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Abstract 

In the last decade Portugal made a significant set of investments in new hydroelectric projects. According the Portuguese 

Dam Safety Regulation and Supporting Technical Documents, and the seismic risk for the regions where the dams were 

built, several seismic monitoring systems were implemented. One of the most important projects was the Baixo Sabor 

hydroelectric scheme which includes two large dams, namely the Baixo Sabor and Feiticeiro dams. These dams are 

located at northeast of Portugal and are very close to a major geological fault that crosses the Portuguese territory. 

Considering the seismic risk of the dam’s construction area, a seismic monitoring system was provided. That system 

incorporates stations in the dam’s galleries and remote stations along the reservoirs to detect eventual induced reservoir 

seismicity. This system has been in continuous operation and the data of the recorded earthquakes records has been 

analyzed and processed. This paper presents some aspects of the Portuguese legislation, refers the main studies that were 

used, presents a brief description of the regional Baixo Sabor geological and tectonic settings, describes the main features 

of the seismic monitoring system and presents some of the main results obtained during the first period of operation of 

the dams. 
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1. Introduction 

The Baixo Sabor Hydropower Scheme is situated in the north-eastern of Portugal in the lower part of the Sabor 

river, that is a tributary of the right bank of the Douro river (Figure 1). This global area has a moderate seismic risk, 

but the presence of the Vilariça fault near the scheme had to be considered. So, an exhaustive seismological study was 

developed in order to predict the characteristics of the seismic actions. These actions were considered in the dam’s 

design to assure adequate safety conditions.  

According to the current Portuguese legislation and considering the seismic risk of the dam’s construction area, a 

Seismic Monitoring System (SMS) was provided, incorporating instrumentation to characterize the seismic action 

induced in the dams and the corresponding structural response. In this context, and for all new large dams, the 

implementation of an SMS is mandatory. In their most extensive configuration, these systems may incorporate remote 

stations along the reservoir for studying the propagation of seismic actions and to evaluate the induced reservoir 

seismicity. 

The hydropower scheme of Baixo Sabor is composed of two dams, namely the upstream Baixo Sabor dam and the 

downstream Feiticeiro dam (Figure 2), located about 12.6 km and 3.3 km far from the confluence of the Sabor with the 

Douro River, respectively. Reversible units were installed in the powerhouses associated to each dam to enable the 
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water pumping from the upper zone of the Douro River to the large reservoir of the upstream dam.  Both dams were 

studied and designed by EDP Produção. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location Baixo Sabor and Feiticeiro dam’s in the Iberian Peninsula 

The Baixo Sabor arch dam is a 123 m high structure, with a total crest length of 505 m and a total concrete volume 

of 670 000 m
3
. For the full storage water level located at elevation (234.0), the reservoir capacity is of 1 095 million 

cubic meters. A controlled surface spillway is located at the central part of the dam crest with a discharge capacity of 5 

000 m
3
/s, including four spans controlled by radial gates and provided of a downstream plunge pool. The underground 

power house, located in the right bank, has two reversible units of 81 MW each. 

    

Figure 2. Views of Baixo Sabor and Feiticeiro dams 

The Feiticeiro dam is a concrete gravity structure, with a rectilinear layout, a maximum height of 45 m, and a total 

crest length of 315m. The controlled spillway is located in the central part of the dam also designed for a maximum 

flood of 5 000 m
3
/s. It is provided of four spans controlled by radial gates and a downstream roller bucket for the water 

energy dissipation. Two independent tunnels connect the reservoir to the two reversible power units which, are 

installed into two shafts situated in the right bank, downstream the dam. The reservoir has a capacity of 30 million 

cubic meters of for the full storage level located at elevation 138 m. 

For continuous dynamic monitoring behaviour of the two dams, when subjected to seismic action, a Seismic 

Monitoring System (SMS) was installed in the Baixo Sabor Scheme. This system has been developed as an active 

system, operating permanently and guaranteeing the recording of the dams and their soundings vibrations when 

earthquakes occur. 

Characterization of the dynamic response is essential for structures located in seismic regions. Furthermore, the 

monitoring of the dynamic behaviour of concrete arch dams is increasingly viewed as an important component of 

safety assessment procedures to envisaging the risk associated to the prediction of dam’s behaviour. The evolution of 

the dynamic characteristics may also help to detect the initiation or the development of damage phenomena throughout 

the structure lifetime. Ambient vibration monitoring is nowadays often used for these purposes. In this context, a 
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continuous dynamic monitoring system was also installed in the Baixo Sabor dam with sophisticated automatic tools 

based on operational modal analysis to continuously evaluate the dynamic parameters of the dam along the time. 

This article is structured in a set of points where they are presented the geological and tectonic settings of Baixo 

Sabor site, the seismic studies and design scenarios adopted, the description of the seismic monitoring system, the first 

results obtained during the first period of operation of Baixo Sabor dam and finally the main conclusions. 

2. Geological and Tectonic Setting 

The Baixo Sabor and Feiticeiro dams are located in the northeast of Portugal in a region that is dominated by the 

important geological Vilariça fault (Figures 3 and 4), which is located 6.5 km and 0.5 km, in a straight line, to the west 

of the Baixo Sabor (BSD) and Feiticeiro dam (FD) sites, respectively. It is a late Hercynian NNE-SSW strike slip fault, 

with an accumulated horizontal sinistral displacement of approximately 6.5 km and a length of more than 200 km, 

extending from Sanábria region (Spain) to Serra da Estrela region, in the center of Portugal. 

This fault was reactivated several times since the end of the Hercynian orogeny and presently is classified as active 

[1]. A distensive phase, with a vertical component of movement developed in the secondary subparallel faults, initiated 

in the Miocenic, and contributed to the formation of an en echelon graben [2] with an elevation difference of more than 

300 m between the upper and the lower blocks, preserving the Quaternary torrential piedmont deposits (rañas) and the 

posterior fluvial deposits inside this tectonic basin. 

 

 

(a) 

(b) 

 

Figure 3. Localization of the main Portuguese geological faults (a) [3] and Northern Portugal geological map (b) [4] 

The Baixo Sabor dam is located in a 1 km long, NE-SW orientated valley segment (Figure 4), with a deep, narrow 

and slightly asymmetrical transversal profile, 25 m wide at the base and 440 m at the crest level. The dam is founded in 

a granitic rock mass that intruded the phyllite-greywacke metassediments of the Douro-Beiras Group during the 3
rd

 

phase of the Hercynian orogeny, approximately 300 m.yr. ago (K/Ar dating) [2]. From a petrographic point of view, 

this rock corresponds to a medium to coarse grained, biotitic-muscovitic, porphyroid granite. 

The oldest rocks in this region originated from a thick Cambrian turbiditic sequence of marine sandy-argillaceous 

sediments (greenish background colors in Figure 4) that were deformed during the Caledonian orogeny (~490-390 

Vilariça fault alignment 

Dam´s site 
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m.yr.) by epyrogenic movements and a compression phase with formation of large open folds and NW-SE to WNW-

ESE sin-sedimentary thrust faults. The posterior Ordovician sandy-quartzitic and argillaceous sediments were 

deposited during this orogeny in costal to distal marine and, in some cases, euxinic environments [2].  

 

Figure 4. Baixo Sabor dam geological setting (adapted from [2]); BSD – Baixo Sabor dam; FD – Feiticeiro dam; VFZ – 

Vilariça fault zone (the space between arrows corresponds to the horizontal accumulated displacement) 

During the Hercynian orogeny (370-270 m.yr.) these lithologies were intensely folded, metamorphized and 

intruded by large granitic batholiths (pinkish background colors in Figure 4). There were 3 Hercynian deformation 

phases, the 1
st
 one being the responsible for the main NW-SE mega and meso-scale folds with formation of an axial 

plane schistosity. The 2
nd

 phase originated overthrust and thrust faults and a crenulation (microfolds) cleavage [2]. 

Several granitic batholiths were implanted during and immediately after the 3
rd

 phase of this orogeny. Isoclinal 

folds and an axial plane schistosity were also formed, transposing the 1
st
 phase schistose cleavage. 

A brittle fracture regime was established in final Hercynian times and later, with formation of large NNE-SSE to 

NE-SW sinistral strike-slip faults and 2
nd

 order WSW-ENE dextral conjugated faults. Many of these faults were 

intruded by thick quartz or aplitic-pegmatitic veins and sometimes micro-gabbros, during the post-tectonic distensive 

phase. 

The region where the Baixo Sabor Hydropower Scheme is located presents diffuse seismicity of moderate to low 

intensity, which is characteristic of an intra-plate zone. 

The proximity of the Vilariça fault zone to the Baixo Sabor and Feiticeiro dams led to the development of a 

geomorphologic and paleoseismological study [2] during the design phase. This study included the detailed mapping 

geological (Figure 5) of trenches located on the Vilariça fault trace, sediment sampling and dating using Optical 

Stimulated Luminescence technics and allowed the estimation of a slip rate of 0.2-0.3 mm/yr. The long return period 

(~9000 years) obtained for the Maximum Credible Earthquake (MCE) on Vilariça fault, with an estimated magnitude 

of 7.25, reflects the above mentioned intraplate seismotectonic setting of this region. 

The most striking feature visible in Figure 5 is the one related with the fault N15
o
E, 85

o
SE, that puts in contact the 

Cambrian phyllites (Pi) and the Quaternary alluvium (Qoa) and, also affects the Quaternary colluvium (Col2), proving 

the activity of the Vilariça fault in this geological period (< 1.6 m.yr.). 
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Figure 5. Detailed geological mapping of the south wall of trench VR2 (adapted from [5]); Pi – Chloritic phyllite 

(Cambrian); Qoa – Older alluvium; Qt – river terrace; Col2 – Older colluvium; Qa2 – Intermediate alluvium; Qa1 – 

Younger alluvium; Col1 – Younger colluvium. 

Other nearby faults also considered active in Cabral and Ribeiro (1988) study [1], are the Ribeira de Zacarias fault, 

a 20 km long, N-S reverse fault that crosses the dam reservoir approximately 8.5 km upstream and a 4 km long, NNE-

SSW fault, near the village of Felgar. 

The current Alpine orogeny, with a NW-SE to NNW-SSE maximum compressive stress orientation [6] in the NE 

region of Portugal, is the responsible for stress accumulation and the reactivation of ancient faults like the Vilariça and 

other faults, that have implications in the Baixo Sabor area seismicity. So, considering the tectonic setting in the Baixo 

Sabor area, the dam height (123 m) and the reservoir dimensions, the tectonic and the reservoir induced seismicity had 

to be monitored. The selection of locations for the seismic monitoring remote stations (Table 1 and Figure 6) was 

performed during the design phase, taking into account this seismotectonic framework. 

Table 1. Remote seismic monitoring stations 

Remote Station 
Foundation Nearby fault 

Designation Localization 

SR 1 Adeganha Coarse grained granite (W3-4) Vilariça 

SR 2 Felgar Coarse grained granite (W3) Felgar 

SR 3 Meirinhos Phyllite (W3) Ribeira de Zacarias 

SR 4 Sendim Greenish phyllite (W3-4) Ribeira de Zacarias 

SR 5 Baixo Sabor dam Fine to medium grained granite (W4) Vilariça 

SR 6 Feiticeiro dam Greyish phyllite (W3) Vilariça 

In the construction phase, these locations were slightly adjusted, also considering the foundation geotechnical 

characteristics. 

3. Seismic Studies and Design Scenarios 

According to Portuguese Dams Safety Regulations (PDSR) [7] and to the Technical Documents Support for 

Portuguese Dam Safety Regulations (TDS_PDSR) ‎[8], two types of scenarios  must  be  considered  when  checking 

the dam structural safety, namely the exploitation and the failure scenarios. 

For the most frequent scenarios that can occur to be considered in the exploitation scenarios, the dam must be able 

to support these actions without, or with minor damages. On the other hand, the failure scenarios deal with extreme 

actions that can cause important damages to the dam, and failure scenarios like ruptures in the dam foundation or in the 

dam structure must be considered. For failure scenarios, overall dam stability must be assured, and uncontrolled 

reservoir water release can’t occur. 

Earthquake loading, due to seismic activity is one of the important actions that have to be considered in the design 

of dams. In addition to a set of complete geological and geotechnical studies, seismic studies are essential to estimate 
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the dynamic loadings that can appear. For these issues, the statements of TDS_PDDR are very similar to the ICOLD 

(International Commission on Large Dams) standards. 

The seismic studies are based mainly in the local and regional geological settings, and in the area seismic history. In 

this context, the seismotectonic studies, which include the identification of the possible active faults, are a major issue. 

In accordance with TDS_PDDR, the seismic studies should define the seismic actions in terms of intensity, 

frequency content and duration of the seismic vibrations in the dam site. During the design phase, the following design 

earthquakes types were considered: 

 The maximum credible earthquake (MCE), which must be evaluated using a deterministic procedure or a 

probabilistic approach, and should have a long return period; 

 The maximum design earthquake (MDE), which for dams with high potential risk hazard should be considered as 

the MCE; 

 The operating basis earthquake (OBE), less intense than the MDE, and with an assumed return period related to 

the involved estimated risks, and that is determined by probabilistic approaches. 

According to ICOLD [9], the OBE is an earthquake with significant probability of occurrence during the dam life, 

and it only can cause minor damage in the dam. So, a 50% probability of not being exceeded in 100 years is usually 

adopted for OBE estimation. In this context, for dam design and for dam safety analysis, the OBE must be considered 

as an action included in the exploitation scenarios. In addition, a more severe earthquake with a return period of about 

1000 years Base Design Earthquake (BDE) is also used to check structural dam behaviour in these scenarios. 

The MDE must be estimated rather by deterministic procedures, considering local and regional seismotectonics 

conditions. Probabilistic approaches, considering long return periods, can also be applied for MDE estimation, and are 

often used for comparison purposes. So, the MDE should be considered a failure scenario, concerning dam design or 

structural safety assessment purposes. 

In addition, Reservoir-Induced-Earthquake (RIE), that represents the ground motions capable of being triggered at 

the dam site by the presence of the reservoir, should be take into account, and so, the effects of faults susceptible to 

give rise to induced seismicity should be properly evaluated. Depending on the dam location and on seismotectonics 

conditions the RIE may represent motions less than, equal to, or greater than the OBE, but should in no case be greater 

than the MDE [9]. 

Given the importance and the potential risks associated to the Baixo Sabor dam, and in line with the adopted in the 

design of other EDP dams, a 50% probability of not being exceeded in 100 years was adopted for the Operating Basis 

Earthquake. According to the studies carried out [5] this seismic action has a peak ground acceleration of 0,084 g.  

Relying on the same seismological study, which takes in account the importance of the Vilariça geologic fault near 

to the dam’s, the peak ground acceleration of 0,522 g (corresponding to a return period of about 10 000 years) was 

estimated as maximum design earthquake (MDE). The seismological studies also gave information about intensity, 

frequency content and duration of the seismic vibrations loads that are probable to occur in the dam site, which have 

supported the dynamic dam behaviour analysis for this extreme scenario. The faults classified as active in the 

Neotectonic Map or Portugal [1] that cross the Baixo Sabor reservoir (Ribeira de Zacarias and Felgar faults) have a 

maximum length of approximately 20 km, thus it is estimated that these faults may not produce an induced earthquake 

with an acceleration greater than the OBE value at the dam site. 

4. Description of the Seismic Monitoring System 

The structural response analysis requires a correct characterization of the seismic action induced to the dam, so, the 

SMS allows the characterization of the seismic action, but also its propagation along the rock mass from different 

directions and the characterization of the induced seismicity associated to the large reservoir. According to these 

objectives the SMS of the Baixo Sabor scheme was defined with the following composition layout (Figure 6): 

Baixo Sabor dam: 

 1 Station placed near the Vilariça fault; 

 3 Stations located around the Baixo Sabor dam reservoir; 

 1 Station placed next to the Baixo Sabor dam (upstream the dam); 

 6 Stations installed inside the galleries of Baixo Sabor dam; 

Feiticeiro dam: 

 1 Station next to the Feiticeiro dam; 

 2 Stations installed inside the galleries of Feiticeiro dam. 
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A computer unit was installed to manage the data transmission process and to collect, organize and process the data 

from all stations. Each station consists of a triaxial accelerometer (GeoSIG, Model: GMSplus, full scale: ± 2g) 

equipped with the associated equipment for data acquisition and data transmission to the central unit. All the stations 

have local memory for long term autonomous work. Since real time data transmission is not required, because the data 

segments of interest may be sent with some time delay. The 3G/GPRS service was considered adequate for the 

communication process with remote stations, while an Ethernet network with TCP/IP protocol was installed for 

connecting the central unit to the stations inside each dam. 

Each station is permanently measuring and when an earthquake event occurs, identified by acceleration(s) higher 

than a pre-defined trigger value, a call to the central unit (alert) is issued and data is automatically stored in local 

memory, within an interval from a pre-event to a post-event time, at a given sampling frequency [10]. After receiving 

an alert, the central unit initiates a process of gathering the data stored in all stations sequentially. 

 If any remote station is temporarily unavailable, the central unit will contact it later, repeatedly. Whenever ordered 

by the central system, each data acquisition unit should be able to retrieve the registered data of specified intervals 

from pre-trigger to post-trigger limits. The time synchronization is essential to achieve the objectives of this system, 

because it is necessary that all stations are constantly collecting data in accurate and same instants of acquisition, with 

GPS time synchronization facility used for that purpose [11]. 

 

Figure 6. Location of remote stations on Baixo Sabor scheme 

The remote stations are normally implanted in locals without mains power supply, so it is necessary to provide a 

system with a photovoltaic panel and accumulators for energy storage. The remote stations are implanted in a 15×5 m
2
 

area (Figure 7a). This area is protected with a metal net fence, and has two small masonry cabinets, for protection of 

equipment from aggressive environmental actions (solar radiation, wind, heat, rain, atmospheric discharges). One 

cabinet contains the measurement equipment and the other the components of power supply, data transmission and 

GPS time synchronization (Figures 7b and 6c). The proximity of masts or poles to the measurement units should be 

totally avoided in order to preserve measurements from artificially induced background noise. 

 
(a) 
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(b) 

 
(c) 

Figure 7. Remote station of Baixo Sabor scheme: a) global view; b) inside view of one cabinet showing a seismometer 

installed on a concrete block; and c) a view of the other cabinet with a photovoltaic pannel on the rooftop and the location 

of accumulators. 

In the Baixo Sabor dam, 6 remote stations were installed, consisting of triaxial accelerometers, distributed through 

the galleries of the dam. In the drainage gallery was installed a station in the bottom of the valley, and a station in the 

upper part of the left and right banks. Other 3 stations were installed in the galleries of the dam structure near the crest 

(Figure 8). 

 

Figure 8. Location of the seismic stations inside Baixo Sabor dam 

In the Feiticeiro dam two seismic stations were installed, one at the top and other at the foundation of the central 

block (Figure 9). Figure 10 presented a view of the seismic stations inside the dams. 

 
Figure 9. Location of the seismic stations in Feiticeiro dam 

              

Figure 10. Seismic station in a dam gallery and operational center in Baixo Sabor power station 

Figure 11 shows the general layout scheme of the entire seismic network. 
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Figure 11. Baixo Sabor seismic monitoring system layout 

The time series from the remote stations are used in the Seisan software to determine the event characteristics [12] 

and in the future these records will be integrated in the Portuguese seismic network. The installation of this system was 

finalized in June of 2017 and is now fully operational. 

5. Main Results During the First Period of Operation of Baixo Sabor Dam 

During the first months of operation the system registered three seismic events that are characterized in Figure 12 

and Table 2. The maximum value record was 8.6 mg in the radial direction for the station SM5, located in the gallery 

GV1 in the right bank (Table 3). Figure 13 presents the records in radial direction for the event with the epicenter in 

Torre de Moncorvo, occurred in 2017/08/03 09:17. It is visible the amplification caused by the dam, of the 

accelerations recorded in the foundation when compared with the dynamic structural response in the crest. 

With the seismic records of the six tridimensional points in the dam, the natural frequencies of the dam were 

calculated applying output only modal identification techniques. The length of these records is only about 60 s and the 

duration of the seismic event is near 5 seconds. This small duration may be a problem for the correct identification of 

the dynamic parameters, but it is compensated by the amplitude values of the accelerations. The values of the first 5 

natural frequencies for the events occurred in Torre de Moncorvo are presented in the Table 4. 

 

Figure 12. Seismic events registered with the SMS in relation to the principal Portuguese north faults 



Civil Engineering Journal         Vol. 6, No. 11, November, 2020 

2081 

 

 

Table 2. Seismic event registered with the SMS 

Date 
Magnitude Localization of the event 

Distance to the Baixo Sabor 

dam Day Time 

2017/06/06 16:03 3.6 Amarante  115 km 

2017/08/03 09:17 2.9 Torre de Moncorvo  8 km 

2017/08/03 14:57 2.6 Torre de Moncorvo  10 km 

Table 3. Maximus values of accelerations registered in the SMS (mg) in the Baixo Sabor dam stations 

Stations 
Events date 

2017/06/06 16:03 2017/08/03 09:17 2017/08/03 14:57 

D
am

 

SM2r 2.72 7.51 5.35 

SM2t 1.61 4.36 2.64 

SM2z 0.76 5.77 2.48 

SM4r 1.66 3.79 3.33 

SM4t 1.15 4.20 2.61 

SM4z 1.22 4.37 2.80 

SM5r 3.08 8.60 6.01 

SM5t 1.12 8.14 6.01 

SM5z 0.99 5.69 3.58 

F
o

u
n
d

at
io

n
 

SM1r 0.38 4.74 2.86 

SM1t 0.79 2.85 1.93 

SM1z 0.52 2.84 1.88 

SM3r 0.66 6.42 3.15 

SM3t 0.69 2.83 1.87 

SM3z 0.50 2.69 1.48 

SM6r 0.61 3.04 1.50 

SM6t 0.62 5.12 3.70 

SM6z 0.52 3.04 2.20 

  

D
am

 

 

F
o

u
n

d
at

io
n
 

Figure 13. Radial seismic records (acceleration) in the Baixo Sabor dam for the event of 2017/08/03 09:17 
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Table 4. Dynamic parameters calculated for the two Torre de Moncorvo events by modal identification (SSI) 

Mode Mode type 

Events 

2017/08/03 09:17 2017/08/03 14:57 

Freq (Hz) 𝝃 (%) Freq (Hz) 𝝃 (%) 

1 Symmetric 2.54 1.32 2.55 0.96 

2 Antisymmetric 2.66 0.77 2.67 0.99 

3 Symmetric 3.48 1.70 3.50 1.79 

4 Antisymmetric 4.10 2.06 4.11 1.34 

5 Symmetric 4.95 2.50 4.94 2.01 

To ensure a good characterization of the dynamic behavior of the Baixo Sabor dam a continuous dynamic 

monitoring system (CMDS) was installed. 20 uniaxial accelerometers were radially installed along the three upper 

galleries of the dam. In the GV1 gallery, 12 accelerometers are divided in two groups of six, disposed on each side of 

the spillway. Each of these groups of six is connected to a digitizer, which is linked to a field computer. In turn, the 

eight accelerometers on the two lower galleries are connected to a different set of two digitizers. All the equipment is 

connected by optic fiber and the synchronization of the data recorded by each digitizer is assured with GPS antennas. 

The dynamic monitoring system is configured to continuously record acceleration time series with a sampling rate 

of 50 Hz and a duration of 30 minutes at all instrumented points, thus producing 48 groups of time series per 

day ‎[13].  

The data continuously collected by the dynamic monitoring system is independently processed by ViBest/FEUP 

and LNEC, this paper presents the processing developed by ViBest/FEUP, which is accomplished with a monitoring 

software developed at ViBest/FEUP called DynaMo [14]. 

Estimations of the modal parameters by the CDMS system for the first five modes are resumed in Table 5, where 

minimum, maximum, mean, and standard deviation frequencies and damping values are presented. Notice the 

significant difference between minimum and maximum frequencies for each vibration mode, even after the elimination 

of outliers, which is reflected in the standard deviation values as well, indicating significant oscillations during the 

evaluation period. Additionally, the damping values present slightly higher mean values for the symmetric modes. 

Table 5. Modal Parameters obtained by SMC for Baixo Sabor dam 

Mode Mode type 
𝒇[𝐌𝐢𝐧 ; 𝐌𝐚𝐱] 

[Hz] 
𝒇𝒎𝒆𝒂𝒏 [Hz] 𝒇𝒔𝒕𝒅 [Hz] 

𝝃[𝐌𝐢𝐧 ; 𝐌𝐚𝐱] 

[%] 
𝝃𝒎𝒆𝒂𝒏 [%] 

𝝃𝒔𝒕𝒅 

[%] 

1 Symmetric [2.43 ; 2.75] 2.53 0.10 [1.16 ; 3.16] 1.50 0.23 

2 Antisymmetric [2.57 ; 2.92] 2.68 0.11 [0.85 ; 2.11] 1.42 0.15 

3 Symmetric [3.33 ; 3.85] 3.51 0.17 [0.55 ; 3.00] 1.67 0.25 

4 Antisymmetric [3.92 ; 4.50] 4.12 0.19 [0.92 ; 1.82] 1.36 0.16 

5 Symmetric [4.78 ; 5.34] 4.99 0.18 [0.75 ; 2.66] 1.88 0.30 

The first six months of data were processed, and the first modes of vibration were identified and natural 

frequencies, modal damping values and modal configurations were obtained. The three-dimensional representations of 

the modal configurations are presented in Figure 14. The first, third and fifth modes are approximately symmetric and 

the second and fourth are antisymmetric. 

These results are consistent in the results obtained by the seismic monitoring system and by the continuous dynamic 

monitoring system are reliable [15, 16]. 

1 
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Figure 14. Modal configuration of the first five modes of Baixo Sabor arch dam [17] 

6. Conclusion 

Baixo Sabor dam is the second highest dam in Portugal, its reservoir is the second in volume and its monitoring 

system is one of the most complexes implemented in Portugal, combining traditional measurements instruments with 

the most advanced technologies applied in dynamic monitoring. 

Both dynamic monitoring systems installed in the Baixo Sabor Hydroelectrical Scheme, SMS and CDMS, are 

operational and integrate automatic procedures that make them fully autonomous, providing useful outputs for the 

safety control of these important structures. The features implemented in both systems revealed excellent efficiency 

and demonstrated a perfect suitability. The results showed an expected and direct relation with the variation of seismic 

and dynamic loads. 

The results of the observation systems are being compared with the ones obtained with numerical models that were 

calibrated with the results provided by the forced vibration tests that were performed in the dam, both for empty and 

full reservoir situations [18-21]. 

These systems proved already to be extremely useful to evaluate the behavior of these structures during seismic 

events and to provide relevant information for the development of numerical models including new behavior models. 

So, they demonstrate to be a very important tool concerning dam safety control and seismic risk management. 
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