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Abstract 

Deep Soil Mix (DSM) is a proven method of ground improvement for deeper underlying soft soil layers which are 

otherwise impractical to reach using conventional shallow soil stabilization and replacement methods. The predominant 

binder materials used are Ordinary Portland cement (OPC) and Lime (CaO) but negative effects to the environment from 

manufacture and increasing construction cost have prompted research into alternative materials. This review identifies 

pozzolans and filler materials as possible supplements or partial substitutes for better results. The DSM method and binder 

reaction processes during treated soil strength development are outlined and effectiveness of different pozzolans (Fly Ash, 

Silica Fume, Ground Granulated Blast Furnace Slag, Rice Husk Ash, Kaolin, and Metakaolin) and filler materials (e.g. 

fine sand) discussed together with their influence factors. With many pozzolans, a clear optimum dosage is observed where 

improved strength peaks. Aluminosilicate pozzolans perform better over siliceous pozzolans with Metakaolin (MK) 

identified as the most effective pozzolan for enhancing compressive strength. Up to date research results on these materials 

are compiled. MK blended cements are readily available and can be readily applied for initial field tests. Treated soil 

strength may be regulated with addition of filler materials to further reduce reliance on cement. 

Keywords: Ground Improvement; Lime; Ordinary Portland Cement; Pozzolans; Deep Soil Mix. 

 

1. Introduction 

Construction in soft soil conditions require either wide footprint or deep foundations to support the overlying structure 

without soil shear failure or excessive settlement. Highly developed areas for infrastructure, residential, commercial and 

industry often encounter soft soil conditions (peat / clay / silt in river deltas, flood plains and alluvial plains etc.). 

A viable alternative engineering solution is through ground improvement. The properties of the underlying soil are 

improved to satisfactorily support the imposed bearing pressure from the structure above. The soil properties can be 

enhanced by 1) full or partial replacement with stronger materials – e.g. geo-textiles, fibrous materials, etc.; 2) adding 

binder materials that will react with the soil to strengthen it – e.g. soil stabilization, soil reinforcement, etc.; or 3) 

modifying the existing consistency of the soil – e.g. pre-loading, electro-kinetic stabilization, etc. 

The Deep Soil Mix (DSM) method applies soil stabilization principles, which comprises the addition and mixing of 

binder materials with the soil as stabilizing agents and other filler materials in the form of columns into the soil stratum. 

Presently, the pre-dominant binder materials utilized are cement and lime. These are classified as traditional 

cementitious / hydraulic binder materials. 
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However, industrial production of cement releases significant carbon dioxide (CO2) (about 7% global man-made CO2 

emissions [1]) to the atmosphere  which contributes to the climate change effect. Likewise, CO2 is also a by-product 

when producing quicklime (CaO). Production of both materials is also energy intensive. Hence, there is incentive to 

research new alternative replacement materials that offer similar or better ground improvement performance but with 

less environmental, energy impact and financial cost. Pozzolanic and filler materials have been applied successfully to 

improve concrete properties and researched for soil stabilization. This paper briefly explains the reaction processes and 

discusses their applicability to supplement or improve performance of traditional binders in the case of DSM.  

2. Deep Soil Mix (DSM) 

In DSM, specialized equipment auger to depth, and inject binder material / filler material which reacts with the 

existing soil to form columns of improved soil. The primary objective of deep mixing is to produce a stabilized soil 

mass consisting of a group of soil-stabilized columns. In contrast, conventional soil stabilization involves applying and 

mixing stabilizing agents at shallow depth or excavated layer of soil. DSM has been applied in soft ground conditions 

such as marine clay, alluvial deposits, organic soils and peat. The deep mixing method has been developed and practiced 

primarily in Japan and Scandinavian countries since the 1980s as well as in the USA and central Europe since the 1990s. 

Column installation in DSM may either be 1) Wet mixed (WDSM) or 2) Dry mixed (DDSM). For a wet mixing 

method, the binding agent is turned into wet slurry form and pressure injected into the soil through nozzles located at 

the end of a specialized soil auger. Column depths of 45m with 0.5 to 0.9m diameters have been achieved with column 

compressive strengths ranging from 1.5 to 4 MPa [2]. For the dry mixing method (considered more economical than 

WDSM), the dry binder is injected (using compressed air) into the soil at depth and thoroughly mixed with moist soil. 

The soil is pre-mixed using a specialized tool during the downward penetration of the auger until the targeted depth is 

reached. As the mixing tool is withdrawn, the dry binder is injected and mixed with the soil – forming a moist soil mix 

column. Typical column diameters range from 0.6 to 0.8m with depths of 25-30m. Design compressive strength is from 

150 to 500 kPa [2]. 

The effectiveness and selection of which DSM installation method is dependent on moisture content of the soil layer. 

Generally, DDSM techniques achieve less strength for the same soil type than WDSM. WDSM is suitable for soft clays, 

silts, fine-grained sands with lower water content, and multiple interbedded soft and stiff /dense soil layers. DDSM is 

more appropriate for soft soils with high moisture content, organic soils and sludges [3]. 

Table 1. Some field case studies of cement treated DSM 

Research Location Method Soil Binder (kg/m3) Cement type Actual UCS (MPa) 

[4] Japan DDSM Clay 130 – 290 
Blast Furnace Slag Cement 

Type B 
0.2 – 0.5 (28 d) 

1.8 – 4.2 (17 yrs.) 

[5] S. Korea WDSM 
Clay 

(marine) 
270 GGBS cement 

1.1 @ 2m depth – 

5.1 @ 15m depth (28 d) 

[6] USA WDSM Residual Not stated Not stated 0.69 design / 1.5 avg. (28 d) 

[7] Singapore WDSM Clay 280 OPC 1.7 mean 

[8] Vietnam WDSM Clay 200 – 240 
Tower (60%) slag cement 

Stable soil cement 

2 @ 3m depth –  

3.4 @ 12m depth (28 d) 

3. Required Properties For DSM 

For DSM, the binders would seek to improve the following treated soil properties: 

 Strength – cohesion (c) and internal angle of friction ( φ ) which determines both shear strength (s) and 

compressive strength (q); 

 Compressibility – Youngs Modulus (E) and Constrained Modulus (M) which determines settlement behaviour; 

 Plasticity – Atterberg limits which determines the critical stages of fine-grained soil state and behaviour; 

 Dynamic – Shear Modulus (G) and Damping Ratio (D) which affects resistance to liquefaction and soil structure 

interaction (SSI) effects when dynamic loading conditions occur. 

The effectiveness of the binder reaction with soil is significantly influenced by: 

 Binder type and insertion methods – WDSM in jetted slurry form / DDSM by compressed air; 

 Mixing methods – binder mix consistency with the soil; 

 Binder dosage applied (higher dosage up to an optimum level lead to greater strength); 
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 Type and content of reactive pozzolanic material in soil – i.e. silica / aluminate material in the soil. High organic 

matter content in soils like peat can retard cementitious reaction process. Pozzolanic reactions will not initiate or 

be effective if there are insufficient reactive silica or aluminates; 

 Soil temperature & pH – higher temperature increases rate of reaction. High acidity inhibits reaction rate; 

 Allowable curing period – strength increases with curing time; 

 Specific surface of binder particle – A higher specific surface causes faster reaction to take place (where smaller 

particles have a higher specific surface). 

 
1 shall be reported in a future review article 

Figure 1. DSM Binders methodology 

 
Figure 2. Normalized Strength (qt/q28) development with curing time 

4. Traditional Binder Materials 

4.1. Reaction Mechanism 

Traditional cementitious binder materials, OPC, lime or a combined mixture of both materials are still the most 

commonly used in DSM. Lime, in the form of calcium oxide (CaO), is derived from crushing and heating limestone 
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(CaCO3) at over 1000 Co. When added to soil, CaO undergoes a calcareous reaction with the water content in soil to 

form slaked lime or hydrated lime, otherwise known as calcium hydroxide (Ca(OH)2) [9]. Combining with water in soil 

results in hydration which reduces the water content in the soil which leads to better soil stability. Strength development 

is derived from secondary reactions between any pozzolanic materials mixed with lime or as particles in the soil. These 

secondary pozzolanic reactions form C-S-H, C-A-H and C-A-S-H which are the main contributing components to 

strength gain. Other benefits of lime binders come from the heat release from exothermic CaO / H2O reaction of CaO 

and increase in pH due to Ca (OH)2 formed which improves the pozzolanic reaction rate. 

Cement (OPC) reacts hydraulically with water to form a paste which binds the soil and other binder particles together 

into a hardened mass. Strength development comes from formation of C-S-H and C-A-H due to reaction of C3S, C2S 

and C3A components of cement with water.  

4.2. Lime Binders 

Lime as a binder in stabilization has been used in deep soil mixed columns for loose clays, silts and peat soils since 

the 1970s in Scandinavia. Undrained shear strengths for stabilized clay under favorable conditions of 10 to 50 times 

original soil strength have been recorded after one year [10, 11]. Studies were also conducted on the engineering 

characteristics of lime stabilized organic soils [12] and design principles for stabilization using lime columns have been 

established [10]. Lime neutralizes the acidity of organic matter in soils and improves soil plasticity and shear strength. 

However, strength development in lime columns is still susceptible to several factors: 

 Soil temperature – lower temperatures slows the reaction considerably; 

 Low pH in soil retards reaction and leads to long-term deterioration of the soil-lime column; 

 Sulphate content – high soil sulphate content interferes with normal pozzolanic reactions between lime and any 

pozzolanic particles in the soil. This is similar to cementitious hydraulic reactions when low-density ettringite forms 

in the presence of sulphate ions leading to expansion and cracking in the brittle soil-lime soil mix [13]. 

Table 2. Reaction mechanism of cementitious binders in soil 

Binder 

Type 

Binder 

Component 

Binder comp. 

% (wt. binder) 
Reaction Equation 

Reaction 

time 
Effect 

Cement 

C3S 55 2C3S + 7H → C3S2H4 + 3CH rapid Early strength gain 

C2S 18 2C2S + 5H → C3S2H4 + CH slow Long term strength gain 

C3A 10 
2C3A + 21H → C4AH19 + C2AH8 → 

2C3AH6 + 9H 
rapid Early set (hardening) 

C3A + (C S̅ H2)  2C3A + 3CŜH2 + 26H → C6AS̅3H32 rapid 
Slows down set reaction 
of C3S, C2S 

C4AF + (CS̅H2) 8 
3C4AF + 12CŜH2 + 110H → 4[C6AS̅3H32] + 

2 AFm, t 
slow 

slows down set reaction 

of C3S, C2S 

Lime 

CaO 100 CaO + H2O → Ca (OH)2 rapid 

increases pH to ~ 12.5; 

reduce water content in 

soil 

 N/A 
Ca (OH)2 + pozzolans in soil + H2O → C-

S-H and/or C-A-S-H 
slow Long term strength gain 

1 Adapted from Ahnberg and Johansson (2005) 

2 CaO =Calcium Oxide ; Ca(OH)2 = Calcium Hydroxide ; CH = Calcium Hydrate ; C-A-S-H = Calcium Aluminate Silicate Hydrate (ettringite)  ; C-S-H = 

Calcium Silicate Hydrate (C3S2H4) ; C-A-H = Calcium Aluminate Hydrate ; AFm,t = Alumino Ferrite mono and tri phases; C3S = Tricalcium Silicate ; C2S = 

Dicalcium Silicate ; C3A =  Tricalcium Aluminate ; C4AF = Tetra calcium Alumino Ferrite ; Gypsum = CS̅H2 

4.3. Cement Binders 

Cement has been the most researched and widely utilized binder material for deep soil mixing. Deep cement columns 

in Japan have typically achieved over 1 MPa UCS by wet method installation and typically, 500 kPa by dry method 

installation methods [14]. Cement offers greater soil mechanical improvement (shear strength and compressibility) over 

lime [9, 15]. The design methodology for combined lime/cement and cement columns have been developed  for soft 

clays [16, 17]. 

For peat soil, the application of deep soil mix columns was investigated  with a series of simple scale models in the 

field [18–20]. Huat et al. [21] conducted a series of tests on various proportions of cement and lime binders on peat soil, 

showing increasing strength improvement in the order of 2 to 3 times as binder % increases. The implementation of 

deep mixed methods cement columns in peat soils was also studied in the lab by a series of Rowe cell tests [22]. In soft 

organic soils (e.g. peat), the organic matter in the soil inhibited cementitious reaction [23]. Research by Hebib and Farrell 

[24] supported the finding that the combination of high organic content, lack of solid and pozzolanic particles, acidic 

media (from humic acid) and high water: solids ratio all seek to impede efficient hydration of cement in peat soils.  
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Investigation of the influence of cement binder dosage [25, 26] showed an increase in cement ratio leads to improved 

compressibility characteristics of soft clay and peat soil.  

Longer curing periods also lead to greater strength development in cement-treated soil. Logarithmic models  were 

widely used to predict strength gain over time [4, 27]. A shortcoming of a logarithmic model was that it implied 

indefinite strength increase with time. Logically, cement hydration should cease when reaction products are consumed. 

This led to an improved hyperbolic function model  on strength development over time [28, 29].   

 

Figure 2. Structure of soil prior and after hydration/ curing of cement binder 

5. Pozzolanic Binder Materials 

5.1. Reaction Mechanism 

Pozzolans, are defined as "siliceous or siliceous and aluminous materials which in themselves possess little or no 

cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium 

hydroxide at ordinary temperatures to form compounds possessing cementitious properties" [30]. The chemical reaction 

between these siliceous and/or siliceous-alumina rich components, calcium hydroxide and water, is called the pozzolanic 

reaction. Also known as supplementary cementitious materials (SCM), pozzolans can act as a beneficial additive to 

cement with various performance enhancing effects for soil stabilization. Pozzolans can be categorized as:  

 Natural Pozzolans – either of volcanic (unaltered pyroclastic materials e.g. vitreous pumices / ashes or altered 

pyroclastic materials like zeolitized tuffs etc.) or sedimentary origin (e.g. chemical sediments e.g. diatomaceous earth 

or detrital sediments e.g. clays, shales etc.); 

 Artificial Pozzolans – e.g. Blast Furnace slag (GGBS), Fly Ash (FA), Silica Fume (SF) and burned organic matter 

residue with significant siliceous/aluminous materials – e.g. Rice Husk Ash (RHA). 

Cementitious hydration, as mentioned earlier, not only produces Calcium Silica Hydrate (C-S-H) but also, as a by-

product, Ca (OH)2 (up to 25% of hydrated Portland cement). The dissolved SiO2 (combined with water to form silicic 

acid ,H4SiO4) and Al2O3 in pozzolans react with dissolved Ca2+ and (OH)- ions from the Ca(OH)2 to produce both C-S-

H and Calcium Aluminate Hydrate C-A-H [31].  

Ca2++ 2(OH)-+ SiO2(in pozzolans) → C-S-H (1) 

Ca2++ 2(OH)-+ Al2O3(in pozzolans) → C-A-H (2) 

A similar mechanism that may reside for pozzolans in soils occurs when lime / cement is added. The derived Ca(OH)2  

is transported via water within the soil to combine with aluminate and/or silicate clay minerals in the soil [32]. However, 

enough free calcium ions and a pH level above 12 is needed (to maintain solubility of silicon and aluminium ions) to 

initiate and maintain the pozzolanic reaction [33]. This can be provided from Ca (OH)2 that is derived from addition of 

either lime or cement. 

Field test results from DSM samples [4, 34]  and laboratory results from  cement-treated soil [27] show significant 

long-term strength gain (up to 2.1 strength increase over 28 day strengths) well beyond the short term cement hydration 

phase [35]. This long term strength gain has been attributed to secondary pozzolanic reactions taking place in the soil as 

a result of the right conditions from cement hydration – e.g. high pH, presence of Ca2+ ions / (OH)- ions and  pozzolanic 

materials in the soil  [36, 37].   

Pozzolanic reactions occur over longer timescales (months to years) [9, 31]. Correia et al. [38] proposed a simplified 

method to predict the UCS at 28 days for cement and pozzolanic stabilized clays based on soil liquidity index, specific 

binder type and content. The effectiveness of pozzolans (reaction and strength) is related to: 

 Reactivity with lime (CaO) – The reactivity of mineral admixtures reactivity of the pozzolanic materials can be 

determined by the Chapelle (which determines the rate of lime (CaO) consumption) or similar tests [39]; 

 The proportions of the pozzolan phase state (crystalline / vitreous or amorphous) which affects strength [9, 40] – 

higher amorphousness leads to greater reactivity. Reactivity-based on lime consumption per mass of the amorphous 
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phase of pozzolans using Reitveld refinement method of XRD analysis interpretation allows consideration of vitreous 

or amorphous phase in the pozzolanic material and more accurate determination of the effectiveness of a pozzolan 

[41]. 

 The particle size and associated specific surface of the pozzolan which affects reactivity [40] – the higher the specific 

surface, the greater the reactivity.  

Table 3. Mineral composition of various pozzolanic materials 

Binder 
Mineralogy (%) 

CaO Al2O3 SiO2 MgO Fe2O3 Others 

OPC 3 67.7 2.8 20.4 1.4 4.6 2.9 

Lime (CaO) 100.0 0.0 0.0 0.0 0.0 0.0 

FA - Class C 2 14.8 25.5 47.4 2.7 0.0 9.6 

FA - Class F 2 2.4 26.7 54.5 1.1 6.9 8.5 

GGBS2 42.0 11.6 35.4 8.0 2.6 0.4 

SF 1.0 2.0 90.0 1.5 0.0 5.5 

RHA3 0.0 0.0 99.0 0.0 0.7 0.3 

K1 0.3 37.8 57.6 0.6 0.9 2.8 

MK3 0.0 38.6 53.9 1.0 1.4 5.2 

Others include: SO3, Na2O, K2O, TiO2, MnO2 etc. 

Values obtained from: 1 [42]; 2 [43]; 3 [44] (Table 1). 
   

Table 4. Typical Particle size / Specific Surface of various pozzolanic materials 

Physical Property 
Binder Type 

OPC 2 CaO 3 FA2 GGBS 2 SF 2 RHA 2 K MK 2 

Particle size range 
(μm) 10 – 40 > 740 ≤ 45 20 – 250 0.1 11.5 – 31.3 25 – 354 0.5 – 20 

Specific Surface 

(m2/g) 

1.75 

BET 
N/A 

5 – 9 

BET 

0.4 – 0.6 

BET 

16.45 

BET 

30.4 – 27.4 

BET 
18.21 

12.174 

BET 

Values obtained from: 1 [45] Fadzil et al. 2017 - Table 2; 2 [44] Khan et al. 2014 - Table 1; 3 Quicklime for Soil stabilization ASTM C977; 4 [42] 

Yahaya et al. - 2017. 

5.2. Fly Ash (FA) 

Fly Ash (also known as “pulverized fuel ash”, PFA or FA) is residue composed of pulverized coal, discharged from 

the combustion chamber by exhaust gases in coal-fired power plants. There are two classes of fly ash: 

Table 7. Chemical content of different Fly ash classes [58] 

FA Class 
Typical percentages, % 

CaO SiO2 Al2O3 Fe2O3 LOI sulphates 

F (anthracite | bituminous) 1 – 12 20 – 60 5 – 35 10 – 40 0 – 15 0 – 4 

C (sub-bituminous) 5 – 30 40 – 60 20 – 30 4 – 10 0 – 3 0 – 2 

C (lignite) 15 – 40 15 – 45 20 – 25 4 – 15 0 – 5 0 – 10 
 

Class F FA requires an activator or cementing agent (as it contains less lime (CaO) content) mixed with water. It can 

form a geopolymer by combining with sodium silicate/ sodium hydroxide [59]. When utilized to stabilize soft organic 

soils, the addition of fly ash increases soil resilient modulus (Mr) from zero Mr without a binder to 10-100 MPa 

depending on % of binder used and improves unconfined compressive strength (UCS) from original untreated at 15 kPa 

to > 100 kPa with fly ash [60]. Similarly, for tropical peat soils, the mixing of Pond Ash (PA) binder also increases UCS. 

20% PA dosage lead to doubling UCS of the original peat soil [61,62]. 

Significant properties enhancements were reported  for fly ash binders of organic (36.9% organic content) soil from 

Khulna, Bangladesh, notably in the liquid (LL) and plastic limits (PL) as well as dry density leading to increased UCS 

[63]. Two types of Fly Ash – Class C and Class F (ASTM C 618-2017a), were tested whereby, Class C fly ash achieved 

noticeable higher strength gains over Class F type. Stabilized soil pH values also increased because of binder mixing. 
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Table 5. Summary of some research on pozzolanic binders – Fly Ash (FA) / Ground Granulated Blast Slag (GGBS) / Silica Fume (SF) 

Research Soil Type / soil properties Pozzolan binder 
Cementitious 

binder 
Findings 

Proportion / improved Properties 

(% / kg/m3 soil) 
UCS1 (kPa) 

[46] 

• Peat • Fly Ash (F1); 

• GGBS; 

• Sand (FS); 

@ (50:50 / 60:40 for 

cement: pozzolan) % wt. 

binder 

• OPC; 

• Lime; 

@ 100–250 kg/m3 

• Best results obtained with GGBS and bypass ash (F1) 

• Less clay particles in peat → no significant pozzolanic reaction 

• OPC more effective than lime in peat soils due to humic acids 

• Addition of sand filler acts as stiffener 

• High silica % contributes to pozzolanic reaction 

• 200 kg/m3 OPC / FA 

OPC: F1=50:50 
382 (26 d) 

• Gyttja 

• 200 kg/m3 OPC / GGBS 

OPC: GGBS=50:50 
1340 (30 d) 

• 200 kg/m3 OPC / 100 kg/m3 FS 792 (30 d) 

• 300 kg/m3 OPC 1250 (30 d) 

[47] 

• silty, sandy peat (Pt) 

q=15 kPa • Fly Ash (FA-F) 

(55% SiO2 / 9% CaO); 

• Fly Ash FA-C 

(40% SiO2 / 24% CaO); 

@ 10–30 % wt. soil 

- 

• 6 sources of Fly Ash binders with varying CaO: SiO2 ratios tested 

• Clay soils (OL + ML) <30 kPa untreated to > 400 kPa (30% FA) 

• Peat soil (Pt) from <15 kPa untreated to > 100 kPa (30% FA). Higher 

SiO2 % leads to higher UCS 

• Optimum water content (OWC) applies for different soils / binders 

• Optimum CaO / SiO2 ratio established at 0.5 - 0.8 

• 30% FA / OWC=47% 

CaO: SiO2=21.3:40.2 
148 (7 d) 

• Org. sandy lay (OL) 

q=57 kPa 

• 30% FA/ OWC=28% 

CaO: SiO2=23.3:31.1 
411 (7 d) 

• Org. clay (ML) 

q=36 kPa 

• 30% FA / OWC=21% 

CaO: SiO2=21.3:40.2 
490 (7 d) 

[48] 

• Clay (PH) 

PI=54% 

FSI=154% 

q=169 kPa 

• GGBS; 

@ 0–15 % wt. soil 

• OPC; 

@ 0–15 % wt. soil 

• MDD, UCS increase as binder % increase 

• FSI, LL, PI decrease as binder % increase 

• For UCS, optimum at 10% GGBS 

• 15% OPC 

PI=32% | FSI=100% 
1861 (28 d) 

• 10% GGBS 

PI=43% | FSI=105% 
779 (28 d) 

[49] 

• Peat 

q=28.5 kPa 

CBR=0.78% 

• Silica Fume (SF) 

@ 5–10 % wt. OPC 

• OPC; 

@ 5–50 % wt. soil 

• UCS and CBR measured 

• For 5-15% cement, 10% dose SF → higher UCS 

• For 20-50% cement, 5% SF → higher UCS 

• CBR increases as binder content increases 

• 5% OPC / 10% SF 

CBR=21.4% 
320 (90 d) 

• 50% OPC / 5% SF 

CBR=21.4% 
620 (90 d) 

[50] 

• Peat 

q=29.5 kPa 

c=0.01 kPa 

φ = 10𝑜 

• Silica Fume (SF) 

@ 5–10 % wt. OPC 

• OPC; 

@ 5–50 % wt. soil 

• c and ϕ increases as binder % increases 

• Settlement reduced by 35% with 5% cement 

• Presence of any type of small particle (known as particle packing or 

micro filling) will improve the strength in the presence of cement 

• 15% OPC 

c=250 kPa / φ = 22𝑜 
N/A 

• 15% OPC / 10% SF 

c=280 kPa / φ = 26𝑜 
N/A 

1 extracted from Figures in articles; 2 prepared from Bentonite and sand mixture 
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Table 6. Summary of some research on pozzolanic binders – Rice Husk Ash (RHA) / Kaolin (K) / Metakaolin (MK) 

Research 
Soil Type / soil 

properties 
Pozzolan binder Cementitious binder Findings 

Propor tion / improved 

Properties (% / kg/m3 soil) 
UCS1 (kPA) 

[51] 

• Residual 

q=100 kPa 

CBR=3.8% 

• RHA 

@ 0–25% wt. OPC 

• OPC; 

@ 0–14 % wt. soil 

• UCS and CBR increase as binder increases 

• RHA addition requires less cement to achieve same UCS compared to 

only cement-stabilized soils. RHA cannot be used by itself to increase 

UCS 

• RHA increases resistance to reduced UCS when soaked - optimum 

binder content at 10% RHA 

• 4% OPC / 5% RHA 

Optimum for CBR 

CBR=60% 

N/A 

• 8% OPC / 28% RHA 

Optimum for UCS 
1200 (7 d) 

[52] 

• Clay (CI) 

q=130 kPa 

CBR=2.6% (soaked) 

• RHA 

@ 0–20% wt. soil 
– 

• PI reduces as % RHA increases 

• For UCS, optimum at 5% RHA 

• CBR (soaked) increases as binder content increases 

• 5% RHA 

CBR=4.8% (soaked) 
212 (28 d) 

[53] 

• Silty Clay (ML) 

c=35 kPa 

ϕ = 35𝑜 

CBR=8.9% 

• RHA 

@ 3–7% wt. Lime 

• Lime, Ca (OH)2; 

@ 4, 6 % wt. soil 

• LL / PL increases as % RHA increases 

• φ initially decreases as % RHA increases up to 3% 

• φ peaks at 5% RHA with 6% lime 

• c / CBR value peaks (>50%) at 5% RHA / 4% lime. 

• Best results achieved with 4% lime and 5% RHA 

• 4% lime / 5% RHA 

c=168 kPa (28 d) 

ϕ = 49𝑜 | CBR=54% 

N/A 

 

 

• 6% lime / 5% RHA 

c=161 kPAa (28 d) 

ϕ = 50𝑜 | CBR=51% 

N/A 

[54] 
• Silty Sand (SW-SM) 

q=8.2–15 kPa 

• RHA 

@ 5–20% wt. Lime 

• Lime CaO; 

@ 3, 5 % wt. Soil 

• UCS Increases as % lime increases 

• UCS peaks (>50%) at 15–20% RHA with 5% lime thereafter 

decreases with as RHA % increases 

• 5% lime / 5% RHA 250 (28 d) 

[55] • Peat 

• Kaolin (K) 

@ 5, 10% wt. overall 

Binder 

• CaCl2 

@ 4% wt. Binder 

• Total binder @ 300 

kg/m3 + Silica Sand @ 

596 kg/m 

OPC @ 90% wt. total 

Binder 

• UCS increases as binder dosage increases 

• Increasing silica sand as filler leads to UCS increase 

• Effect from hydraulic / pozzolanic and filler effects 

• 90% OPC / 10% K + add. 4% 

CaCl2 @ 300 kg/m3 total binder 
485 (7 d) 

[56] • Clay 
• Metakaolin (MK) 

@ 3–10% wt. soil 

• OPC 

@ 27–50% wt. soil 

• UCS increases as MK / OPC dosage increases and is high enough to 

be considered as (soilcrete) structural material 

• Youngs modulus (E) improves also 

• 27% OPC / 3% MK 17 MPa (28 d) 

• 40% OPC / 10% MK 57 MPa (28 d) 

[57] 

• Clay (CH)2 

c=94.76 kPa 

q=190 kPa 

• Metakaolin (MK) 

@ 3–10% wt. soil 
– 

• MDD increase | OMC decreases as % MK increases 

• UCS peaks at 10% MK with 5% lime thereafter decreases with as MK 

% increases 

• 10% MK 

c=315 kPa 

630 (1 d) 

@ 2.8% strain 

1 extracted from Figures in articles; 2 prepared from Bentonite and sand mixture.
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5.3. Ground Granulated Blast Slag (GGBS) or Slag 

Slag, alternately known as Ground Granulated Blast Furnace Slag (GGBS or GGBFS) is formed as a by-product from 

iron production by quenching molten iron slag from a blast furnace to produce a glassy, granular material that is dried 

and ground into a fine powder. Chemical composition varies with the composition of raw materials in iron production 

and is mainly composed of – CaO [typically 30-50%]; SiO2 [from 28-38%]; Al2O3 [8-24%] and MgO [between 1-18%]. 

Properties of GGBS when blended with cement and in soil stabilization [64] that are useful in DSM are: 

 Lower early temperature rise – which reduces the risk of thermal cracking for mass pours; 

 Reduced soil plasticity (lower PI) and quc increase in clays; 

 Reduced risk of alkali-silica reaction (ASR) – a swelling reaction over time in concrete between highly alkaline 

cement paste and reactive non-crystalline (amorphous) silica in aggregates; 

 Greater resistance to sulphate attacks and to chloride infiltration in cement-GGBS mix; 

GGBS is considered a latent hydraulic material and requires activation (by hydraulic binder material like cement or 

lime or alternatively by using alkalis and sulphates) before it can react with water in the soil [9]. The reactivity of the 

GGBS also depends on its phase state which results from the rate of cooling after leaving the furnace. Rapid cooling 

leads to an amorphous, highly reactive slag while slow cooling would lead to crystalline inert slag, which is unsuitable 

as an additive for stabilization in deep soil mixing [9]. 

Typically, GGBS would be utilized as a partial substitute to a primary cementitious binder (e.g. OPC) with 

substitution ratios that have been researched from 75% OPC:25% GGBS to 50% OPC:50% GGBS for total dosages 

between 75 to 300 kg/m3 [65, 66]. 

Studies  on clay & silt in Sweden showed slower strength development with combinations of slag-cement-slag ratio 

binder mixes compared to cement alone [11]. This is due to the slower reaction of GGBS, which has a lower CaO/SiO2 

ratio to cement. Although better reaction product quantities from GGBS-lime mix vs GGBS-cement mix were reported, 

they were still inferior to lime-cement mix or lime binder in clay [11]. Comparison between cement and GGBS as 

binders to expansive clays showed that 10% GGBS (optimum) (779 kPa) achieved an equivalent 28 day UCS to 5% 

cement content (764 kPa) [48].  

For peat soil, research results  showed lower compressive strength at 7 days curing for 75% OPC:25% GGBS binder 

mix compared to 100% OPC binder mix with 25% silica sand [67]. Axelsson et al. [68] concluded that cement: GGBS 

binder mix provided better results for compressive strength than for cement binder alone in peat. 

5.4. Silica Fume (SF) 

Silica Fume (SF) is a pozzolanic by-product material derived from the production of silicon metal/ferro silicon alloys 

in smelters using electric arc furnaces – e.g. aluminium and steel production, computer chip fabrication plants, silicone 

production etc.  SF typically consists of spherical particles with an average particle diameter of 150 nm and is typically 

85-97 % SiO2 with less than 1% CaO. 

Because of its chemical composition and fineness, SF only enhances the properties of concrete and is not meant as a 

replacement material for Portland cement such as Fly Ash or GGBS. The major improvement effect on fresh concrete 

is a more cohesive slurry mix leading to: 

 Improved bond strength; little or no bleeding in the concrete;  

 Reduced permeability which improves durability and resistance to chloride and sulphate attack; 

 Enhanced UCS and E for the treated soil.  

The small particle size of SF also leads to greater surface area and therefore allows the SiO2 to react more readily 

with Ca(OH)2 in the pozzolanic reaction to produce C-S-H, leading to improved strength properties. 

Because it is not utilized as a replacement for cement, SF can only be considered as a minor additive to cement in 

soil stabilization. Typical SF content may range between 10 to 75 kg/m3 or 4 - 15% of cement content by weight. 

Research performed on cement with SF (5,10% by weight cement) on peat soil showed that the addition of SF has 

contributed to settlement reduction and increased bearing capacity [69, 70]. Optimum dosage up to 5% cement content 

in soil was achieved with 10% SF, thereafter, 5% SF by cement weight was more effective. 
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5.5. Rice Husk Ash (RHA) 

Rice Husk Ash (RHA) is formed by burning, at a specific temperature range, rice hulls / husk which are separated 

from rice grains as a by-product in rice milling. About 10 P

8
P tons of rice husk are generated annually in the world [71]. 

The ash residue from the combustion is a potential source of non-crystalline / amorphous reactive silica (of up to 95%) 

[72]. Typical composition of RHA (depending on specific combustion conditions) can be 88 [39] – 99 % SiO2  [73]. 

RHA has the highest specific surface area amongst the pozzolanic materials covered in this review [39]. 

Again, a small particle size leads to greater surface area and therefore allows improved reaction by SiO2  with Ca 

(OH)R2 to produce strength enhancing C-S-H. 

The type of RHA used is important – the amorphous form of SiO2 has higher pozzolanic reactivity compared to the 

crystalline form of SiO2 [74]. The composition of SiO2 is dependent on the combustion process which leads to the 

structural transformation of the SiO2 in the ash residue. High-temperature combustion produces more crystalline forms 

of SiO2 as opposed to the low temperature combustion process. This can be differentiated through colour – high 

temperature ash (>900 P

o
PC) produces fully crystalline silica and is white / pink in colour whereas lower temperature ash 

(500-700 P

o
PC) is darker (grey to black) with more amorphous silica that is more reactive [75]. This is counteracted by 

less SiO2 derived from lower furnace temperature furnaces vs higher furnace temperature. RHA with lower carbon 

content produces higher pozzolanic activity [76]. 

Basha et al. [77] tested the addition of RHA with cement binder on residual granite soil. Like SF, RHA cannot be 

utilized as a full replacement for cement but as a supplement to the cement to achieve multiplier effects on enhancing 

soil properties. This can be seen when RHA only treated soil encountered decreased CBR values with increasing % 

RHA vs increasing CBR with an increase in % cement.  

RHA does not appear to improve all types of soils. Alhassan [71] utilized RHA as binder material sans cement for 

tests on ferruginous tropical soils and recorded insignificant bearing capacity improvement over original soil. 

Research on clayey silt showed a 63% increase in compressive strength after 7 days curing over original soil with an 

optimum 15% by soil weight [78]. Choobbasti et al. [79] investigated the influence of RHA as an additive binder to 

slaked lime for silty clay soils and proposed an optimum mix of 4% lime and 5% RHA to maximize c & φ properties 

in the soil. Roy [80] recommended optimizing at 6% cement and 10% RHA for clay soils. Research by Rahman et al. 

[81] on the addition of RHA binder to silty sand, showed shear strength improving as RHA % increases. 

5.6. Kaolin (K) 

Kaolin (K), also known as china clay is a naturally occurring soft white clay of which the mineral kaolinite is obtained 

from.  The chemical formula for Kaolinite is 𝐴𝑙2𝑆𝑖2𝑂5(𝑂𝐻). Kaolinite is one of the most common minerals; it is mined 

in various countries throughout the world [82].  

Chemical composition of Kaolin powder consists of 57.6% SiO2  | 37.8% Al2O3 | 0.9% Fe2O3 | 0.6% MgO being the 

main constituents [42]. Being both a siliceous and aluminous material, Kaolin is a partial pozzolanic additive for cement 

reacting to form C-S-H and C-A-H products  [83]. 

Wong et al. [84] proposed kaolin mixed with lime / cement for use as partial replacement and pozzolanic additive in 

stabilized peat columns. Additionally, kaolin and silica sand (as a filler) on peat soils demonstrated combined action of 

hydrolysis of the cement, the pozzolanic reaction of kaolin, and the filler effect of well-graded silica sand in the soil. 

5.7. Metakaolin (MK) 

Metakaolin (MK), is produced by heating kaolin clay to high temperatures (calcination in the range starting from 

700-850 oC) [85]. The chemical formula for Metakaolinite mineral (MK) is 𝐴𝑙2𝑂3. 2𝑆𝑖𝑂2[56].  Metakaolin (MK) powder 

chemical composition is similar to Kaolin at 53.2% 𝑆𝑖𝑜2| 43.9% 𝐴𝑙2𝑂3 | 0.38% 𝐹𝑒2𝑂3 | 0.02% CaO being the main 

constituents [86] depending on the supplier. Metakaolin has a specific surface of 12680 cm2/g [86] which is almost 4 

times greater than cement, and hence has greater reactivity. 

Considered to have twice the reactivity of most other pozzolans, metakaolin is a valuable admixture for 

concrete/cement applications. When replacing Portland cement with 8–20% (by weight) metakaolin produces a concrete 

mix which exhibits favorable engineering properties that includes: the filler effect, the acceleration of OPC hydration, 

and the pozzolanic reaction. The filler effect is immediate, while the effect of pozzolanic reaction occurs between 3 and 

14 days. Kolovos et al. [56] investigated soil-crete mixtures modified with metakaolin. MK addition to binder mix 

improved UCS significantly over just cement binder in clay through a reduction in porosity and microcracking and 

formation of dense cement gel.  

mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Pozzolan
mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Concrete#Chemical_admixtures
mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Portland_cement
mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Concrete
mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Mineral_hydration
mhtml:file://H:/UNIVNOTTINGHAM/00_PROPOSAL/171222_PHD%20REVIEW_BINDERS%20FOR%20DEEP%20MIXED%20METHODS%20IN%20MALAYSIAN%20PEAT/POZZOLANS/06_MK/Metakaolin%20-%20Wikipedia.mht!https://en.wikipedia.org/wiki/Pozzolanic_reaction


Civil Engineering Journal         Vol. 6, No. 2, February, 2020 

412 

 

 

6. Filler Materials 

6.1. Fine Sand  

Fine sand acts as an inert filler and does not contribute to cement hydration or pozzolanic reactions. However,  it 

provides a structure for the binder particles to attach to and form a load bearing stabilized soil  and also contributes to 

densification by filling the void spaces in the soil during stabilization [55]. Tests with increasing sand content in highly 

compressible soil – e.g. peat, has shown improved settlement characteristics [87]. Wong et al. [88] researched the effect 

of  Kaolin (as Supplementary Cementitious Material) and Silica sand (as a filler) on peat soils, Klang, Selangor whereby: 

 An increase in silica sand (0 – 596 kg/m3) led to increased UCS (from 175 kPa to 460 kPa); 

 Threshold silica sand dosage of 460 kg/m3 is suggested to achieve minimum UCS = 345 kPa; 

 Increases density and reduces the porosity of stabilized soil; 

However, the fine sand does not contribute to secondary pozzolanic reaction (with nano materials and cement) or 

geo-polymerization (with the right chemical additive), being non-crystalline (amorphous) silica.  

7. Discussion 

Adding pozzolan materials to lime / cement binder mix can be effective when treating soils with little or no pozzolanic 

particles since follow on strength development (which may account for another 50-100% of 28-day strength) beyond 

short term hydration is due to pozzolanic reactions [37]. However, pozzolans are ineffective by themselves and require 

Ca (OH)2 presence in aqueous solution to supply enough quantities of Ca2+ and OH- for the pozzolanic reaction to take 

place. The Ca (OH)2 is usually provided by a cementitious binder.  

Pozzolans may be divided into two categories:  

 Siliceous materials (> 90% SiO2) – e.g. RHA, SF, FA etc.; 

 Aluminosilicate materials (with both SiO2 and Al2O3) – e.g.  GGBS, K, MK. 

From the compilation of research results for different pozzolan binders in Tables 5 and 6, there is a clear trend showing 

alumino silicate pozzolans producing greater compressive strength in combination with cementitious binders. The lower 

proportion of amorphous form of siliceous materials, which determines pozzolanic reactivity, also contributes to the 

disadvantage to alumino silicates.  

Alumino silicate pozzolans exhibit higher initial rates of reaction over siliceous pozzolans due to Al2O3, which form 

C-A-S-H and C-A-H [86]. The greater specific surface area and smaller particle size of MK would lead to greater 

reaction rate over GGBS.   

With pozzolans, there is an optimum dosage limit that applies, whereupon performance peaks. For example, the 10% 

optimum dosage by weight with MK has been observed in several researches [56, 57, 86] . This suggests a required 

concentration of Ca (OH)2 greater than what is provided from the cement hydration, that must be maintained in relation 

to the pozzolan in order to retain rate of pozzolanic reaction. The effect from more Ca (OH)2   in order to increase 

effectiveness of a higher pozzolan dosage limit by adding lime should be investigated further. 

In terms of compressive strength improvement, the optimum dosage for some siliceous binder types (15 to 28% for 

RHA [54,77]) differ from aluminosilicate binders (5 to 10% replacement dosage for GGBS [48] and MK [56,57,86]).  

A comprehensive comparison of optimum dosage between the two groups of pozzolans when combined with 

cementitious binder for different soil types e.g. clay, silts, sands, organic soils etc. would be useful.  

Frias and Cabrera  [35] noted also that a higher water/binder (w/b) ratio may accelerate the completion of pozzolanic 

reaction for MK. Thus, the long term slow pozzolanic reaction beyond typical 28-day cement binder hydration may be 

accelerated with a combination of w/b ratio and use of MK blended-cement upon further investigation. It is noted that 

w/b ratios can only be controlled with the WDSM method. 

The actual beneficial effect of filler materials has been sparsely researched. A good starting point would be applying 

research performed on effect of aggregate in concrete as a starting point to how filler materials can provide solid particles 

for binder paste to adhere to. Filler materials mixed with binders would be feasible if injected as a slurry in WDSM 

method for organic and very soft soils. They can act as economic inert substitutes when lower strengths are only required. 

Finally, the influence of binders on dynamic properties of treated soil in context of DSM is not well covered in 

literature. As compressive strength, modulus of elasticity and shear modulus of soil are co-related, comprehensive 

investigation should be carried out to determine the extent of beneficial influence by binder treated soil when laid in 

DSM columns.  
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8. Conclusions 

This review paper explains the reaction mechanism and compiles research results to date of cementitious and 

pozzolanic binders as well as filler materials.  The following conclusions are made: 

Cement is well established as the binder of choice in DSM ground improvement. Lime binders require further 

secondary reaction with any existing pozzolanic materials in the soil, hence it is not as effective in soils deficient in 

pozzolans. Strength development progresses, not to the same degree as for cement and take a longer time measured in 

weeks / months. With cement binders, increasing dosage leads to proportionate increase in treated soil strength gain. 

With pozzolans, effectiveness depends on % and form of Si material (more reactive amorphous form vs. crystalline), 

binder particle surface area / fineness, pH level in the soil, presence of calcium (Ca) (since pozzolanic reactions are also 

calcium based like cement hydration), and enough quantity and distribution of the Si/Al/Ca components. Aluminosilicate 

pozzolans are more effective than siliceous pozzolans. MK is identified as the most effect pozzolan when combined 

with cement. For pozzolans, an optimum dosage limit applies where improvement effects peak (~10 % replacement of 

cementitious binder being reported).  

Although not contributing to further hydration or pozzolanic reaction, filler materials such well-graded silica sand 

provide solid particles for the reacted binder particle to adhere to. This is applicable to soils with very high water and 

organic matter content such as peat [67, 84, 89].  

Possible research opportunities to pursue have been identified. They include: 

 A stoichiometric approach expanding on earlier studies to determine proportions of different pozzolans when 

combined with cement / lime binders in different soil conditions. Optimum dosage for various pozzolans can then 

be established for different soils and validated with laboratory testing; 

 The effect of different filler materials and proportions to treated soil strength improvement; 

 Study into the effect on dynamic properties of binder treated soils; 

 The hydration and pozzolanic strength development of different clay mineral types can be tested. By determining 

the clay content and clay mineralogy of the soil, and therefore understand the pozzolanic content and reactivity, 

effectiveness with different clay types can be established;  

 Determine efficiency of the both hydration and pozzolanic reactions which can be derived by determining Ca 

(OH)2 content in treated soil at different curing periods. They can also be co-related with other parameters, notably, 

water/binder ratio (w/b), plasticity index (PI) and void ratio (e); 

 Testing and comparison between field and laboratory samples to measure the difference between in reaction 

effectiveness and efficiency due to mixing and installation; 

 Non pozzolanic materials – e.g. reinforcement fibers, nanomaterials, and alkali activated materials and 

geopolymers. 
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