
Q

Where R = const > 0.

Such a problem is called the Dirichlet problem or the first boundary value problem. We find a numerical solution
to this problem using numerical methods, namely, the finite difference method. By expanding the function in a Taylor
series, the first and second partial derivatives are expressed, and the boundary conditions are used to determine the
value of the nodes on the boundary region.

The task is to find a function f(x,y,z t;u), such that on the whole region L,[(0,l,) X (0,1,) X (0,1,)] by the
time T we get the distribution function heat close to the given function b(x,y, z). The criterion for this difference
problem has the form:

Lx l}’ lz

J@) = f f flf(x,y,Z, T;u) — b(x,v,2)|*dxdydz — inf,u e U 4
0 0 O
And the boundary conditions are rewritten as follows:
0
—f =00<t<T
003 (5)

fli=o=0,0<x<1,0<y<l,0<z<1,

In this case, it is necessary to go to the finite-difference analogue of the function f(x,v,z T;u) and evaluate the
approximation order.

3. Equation of a Parabolic Type
In this paper, we consider the process of temperature distribution over a three-dimensional rod with a length,
height, and width equal to L, L, ,, respectively, for the time interval T, which is described by the heat equation. An
inhomogeneous equation is considered:
of (0%f 0%f 0*f
2Ly 2L -7 6
5% (axz +6y2 t5.2 +ulx,y,zt), (6)

Which has coefficient a®> = 1 and boundary conditions (5).

We will seek a generalized solution to the original problem in the form of an expansion into a triple Fourier series.
Let:

FEY20= ) D> X005 ¥ (3) # 22D * Ty ) ™
n=1m=1k=1

WA= ) D Xa() () * 22 * Ui (0 ®)
n=1m=1k=1

Substituting these series in Equation (6), we can conclude that (6) is certainly satisfied if the terms of the series are
equal for the corresponding indexes of the number series of the left and right sides of the equation:

Xn(x) * Ym()’) * Zk(Z) * Trllmk(t) =
= (X7 )Y (1) Zie(2) + X, ) Yoy, 1) Z1o(2) + X, ()Y, (D) Z, (2)) Trgrc (£) )
+ X, ()Y (V) Z1 (2) Uy (£)

By removing the inhomogeneous additive in Equation (9), divide it into X,, (x) * Y,,,(y) * Z,,(2) * Ty (t) and rewrite
it in the following form:
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(X3 () + 22X, (x) = 0
4 Yo ) + 1Y, (y) =0
| 2;/(2) + p?Zy (2) = 0
(T'(®) + B2+ @2 +pT(@) =0

(10)

We find a solution to the three Sturm-Liouville problems. We start with the problem X,/ (x) + A2X,,(x) = 0, with
X,(0) = X,,(I,) = 0. Consider 3 cases of solving a linear differential equation.

For 12 < 0, the general form of the solution takes the form X, (x) = C,e** + C,e**. Due to the boundary
conditions, the solution becomes trivial. This solution does not fit.

For A2 = 0, the general solution is X,,(x) = C; + C,x. The solution, by analogy with the case 12 < 0 also does not
fit.

For A2 > 0, the general solution is X,,(x) = C;cos(Ax) + C,sin(Ax). It follows from the boundary conditions that
C, = 0 and C; sin(l,x) = 0. It follows that Al, = mn. Consequently, the general decision takes the following form.

mn
X, (x) = C; cos (l—x),n =1,2.. (11)
X

To obtain a complete orthonormal system, we define C,,. To do this, take the scalar product from (9), equate it to 1
and find the integral.
Lx

n
C?cos?—dx=1
L
0

We get that C; = \/lz and:

2 m
X, (x) = 7 cos (l—x),n =1,2.. (12)
X X

Similarly, we find a generalized solution for Y (y) and Z(z).

2

Y.(y) = \/l:cos (Tz—my>,atm =12.. (13)
y y
2 k

Z(z) = \/l:cos (TI[—Z),atk =12.. (14)
A A

We find the general solution of the differential equation based on A%, u? and p?2.

a2 (mm\° k2
) +<(Z) + (l—> +(T7) )Tnmk(t) = Une(®) (15)

y

We apply the variational constant method. We solve the corresponding homogeneous equation and find a
generalized solution in which C,, is an arbitrary constant on t.

T(t) = C,(t)e%"t

2 2 k 2
o _.2,,where §2 = (E> +(22) 4 (n_) (16)
T'(t) = C},(t) e~5°t — §2C, (t)e—0"t L, L, L,

We put this in Equation (9) and we obtain that for the unknown function C,, (t) the equality C.,(t)e ™%t = U, ()
must be satisfied. We get that.

t

€0 = [ € Uy (@ 17)

0

Whence the solution of the Cauchy problem is given by the formula:
t

Tomi () = feﬁz(t—r) Uy (T)dT,t >0
0
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We obtain a formula for calculating the expansion coefficients u(x,y,z,t) in eigenfunctions. Given the
orthogonality of the Sturm-Liouville problem, we obtain:

8 mnx my mkz
Upmi () = T f U(x,y,zt) cos( ; )cos cos( ] )dxdydz (18)
xty Z(Ts X z

ly
Hence, on the basis of (7), (9), (11) and (12), we obtain:

8 v\ mnx Tmy mkz
flx,y,2t) = ZZZCOS( )cos cos( )
Ly, L, l,

l
n=1m=1k=1 y

(19)

t

-fe52(t‘T)Unmk(T)d’[,
0

2 _ [(mn 2 m 2 k2 .
Where 62 = (Z) + ™ + (Z) ,and Uy, (t) is equal to (14).

4. Discretization of the Problem

The difference minimization problem has the following form. It is necessary to minimize the objective function
f(x,y,zt) on the four-dimensional domain Q = [0, ] X [0, ly] % [0,1,] x [0,T], where x,y, z are spatial variables
and ¢ is time variable. The grid winn,e = {(Xi )2 Tp): i = thy, ¥; = jhy, 2 = khy t, = pr,i = 0. Xy, j =
0.Y,k=0..Z,,p = 0..P}, where h,,h,, h,, Tare given grid steps, h, X, =1L,h,Y, =1, h,Z, =1,7TP =T.
Following works [15] and [16] we perform discretization and obtain difference problems.

We define the function fi nn,x = {fijip:i = 0. Xn,j = 0..Yy, k = 0..Z,,p = 0..P} on the grid partition
Wiy hy which will correspond to separate differences

1 1

Fraijkp =3~ (fissinp = fiiip)  Frizijin = W (fijp = fi-jen)
X X
1 1

fhyijkp = h_ (fij+1kp - fijkp) f@ijkp = h_ (fijkp - fij—lkp)
y y

1 1
fhzijkp = h_ (fijk+1p - fijkp) fh_zijkp = h_ (fijkp - fijk—lp)
zZ A

1 1 )
frohgijip = h_x (fhxijkp - fhxijkp) = h_?C (fi+1jkp = 2fijkp + fi—ljkp) 20)

1 1
fhyEijkp = h_ (fhyijkp - fh_yijkp) = ﬁ (fij+1kp - Zfijkp + fij—lkp)
y y
1 1
frohzijke =7~ (Fugijiep = Frgijnp) = 2 (fitesip = 2fijiep + fijem1p)
Z Z

1
ffijkp = ; (fijkp - fijkp—l)

We rewrite items (3)-(5) taking into account the discretization of the original problem. The grid function
faxnyhyt = Frghynge (uhxhyhzr) will be the difference analogue of the function f(x,y,z, y;u). Also, the function
Unghyhye = (Uijip: 1 = 1. Xy — 1,j = 1Y, — L,k = 1..Z, — 1, p = 1.. M}, which belongs to:

M Xp—1Yp—-1Zp-1

Uhxhyhz‘r = uijkp:z Z Z Z hxhyhzf”izjkp <R? (21)
j=1 k=1

p=1 i=1

Will be the difference analogue for the control u(x, y,z,t). Then the criterion (4) for the minimization problem taking

into account the function Foxhyhye takes the following form:
Xp—1Yp-1Zp-1

2 .
Jhahyhse (”hxhyhzf): Z Z Z hahyh,|fyep = byl = inf, (22)
i=1 j=1 k=1
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Unyhyh,t € Uhxhyhz‘r'
Equation (6) taking into account (16) and boundary conditions:

feijkp = (fhxaijkp + fryryijep + fthijkp) + Ujjkps

i=T..X,-1,j=1..Y,-Lk=1..2,—1,p =0..P;
frsijin = [rgxpjce = f@nkp = fnyiyhkp = fryijwe = [rgijzp = 0 (23)

p=1.P;

ﬁjko = O,i = 0"Xh’j = 0..Yh,k = 0"Zh.

5. Theoretical Information

In the course of performing mathematical analysis, a number of theorems, equations, and inequalities were used
that play a fundamental role or are often used in mathematical calculations and simplifications.

Partial Summation Formula;
q q-1

Z ayb, = — Z An(bas — by) + Agby — Ay_1by,

n=p n=p

n
An=Zak,atn20

k=0

(24)

Cauchy-Bunyakovsky inequality for sums and integrals;

1 1
n n E n i
Dl sl < (lem) : (Zw)
i=1 i=1 i=1

1
b b 2 b
[r@gwar < [ reoax ) { [ gcoax

a

(25)

N

Lemma 1. [1] If some quantities ¢;,i = 0, ..., N satisfy the inequalities:
i
0<¢y<a0<@;4q Sa+bz Om,i=1..,N—1,b=0,
m=0
Then the estimate 0 < ¢; < a(1 + b)'is fair,ati = 0, ..., N. If

N-1

OS(pi_lSa+bz<pm,i=1,...,N—1,0S¢N_1Sa,

m=i
Then the estimate 0 < ¢;_; < a(1 + b)N"*"tis fair,ati = 0,..,N — 1.
Elementary Inequalities:
£ 1
lab| < Eaz +Zb2' (a+ b)? < 2a? + 2b?,

(26)
(a+b+c)?<3@*+b*>+c?>)Va,b,ceRVe > 0.

6. Analysis of the Differential Problem

We begin the analysis of the differential problem by deriving two estimates for sufficiently smooth classical
solutions to problem (5), (6), which will be emphasized in future work. Further actions are based on functional
inequalities, which are sufficiently developed in Vasilev (2002) study [17].

We multiply equation (1.6) by f(x,y, z, t; u) and integrate the resulting equality over the rectangle
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Q={(2t):0<x<,0<y<l,0<z<1,0<t<t}

Where t — arbitrary fixed pointintime,0 <t <T.

a
f a—]: fdxdydzdt — f Af - fdxdydzdt = f ufdxdydzdt 27)
Qr Qr Qr

In view of conditions (2), we transform the first term from the left-hand side:

of  (1ffao 1,

2ree= [ 5| [ 5 0ma |ae, =5 [ rr@yznae, @8)
Qr Qs \0 Q3

To estimate the second term, we introduce each term of the Laplace operator under the differential sign, after
which we apply the boundary conditions (5). As a result, we have:

[ o raoc=- | ((g) * (%) * (fél))dQ (29)

T T

We use the Cauchy-Bunyakovsky formula (21) for the right-hand side of equality (27), after which we pass to the
maximum in time for the classical solution of problem (5), (6). We have:

2

T

[wao s [( [wae,) ( [ riae,) acs
Qc 0 \@3 Q3

1 1
2

7e 2
2 2 2
<max| [ rea. | [{ [uedos ) de<max| [ a0 | Vil
Q3 0 \@3 Qr
1
2
[ urda, < max( [ rda. | VTl
Qr Qr
We replace the terms in Equation (27) in accordance with formulas (28), (29) and (30), we have:

L oot [ () +(2) (2o

(30)

T

(1)

2

<max| [ r2de. ) VTl

Qr
Let us estimate this inequality. To do this, we remove each term from the right-hand side in turn. Based on this, we
evaluate the first term.
1
2
f f?(x,y,2z,1)dQ; < max f £2dQ, | 2VTllull,,g) vt €[0,T]
Q3 Qr

Therefore, if we take the integral of the square of the function f with respect to the maximum t on the interval [0, T],
square and extract the square root, and then use the estimate for the first term, we obtain the following inequality:

1
2
()rgg;ff%x,y,z,r)d%ﬁggg}% ffdeT Zﬁ“u"LZ(Q)
Q3 Q3
Or:
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max ffz(x,y, z,t)dQ; < 4‘T”u”2L2(Q) "

0<t<T
Q3

From (31) we make an estimate for the second term, taking into account the estimate (32), we have:

1
2

f((g)i(g) (ag))dQTSmax fdeQT VTllull,, ) < -

T

2
< 2Tl 0

Based on inequality (31) and estimates (32) and (33), we obtain the first estimate for a sufficiently smooth solution
to problem (31) and (32):

g [ om0+ (L) + (2 e <

T

Multiply equation (32) by‘;—f and integrate over the domain Q,:

f(%)der —f dQT j dQT (35)

Q

We estimate the first scalar product from the right-hand side. To do this, we introduce each term of the Laplace
operator under the differential sign. As a result, we get:

T ly lz Ix Iz

of of | Jjww@
J Af - dQT—J Jjataxodydz+ atayodxdz+
Q¢ 00
I L
af6f b J of 0*f of d*f of 9*f B
+J ot ozl, ¥V~ ) \oxatox Tayaray Tz ot0z) 95 |4

Taking into account the boundary conditions (5), only the last integral does not vanish. If we introduce the derivative
of the function with respect to each variable under the differential sign and use the main theorem of mathematical
analysis, we get:

-] f s G + ) +(3) ) oo

Q3

(e eyt rosnny),,

As a result, we obtain the following equality:

0fof a*fof o} of
f (axz at " ayrac T oz2 6t> 40

:_% f ((W)Z .\ <6f(x;33}1],z,r)>2+ (6f(x,aj;,z,f))2> w0,

Q3

Based on formula (36) and the elementary inequality of paragraph 1.4 for the product from formula (35), we have;

1 of (x,y,2,7) g of (x,y,2,7) 2 of (x,y,2,7) 2
(e o
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(&) a0 = [ oot (&)

Qz Qz Qr
Or:

[ o) o+

Q

o [ ((Lezenyy (LomD), (FC02D) g, < ul,
Q3
vt € [0,T]

Hence we have 2 inequalities:

[ (Z) a0, = 1ult

Q

[ (Lo (reepd)' s (LO220) ao, < u
Q3

vt € [0,T].

We use the fact that 7 takes any value on the interval [0, T], we get:

| (af ) a0 < Il

Q

f ey, 20\  [(0f(xy,20\

Q3

f(x,y,20\*
+ (fa—yz> )dQ3 < lull?,¢q vz € [0, T].

In addition, if we integrate equation (6) over the domain Q taking into account (37), we have:

f(Af)ZdQ f——u dQsZ!(%>2dQ+2fu2dQ

Q

< 4Hllull, o

Adding inequalities (37) and (38) we obtain the second estimate for a sufficiently smooth solution:

2 2 2
max f ((6}‘(3(;/{,2,‘[)) +(af(x;3);z,‘r)> +<6f(x;3);,z,f)) )dQ3 +
Q

3

(& ("’ do + f (8)?dQ < 6llul?

Q

@37)

(38)

(39)

We use the Friedrichs inequality and inequalities (37), and also taking the maximum in time for differentials with

respect to spatial variables, we estimate the square of the solution with respect to the control function:

o] o< () (2 -2 oo+ [ (0

Q3
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2 2
max 2 2

_2 ||u||L2(Q) + 7 ”u”Lz(Q)’

V(x,y,2,t) € Q,lpax = max{lx, Ly, lz}.

<

From here we get the energy estimate:

2 2

ma dQ < Cllu )

(x,y,z,t))(eflf frde = cll ”LZ(Q)
Q

(40)
(ax +T%)
C = Bra— Imax = max{l,, 1, 1}

7. Analysis of a Discrete Task

Using analogues with estimates (34) and (39), we derive the corresponding estimates for the discrete problem. We
multiply Equation (19) by hyhyh,Tf;jip = htfiji;, and sumover i, j, k from 1to X, — 1 = X;,, from1to Y, — 1 = Yo,
from 1to Z, — 1 = Z,, respectively:

nYhZn Y hZp

htfeijip fijiep — Z hT(ffxijkp + foyijkp + fz‘zijkp)fijkp =
ijk=1 ij k=1
o (41)
htTh4h
= htwjip fijkp 0 = 1, .0, P
i,j,k=1
It is easy to verify that;
1
feijipfijkp = 5 (fi?kp - fi?kp—l)' (42)
i=1.X,-1j=1.Y,-1Lk=1.Z,-1,p=1..M
From here;
XnYnZp 1 XnYnZp 1 XnYnZn
Mfipofio 25 ), Wiw=5 ), Miwap=T.P (43)
ijk=1 ijk=1 ijk=1

In order to transform the second term from the left side of Equation (41), we use the summation formula by parts
(20) and the boundary conditions (19):

XnYnZn XnY¥nZn
z htfexi jkpfi jkp = — htf; fzi jkp (44)
i,j,k=1 i,j,k=1

Similarly, the formula is applicable to the spatial variablesy and z.
We substitute formulas (43) and (44) in the formula (41):

1X_hnﬁ,ﬁ XnYnZn
> (hfi?kp - hfi?kp—l) + Z hT(fa?Zijkp + fijp + fz‘zijkp) =
ijk=1 ij k=1
- 45
nYhZn ( )
< hTuijkpfijkp’pzl"P
i k=1

Inequality (45) is summed over p from 1 to some p, where p on the interval 1 < p < P. We use the boundary
condition fjxo =0,i = 0..X,,j =0..Y,, k= 0..Z,. Then, if we expand the right-hand side of inequality (45)
according to the Cauchy-Bunyakovsky formula (21) and make the maximum transition in time for a discrete solution,
we obtain a difference analogue of the inequality (30):
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1
177E P XnYnZn XnYnZn 2
- 2
3 2 Mot D, Wi S pa| D, M

ik=1 plik=1 ijk=1
4
- 1 (46)
PXpYnZp 2

NT htufy, | Vp,1<p<P.

pijk=1

Then, if we carry out mathematical transformations similar to those carried out when estimating inequality (30),
then we obtain the following estimates for the left and right terms

XnYnZn PXpYnZn
max h <A4T Z htu? 47
1<p<P Z f”kp Lkp “n
i,j,k=1 p,i,j k=1
PXRY1Zn PXpYnZn
2 2 2

hT(f)Zijkp + fijrp T fiijkp) <2T Z hTufjep (48)

p.iJjk=1 p.iJjk=1

If we add inequalities (47) and (48), we obtain a difference estimate similar to the integral estimate (34) up to a
constant:

XnYnZy PXnYnZn

glpas)l(’ Z hfl]kﬁ + Z hT(fxl]kp + fyl]kp + fzt]kp) =

i,j,k=1 p,i,j k=1

PXpYnZn
2
T Z htuy,
pijk=1

Find the difference analogue for the estimate (39). To do this, we multiply the equation from (19) by htf;j, and
summarize the resulting expression by i,j,kby 1 <i <X, —1;1<j<Y, - 1;,1<k<Z,—-1.

(49)

IA

XnYnZn XnYnZn
hTffzijkp - Z hT(ffxijkp + fj‘/yijkp + fz‘zijkp)ffijkp =
ij k=1 i,j,k=1
50
Xn¥nZn (50)
= htwjep frijkp 0 = 1, .., P
i,jk=1

We use the summation formula in parts (20) in accordance with formula (44) and the boundary conditions (19) to
estimate the second term from the left-hand side. We get:

WY nZn
- hT(fJinjkp + foyijp + fz‘zijkp)ffijkp =
ijk=1
XnYnZn (51)
= hT(fJZijkpffJ?ijkp + fyijipfeyijip T fz‘ijkpffz‘ijkp)'
i,j,k=1
r=1..,P
We use formula (42) to estimate the right-hand side of the equality (51)
XnTnZn
T(fxukpftxl}kp + fyljkpftyl]kp + fzt]kpftzt]kp) =
i,j,k=1
o (52)
1 hTh4h
3 h(ffzijkp + foijip + fFjip — fijep-1 — fijkp-1 — fz‘zijkp—l)
ijk=1

Substitute this estimate in (50). We have:
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nY¥nZn 1 XnYnZn
2 2 2 2
At feijip — 7 h(f)?ijkp + fijkp + fZijkp) +
Ljk=1 k=1
1 XnYnZn XnYnZn (53)
2 2 2
+§ h(f)?ijkp—l + fSijkp—1 T fiijkp—l) =< Z htuyjiep frijkps
Ljr=1 k=1

r=1.,P

The left side of inequality (53) is summed over p from 1 to some p, where p is in the interval 1 < p < P. Given
fijko =0,i =0..Xy,j =0..Y, k =0..Z,, we obtain:

PXnYnZn nYnZn

1
hTffzijkp + 3 h(ffzijk;; + Ly + fizijkp) <

h nYnZn
2

Rt fEijnp + Z h(ffzijk;? + fEijip + fz‘zijkp) <
1 LjT=1

(54)

XnYnZn PXpYnZn
2 2 2 2
max Z h(f:?ijkp + fSijrp + fz‘ijkp) = Z htugjyy, (55)
T ijk=1 pijk=1

e fiijip < htufg (56)

Finally, by squaring Equation (19) we apply the elementary inequality for the square of the sum from (4) and
estimate the result with (56):

PXpYhZn PXpYnZn
P 2
Rty = hT(ffxijkp + foyijkp + fzzijip — uijkp) <
pijk=1 pijk=1
o (57)
PXpYpZp
<4 htufy,
p.ijk=1
If we add inequalities (55)-(57), then we get the difference analogue of estimate (39):
XnYnZn PXpYnZn
2 2 2 2
max Z h(fjip + fijip + ijip) + Z htfeijip +
i,j,k=1 p.ijk=1
e e (58)
PXnYnZn PXnYnZn
+ htfzijp < 6 Z htuf,
p,i,j k=1 p,i,j k=1
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8. Evaluation of the Difference of Differential Decision and Discrete Analogue

We introduce the Hilbert space Laonehynye = Lones which is the difference analogue of the space L,(Q). The
elements of this space will be the grid functions franynge = for = ijips 1 = 1. X, j=1.Y,k=1.Z,p=1.P)},
and the scalar and vector spaces are defined as follows:

P.XpYnZp
(fhr' gh‘r> = Z hTfijkpgijkp'
p,i,j k=1
o 1 (59)
P.XpYnZn 2
Wiellige = D Wefn
p,ij k=1

By b, fir We denote the piecewise constant continuation of the grid function f;,, according to the rule;
bnefar = Brefu) (6 Y,2,) = fijip
(0,9,2,t) € Qijiy = {(x, 7,20 S X< X34, Y SY S Yjp1, % S 2
S Zpyitpor ST, (6,,2) € Qi = {(0,y,2): % < X < X4, (60)
Vi<V SVt Zk< Z < Zjyq}
i=1.Xj=1.Yk=1.Z,p=T1.P;

The domain of the function b, fj. is denoted by Q, = {(x,y,z,t): h, <x <l ,h, <y<l,h, <z<1[,,0<
t < T}. We note that:

XnYnZn
] e foedQs = Z Wi Wneielliagyy = Wfieligne
p,i,j k=1
S (61)
P.XpYnZp
(bhrfhr'bhrghr>L2(Qh) Z hTfl]kpgukp - (fh‘r:ghr)Lth
p,i,j k=1

Based on (60), (61), we rewrite the difference equation (16):
bh‘rffh‘r - bhr(f:?xhr + f}‘/yhr + fz‘zhr) = bhuhr: (x: Yz, t) € Qh (62)

Subtract (62) from equation (6), m multiply the resulting equality by f — b;,. i and integrate over the domain Qy,:

f(g{ bhrfrnr)(f b fre)dQn —

Qn

— [ (8 = Buelfesne + Foone + Feane)) 0 = Brcfie)ds = (63)
Qn

= f (U = bpeUn)(f — bpefne)dQp
Qn

We estimate the first term from the left side of the equality (63). We replace the integration over the entire domain
with summation in accordance with the formula (61):

f (% - bhrfghr) (f = brefur)dQijip =

= (2 ET: (f = (t = t) feijin — fijkv)z +

ijkp

=
~
<
&
1l
[y
Q
<
=
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+ (% - fEijkp) (t - tp)ffijkp) inikP =

For the first term, we substitute the limiting value for integration over the time variable, and we open the first
bracket for the second:

XnYnZy

P
1
= z f 52 ((f(x'y' 2t,) = fup) — (F(xy.2,t,) _fijkﬁ)z)injk +
Lik=1 Qij P=1
P X Vi Zn tp tp
2 [ (=)ol = [ Fhuept = Fey [ (6=t )at | s
Jk= tp tp

1 Qijip

For the first sum, we go through the cycle in the time variable, opening the squares of the difference and using the
boundary condition f;;x, = 0, and for the second, we calculate the time integral for the third term, substitute the limit
values in the first and third elements of the term bracket. Then the final inequality takes the following form:

f(g{ b’”ffhf)(f bz fend)dQn 2

>1 f|f(x Z,tp) — fi; |2dQ~ +
=5 y » Y, Z,1lp ijkP ijk (64)

+ Z J (f(x,y.2, tp—l) - f)ffijkdeijkp

PLik=1 Qyjkp

We transform the second term from the left-hand side of (64). We note that;

62
J ( f fxx(xuy:Z t))(f ft]kp) dQl]k_

Il
—
A

QJ
N
‘w
;\
Y
Van)
=
=
N
o~
—/
N————
—
‘\
E\
k=
<
N—
QU
)
&
=

(65)

L.

f (ffx(xi:y: z,t) — ffxijkp)(f(xi:y: z,t) — fijkp)injk
Lik=1 Qyji
Vi, t,.y <t<t,p=1..,P
We transform the first term from the right-hand side of (65). To do this, we take out the differential from the first
bracket, we apply integration by parts. For the part of the expression in which the limit values are substituted, we will

go through the cycle in the variable x. Then, having completed the mathematical operations, we arrive at the following
inequality:

XnYnZn
z f dx <_ - (X xi)ffx(xi,y,z, t) —ff(xi,y,z' t)) .
i,j,k=1 Qljk
(66)
d V7t
(f = fip)dQujic = Z [ ( f(xxh 150 t)>_

Jk= 1Q}k
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of (x,y,2,t
' (f(xXh’y’ Z, t) - thjkp) - <%_ ff(xl,y, Z, t)) .

’ (f(xpy’ z,t) _fljkp)) dek +

nYnZh
0f (xi11,¥,2, 1)
+ f(L_fx(le'y'z't) thxijkdejk_

£ o0x
1,j,k=1 Qjik
XnYnZn
af (x;,y,2,t)
- f ( la _ff(xi;%z;t)_(x_xi)'
/ x
i,j,k=1 Qijk

of
Sfe (X0, Y, 2, t))ainjk
Ve t, <t<t,p=1.P

The third term from the right-hand side of (65), and using the formula for summing by parts (17), can be
represented as follows:
XnYnZn
f ((ffx(xi'y' 2,t) = fexijiw) (f (X0, 2, 1) _fijkp)) dQijx =
LIR=1 Qg

J hX(f(xi!y! Z, t) _fijkp)fx(f(xiiyizi t) _fl'jkp)dek =

i,j,k=1 Q]k
z > 2 (67)
- Z J —th(ff(xi,y,z, D) — Fajin)” +

Jk=1Qjy i=1

+(f:z(xxh:% z, t) - fthjkp) :
’ (f(xﬁ:y' Z, t) - fﬁjkp) - (ff(xpy: z,t) — ffljkp) :
-((0,y,2,t) —fojkp)) dQj,Vt,t, s <t <t,p=1.P

Performing similar mathematical operations (65)-(67), we can obtain estimates for the variables y and z, replacing
the variable x with another spatial variable, taking into account the limits of summation and integration.

We substitute the obtained inequality (64) and equality (65) taking into account (66) and (67) into (61). We get:

1
> f |f(x,y,2,tp) _fijkPldeijk +
=
PXnYnZn
2 2
+ f ((f(xi:y; z,t) = frupep) + (FY5,2,t) = frijp) + (68)
PLIK=1 Qyjpp

10

2 .

+(f (%, 200, 0) = frijiep) )injkp s Z ki
i=1

Where;

F = (f - f(x, Yz, tp—l)) ffijkdeijkp (69)
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YnZn

(3 [ (2az e,

p= 1tp 1 \Jk=1Qj,

. (f(xxh,y, z,t) — thjkp)dek

XpZp

af (x,yy,.2,t)
+ z f a—yh—fy(x,yyh,z, t) |- (F(x,yy,. 2. t) -

i y
k=1 Qik

Xh Yh

af(x y'Z ] t)

szhkp)szk + Z f —ZZh fi(x; y, ZZh; t)

i,j=1 Q”

’ (f(x' Y ZZn’t) _fiizhp)inj)dt
P YnZn P oY,
ST )
p=1¢ p—1 Jke= 1Q]k
' (f(xliy' Z, t) _fljkp)dek + Z j(f(x!yliz' t) _filkp) :
Lk=1 Qg
—fy(X,yl,Z, t)>ink + Z j(f(xvy'zl't) -

i,j=1 QL]

. af(x,yl,Z, t)
ay

of (x, 5,24,

PXpYnZn

d i+1, )4
Fa = Z f (fokp (W‘ fi(Xis1,y,2, t)) +

p.ij k=1 Qijkp

f (%, ¥j41, 2, t)

+fyijkp dy - fy(x: Yi+1, %, t)
of (x,y, Zy 41, t)
+fzijkp (T’m — (6, ¥, 241, t) Qijkp
PXnYnZn of of

0 4] 0
( f fy(x YirZs t)>_f+<_f_fz(x y'zk't)> f) dQl]kp

P, hy_z_

af
Fg = f fxx(xuy'z t)(‘x—xl)_+
PLIK=1 Qijp

0 0
f)‘/y(x: YjZ, t) - Yj)é + f2:(0, Y, 21, ) (2 — 7) %) dQijkp

XnYn

Z f (fxx(xuy'z t) fxxl]kp)(f f(xuyrz t)) +

Jk= Qijkp
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+(f37y(x’ yj’Z’ t) - f)’/yijkp) (f - f(xl y]';Z; t)) +
+ (fiz(x' V) Zg,t) — szijkp)(f - flxy, Zk't))) injkp

YrZn

Fg = _i f Z f(ff(xXh'y'Z' t) _fthjkp)(f(xﬁ'y'z' t) -

p=lt,_4 \Jk=1 Qjk

XnZn
~frnjer) Qi+ Z f(ff’(x' Y 2t) = Fyivyen) (F (0, ¥y 2, 8) =
Lk=1 Qg (76)
XnYn
_ﬁﬁkp)ink + Z f (fz(x, YiZz,, t) - fyithp)(f(x; Y, 275 t) —
Lj=1 @y
~fiyzap)dQyy)dt
P VnIy
p=1t,_, \Jk=1q
XnZn
~fojip)dQic + Z f(fy(X,yl,Z, £) = finkp) (F(1,0,2,8) —
i,k=1 Qik (77)
XnYn
~Fow)du+ ), J (£200,20,6) = Frijap) (F (6,3,0,6) =
Li=1 Qi
_fiJ'OP)inj)dt
PXpYnZpn
Fiy = Z f (u - uijkp)(f - fijkp)injkp 78)

PLIK=1 Qyjip
Before estimating |F;|, it is necessary to introduce some more auxiliary inequalities.

If we take the function ff(xpﬂ,y, z, t) and its analogue f;;xp, is discrete, expanding them with respect to the
variable x, and summing fromm to i, we get the following 2 equalities:

i
FEy = ) hefinnzt) + flom .20,

n=m+1

V(y,zt) €[0,1,] x[0,1,] X[0,T] 79)

i
fijkp = Z hy fenjip + Fmjkp

n=m+1
vi=1,..,%,vk=1,.,Z,,vp=1,..,P
Where 1 < a <i < X,; for i = a y definition, we consider the sum in any of the equalities to be 0.

If we subtract equalities (79) from each other, square both sides, and use the elementary inequality from (22), then
we have the inequality:

(FO0y,28) = figep)” < 2((F G ,28) = fruip)” +

i 2 (80)
+ ) (e, 2,0) = hafragio)

n=m+1
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v(y,zt) € [0,1,] x [0,1,] x [0,T],
vi=1,..,Y,Vvk=1,..,Z,,vp=1,..,P

We also note that:

PXnYnZn PXnYnZp
2
z f (f(xa'y' z,t) — fabcp) anbcp = Z f ((f(xi; Yz, t) — f) + (f —f(x, Y,z tp)) +
p.ab,c=1 Qabcp p.ab,c=1 Qabcp

2
+(f(x,y, Z, tp) - fabcp)) anbcp <

Using the elementary inequality from (22) for the square of the trinomial, as well as the property that the square of the
integral does not exceed the integral of the square, we pass to the inequality:

PXnYnZy Xa+1 2 tp 5
Y f f )d+f(af)d+
§ 52) @
p.ab,c=1 Qabcp \Xa tp
2 2 PXnYnZp
2 |19f of
+f(x,y,z, tp)_fabcp)anbcp <3 hX a| a7 + T(f(x Y, Z, tp) fabcp)anbc

LZ(Q) pabC 1 Qab(:

If we write down similar estimates for the spatial variables y and z, then add them up and apply estimate (39), we
obtain:

XnYh,

Z J ((f(xa;y;Z; t) _fabcp)z + (f(x;yb;Z; t) _fabcp)z +
b,c=1 Qabcp
+(F(09,266) = fapep) ) AQavep < C(RG + hf + h3 +372) - (81)
PXnYnZn

||u||L ) + Z J 3T(f(x: V. Z, tp) _fabcp) Qabc

p.ab,c=1 Qabc

Based on formulas (80)-(81) it follows that

PYpZp
2
f (f G y.2,0) = fijip) dQpup +

p.j.k=1 ijp

PXpZp

2

+ z f(f(x’yj’z’ t) _fijkp) dQikp +

pik=1 Qikp

PXpYp

+ z f(f(x:yizk't)_fijkp)deijpS
pij=1 Qijp (82)

PXn Y Zn tp

<C Z f f ((ff(xa'y' z,t) — fa?abcp)z +

pab,c=1 Qgpe \tp—1

+(fz‘(x: ViZcey t) - fz‘abcp)2 + (fy(x; VbrZ, t) - f)‘/abcp)z) dt +
+3T(f(x, Y, 2, tp) - fabcp)z) dQupe + C(hy + hy + h; + 3T)||u| |Zz(Q)
i=1,..X,j=1..Yk=1,..,2,

Further note that
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Xi

of 1 of ofyzt)\,
a—fz(xi,y,z,f)—g f(§_T>d€_

Xi-1

hy

Xi-1

1 ([ [ermyay (83)
w | [FaE e

vx €[0,L], (v,zt) € [0,1,] X [0,1,] X [0,T],i =1, ..., X,

Hence, for all s,s;_; < s < ;44,0 = 1, ..., X}, We have:

PYnZp of 2

Z f (E_fx(xi,y,z,t)> dekp S
PIK=1Qjip

PYnZp Xi [ Xi+1 52 ( ) 2

1 )V, 2, t
< f — f f T2 08 Vag | agp, < (84)
- h—X ox
PJK=1 Qjyp Xi—1 \Xi-1
PYnZn Xi+1
S 10y o

< 2hy  axz dn dQjxp

p.j k=1 ijp Xi-1

If you perform similar operations for other spatial variables, then add up the estimates and change the integration
region from the interval to the entire region[0, [,,] X [0, ly] % [0,1,] x [0,T], and use estimate (39), and for h,,,, take
max{hy, hy, h;}, then we pass to the following inequality:

PYnZp of 2
J (a_ff(xi!yizit)> dekp +
p.j.k=1 ijp
PXpZp of 2
+ Z f (@—fj—,(x,yj,z, t)) inkp +
pik=1 Qikp
(85)
PXpYn of 2
+ Z f (E‘fz(x;%zk;t)> dQijp <
PLI=1 Qijp
a2f||’ a%f||° a2f||?
= 2hmax< 32 32 9.2 = hmaxcllu”z @
L 19V, 119771, ’
In addition, taking into account (84), (39) by performing similar operations, we can obtain:
PXnYnZn of 2 of 2
/ f (a—ff(xi,y, z, t)) + (d_y - fy(x, Vi 2, t)) +
PLIK=1 Qijkp
of ’
+ (E -0y, 2, f)) dQijip < (86)
a2f||’ a%f||” a2f||*
= Zhrznax< 32 a2 9,2 = hrznaxcllulli @
L 19, 119771, ’

If we write the function f;, (x;,y,2,t) in x; and go from the difference via Newton-Leibniz back to the integral,
and also use the estimate (39), then we can obtain the following estimate:

PXnYnZn
2
z f (fex (v, 2, 1)) dQijkp =
PLIK=1 Qijpp
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2

PXpYnZp Xit1 3 ,
1 0*f(n,y,21)
= n  axz dn |d§ | dQijkp <
~ X X
p.ij k=1 Qijkp Xi é—hy
PXnYnZn Xi+1 2
2f(n V.2, 2N o*f
2 N
pij k=1 ijp Xi—1 L2(Q)

If we perform the mathematical transformations for the functions f,,(x;, y,z, t) and f5, (x;, ¥, z, ), in a similar way,
and then sum them all up, we can obtain the inequality:

pijk=1

f (e 320 + (fex 3 2,0)° +
U @)

2
+ (fex (09, 2.)”) dQuyey < Clluli?, o)

Now we can proceed to estimates of the quantities F;,i = 1, ...,10 from (68). Let's start by evaluating F;. To do
this, we pass from the difference, through Newton - Leibniz, to integration, use the elementary inequality from (22)
for the product, and also take into account estimates (39) and (58):

X Vs 75 t

PXpYnZn p
of (x,y,2,7)
|Fy| < Z f deT feijkpdQijkp <
PLIE=1 Qijip \tp-1 (88)

2
<4 (I
2 \laell,

To estimate F,, using the Cauchy-Bunyakovsky formula (21), we represent the sums of the products in the form of
the product of the sums, after which we apply the elementary inequality from (22) for the product, and estimate the
resulting terms using formulas (82) and (85). We get the following estimate:

gl ) < O g + )

PXnYnZn tp
€ 2
|F,| < EC Z J J ((ff(xi;y:z; t) — ffijkp) +
PLIE=1 Qi \tp-1

+(fy(x'J’j:Z: t) - fyijkp)z + (fz‘(x: Y Zp, t) — fz'ijkp)z) dt + (89)

+3T(f(x,y, Z, tp) - ﬁjkp)z) injk +

hmax

+C(hy + hy + by + 3Dull?, ) + 5= Cllulle(Q)

Similarly to the estimate F,, we obtain the estimate F;:
P.XpYnZn tp

|F;| < ;C Z f f ((ff(xi'y'z' t) — ffijkp)z +

PLIK=1 Qi \tp-1
+(fy(x: YjrZ, t) - f)‘/ijkp)z + (fz'(x' Y Zp, t) — fz‘ijkp)z) dt + (90)

+3T(f(x,y, Z, tp) - fijkp)z) injk +

hmax

+C(hy + hy + hy + 30)|lul|” Cllulle(Q)

L (Q))

To estimate F,, we break each term by the Cauchy-Bunyakovsky formula (21). In each case, we reduce the second
factor to the control norm in the space L,j,, taking into account formula (58). In the first factor, add and subtrac
frXiv, V) 2, t),fy(x, V1% t),f,(x,y, 241, t) in accordance with the spatial variable, we apply the elementary
inequality from (22) for the square of the trinomial, we use estimates (39), (86) and (87). We obtain the following
inequality:
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|F4| < Chmaxllu”LZ(Q)”uh‘[”Lzhr < hmaxC(”u”zz(Q) + ”uhT”%Zh‘L’) (91)

To estimate Fs;, we break each term by the Cauchy-Bunyakovsky formula (21), and then evaluate them
individually using formulas (34) and (86). We have:

IF5| < R ClIul g (92)

To estimate F,;, we divide each term by the Cauchy-Bunyakovsky formula (21), integrate the first factor of each
term with respect to the corresponding spatial variable, and use estimates (34), (39) and (87). We have:

IFel < RmaxClIullZ g (93)

To estimate F,, we use the Cauchy-Bunyakovsky formula (21). The left factor is estimated using (39),(58) and
(87), in the right we pass from the difference to integration, apply the Cauchy-Bunyakovsky formula (21) and evaluate
it using the formula (34). We have:

|F7| < hmaXC(”u”LZ(Q) + ||uhT”L2h‘L') (99)

To estimate Fy and F,, we note that fi(xx,.¥.2,t) = fax,jip = fx(%x,, ¥, 2 t) = 0f:(xx,.¥,2,t)/0x and
fz(x0,Y,2,t) = frijip = fx(x1,¥,2,t) — 0f5(xy,y, z,t)/0x due to the boundary conditions (5) and (19) both for the
variable x, and for other spatial variables y and z. Given these conditions, we estimate Fg and Fy similarly to the
estimates F, and Fj:

P.XnYnZp tp

missel D [ [ ((eanad~ fu) +

PLIK=1 Qi \tp-1
+(f5(6.35,2.6) = fyijip) + (5069208 = frijip) ) dt + (100)

+3‘r(f(x,y, Z, tp) — fijkp)z) injk +

hmax

+C(hy + hy + hy + 30)|[ul|’ CIIuIILZ(Q)

L (Q))
PXpYnZn tp
£ 2
| F| SEC Z J J ((ff(xi:y:Z: t) _ffijkp) +
PLE=1 Qi \tp-1

+(f5 (0, y5,2,t) = fyiikp)z + (fz(6, v, 24, 0) — fz-ijkp)z) dt + (101)

+3‘r(f(x,y,z, tp) —fijkp)z)injk +

hmax

+C(hy + hy + by + 30| lul|’ CIIuIILZ(Q)

L (Q))
To evaluate F,,, we use Cauchy-Bunyakovsky (21) and (39):
PXnYnZn

|Fyol = Z f (u_uijkp)(f_fijkp)injkp =<

p.ij k=1 Qijkp

l (” X, V,Z, T
S 2 ”u bhruh‘r”L (Qh) f f t
2 \ ) (102)

1
+(f(xy,2,t,) — fijkp)deijkp) 3 [l — bh‘ruhr”Lz(Qh) +

PXnYnZn
2
sl g+t Y. [ (Fr28) ~ fie) 400
pLIK=1 Qyjp

We substitute all the obtained estimates (88)-(102) into the inequality (68):
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YnZn
1 2
5 2 [y ~ flaoy

Lik=1 Qijk
P.XnYnZn

2 2
+ f ((f(xi'y' z,t) —f;zijkp) + (f(x'J’j'Z' t) —fyijkp) +
Lj Qijkp

piJj k=1

2
+(f(x: V) Zks t) - fZijkp) )injkp < ”‘Ll - bh‘ruh‘rlliz(Qh) +

+C(hy + hy + h, + 37) (1 +e+ %) (lull?, gy + lluli?,,.) +
PXnYnZn
+7(1 + 3¢0) Z f (f(xy,2, tp) - fijkp)deijk +
PLik=1 Qjk
PXnYnZn tp

eC Z f f ((ff(xi:% z,t) — ffijkp)z + (fy(x' Y2, t) _ fyijkp)z 4

p.iJ k=1 Qijk tp-1

+(fCo v, z1,t) — fz‘ijkp)z) dt) injk)

Or, if we group the elements, we get:

1 nYhZn
2
(E —t(1+ 3€C)> Z J |f 6.y, 2,tp) = fijr| dQiju + (1 — £C) -
LIR=1 Qyji
PXnYnZn

J ((f(xi:y: z,t) — fxijkp)z + (f(x, Vjr2, t) - fyijkp)z +

p.i,j k=1 Qijkp

2 ) (103)
+(f(xl Y, Zy, t) - fz'ijkp) )injkp S "u - bhruhrlle(Qh) +
PXnYnZn
2
+7(1 + 32C) Z J (f(x, Y,z tp) - fijkp) dQujx +
pLIk=1 Qi

1
+C(hy + hy + hy + 37) (1 +e+ E) (||u||§2(Q) + ||u||§2hf)

We introduce some conditions. We fix € > 0 so small that the inequality 1 — eC > 0 holds. In addition, we assume
that 7 is so small that 1/2 — t(1 + 3eC) = 1/4. Then from inequality (103) we come to:

WY nZn
2

z f |f(x,y, Z, tp) _fijkPl injk < IIu - bh‘tuh‘flliz(Qh) +
Lik=1 Qyji

PXnYnZn (104)

, 104

+41(1 + 3¢C) Z f (f(x,y,2 tp) - fijkp) dQuji +

pLIKk=1 Qg

1
+C(hy + hy + hy + 37) (1 +e+ ;) (Ilullfz(Q) + ||u||§2m)

For inequality (104), we use Lemma 1, introduce the constants C; = 4(1 + 3¢C) and C, = C(1 + £ + 1/¢). We have:
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nYnZn

2
J 1762260 = o' a0 < 1 76
Lik=1 Qi (105)

' (Ilu - bh‘ruh‘rlllz,z(Qh) + C2 (hx + hy + hz + 3‘[)(”'“”%2@) + ”ullizhr))

Note that when expanding the function e in a Taylor series, the first 2 terms of the expansion correspond to
1 + 7C,, whence we can obtain the inequality 1 + tC; < e*“1, and it follows (1 + 7C;)P < eT¢1. Based on this:

XpYnZp
2
z f |f(x,y, Z,tp) —fijkPl dQiji <
LIR=1 Qg o
<cC (”u - bhruhrlllz,z(Qh) + (hX + hY + hZ + 3T)(||u||iz(Q) + ”u”%ZhT))

Using estimate (106), we prove that problem (17)-(19) approximates problem (3)-(6) with respect to function.
Theorem 2. Let the step function correspond to problem (17)-(19):

1
by =5 | b&n $)aganas,

Qijk

(107)

i=T. X,—1,j=1.Y,-Lk=1.2,-1

Then lim(hx,hy,hz,‘r)ﬁo ]h‘r* = ]*'

Let us prove this theorem. Let us evaluate the difference J(w) — J,. (uy;), assuming that u € U, uy,, € U,,. Taking
into account estimates (34),(39),(49),(58) and (106), the definition of the sets (3) and (17), the inequality;

"R Zn Xn¥nZn L 2 X YnZn
hbf,, = Z h h Jb(f,n,¢)dfdnd¢ < Z jbz(f.n.¢)d€dnd¢sIIbllfz(Q—3) (108)

i,j,k=1 i,j,k=1 Qijk i,jk=1 Qijk

Then if we subtract the discrete criterion (4) from the criterion of the differential problem (18) and estimate the
difference:

h
) = e Ctpe)] = j f (9,2, T5w) — b(x,y, 2)I2dQs +
0
XnYnZn
+ f ((f(x;% z,tp;u) _fijkP) + (b(x,y, z) — bijk)) :
Qijk

i,j k=1

' (f(x,y,z, tp;w) + biji — fijke — b(x,y, Z)) dQ; <

h
<2 f(fz(x, v,2,T;w) — b?(x,y,2))dQ; |+
0

1
| /Xy :
2

| f(f(x:y; Z; tP;u) _]cl]kp) dQ3 +
l Lik=1 Qyjy

XnTnZn %1| [ 1

2

+ Z f(b(x'y'z)_bijk) dQs |><| f]‘z(x,y,z,tp;u)dQ3 +

Lik=1 Qyj J l 03
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1

XnViZh 2 Xn Vi ﬂl
D hfEe | FUbIE G| D hbE | <
ijk=1 ijk=1 J

h
<2 f b2(x,y,2z)dQs + C (||u — bpeunellycop + v (Ax + hy + hy +37) +
0

1

XV Zn 2
+heR?+| Y f (br.y.2) = by) s | |
Lik=1 Qi

We can obtain the following inequality:

h
() = Jue tne)| < hCR? +2 f b2(x,y,2)dQ; +
0

+C (”u - thuhTHLz(Qh) + \/(hx + hy + h’Z + 3T) +
(109)

1
nYnZn 2
2
¥ [ by -by)ae | |
LIR=1 Qi

We estimate the differential function and its step analogue to show that as (hy, hy, h;) — 0 due to the average
continuity of the function b(x, y, z) € L, q,), its square is the difference with the step function b, tends to 0. For this,
we integrate the square of the difference of functions over the variables and use the definition (107), we obtain:

T 2

1
J . j (b(x,y,2) = b(§,n, $))dgdndgp | dQy <

Lik=1 Qi \ Qijk

wYhZh 1 h
< f 7 f(Ab)Zdadcde dQij, =
LE=1 Qi \ <k (110)

“h
f(Ab)deijk dadcde <  max fIAbIZdQ3 -0,
|(a,b,c)|sh
“h \ Lik=1 Qi Q3
Ab=blx+ay+cz+e)—b(xyz)

Since problem (5), (6) and (19) have a solution, i.e., U, # @, Uy, # @, we fix some u, and u,,,, so that u, €
U,y Upgs € Upgoo Since lbpoting.ll, o) = ltneilr,,, < R, taking b up,, = 0 outside Q,, we can assume that
bp:Un € U. For the control function u, € U, we construct its discrete analog Qp,u, = {u*ijkp,i =1.X,,j=
1..Y,, k = 1..Z,,p = 1.. P} by the rule:

1
Usijkp = T f w,(x,y,2,t)dQ;jkp (111)
Qijkp
We show that Q,,u, € U,,. For this we show:
PXpYnZn

10wl < D [ w2 0d00, < Il < R 112)

PLIK=1 Qyjp

Having performed mathematical transformations similar to formula (110), we obtain:
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”u* (x' Y,z t) - bh‘L’QhTu*”Lz(Qh) =0 (113)

lim
(hx,hy,hz,t)-0

We find the upper and lower limits of the difference in the criteria of the differential and discrete problems in order
to determine an estimate of the rate of convergence. Let's start with the upper limit:

T = Jnes < J(bpet,) = Jne(Upes) < hCR? + C/(hy + hy + hy +37) +

1

n HnTutn 2 (114)
, 2
+2 f b%(x,y,2z)dQ; + C | Z f(b(x, v,z) — bijk) dQs | |
0 i,j,k=1 Qijk
m (. =) <0 (115)

(hx,hy,hz,t)-0

We begin by estimating the last term from the right-hand side. Based on the formula (112), we discard it, since it
tends to O with decreasing step. The second term with a sufficiently small difference in the arguments of a certain
integral will give an insignificant value. The first term, in comparison with the third, has a larger order of smallness;

therefore, the upper limit is determined by such a quantity as CJ(hX + hy + hy + 37).

We perform the same operations to determine the lower limit, but change the arguments for the criteria of the
differential and discrete problems. We get:

Jo = Jnes 2T = Jne(Qpew) = —C+/(hy + hy + hy +37) —

1
b TR EWAN 2 h

—C| Z J (b(x,y, z) — bijk)ZdQ3 | =2 J b%(x,y,2)dQs — w16)

\ iLjk=1 Qijk / 0

_”u* (xr v, z, t) - bh‘rQh‘ru*”Lz(Qh) - hCRZ

lim  (J, = Jp) <0 (117)

(hx,hy,hz,t)~0

Based on the formula (113), the first term is neglected due to its lesser influence on the right side in comparison with
others. For the remaining elements of the right-hand side, the conclusions remain similar to the conclusions for the
formula (114).

The limits of (115), (117) imply the statement of Theorem 2. Inequalities (114), (116) estimate the rate of
convergence for J, — Ju... If b(x,y,2),u, = u.(x,y,2z1t) are sufficiently smooth, then it follows from (114), (116)
that:

. = Jural = 0 (Vhix + hy + 1z +30)) (118)

9. Conclusion

The problem of determining the approximation order of the optimal control problem for the spatial process of heat
conduction is considered in the paper. Using the methods of integral inequalities and the method of difference
approximation, a difference problem is obtained, an algorithm for finding its solution is described, and an estimate is
obtained for the deviation of the value of the difference functional from the continuous functional. The established
inequality Equation (118) gives an idea of the time complexity of the process of calculating an approximate solution
when the accuracy of calculations is given in advance. The time steps and spatial variables are not independent,
additional restrictions must be imposed to ensure stability. The methodology for obtaining an approximation estimate
can be used for implicit approximations, hybrid schemes. The methods used in this article can be successfully applied
for similar parabolic problems with bounded coefficients, as well as for problems of large dimensions.
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