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Abstract 

Strengthening of reinforced concrete (RC) beams with externally bonded fibre reinforced polymer (FRP) plates/sheets 
technique has become widespread in the last two decades. Although a great deal of research has been conducted on 
simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP 
composites.  This paper presents a simple uniaxial nonlinear finite-element model (UNFEM) that is able to accurately 
estimate the load-carrying capacity and the behaviour of RC continuous beams flexurally strengthened with externally 

bonded FRP plates on both of the upper and lower fibres. A 21-degree of freedom element is proposed with layer-
discretization of the cross-sections for finite element (FE) modelling. Realistic nonlinear constitutive relations are 
employed to describe the stress-strain behaviour of each component of the strengthened beam. The FE model is based on 
nonlinear fracture mechanics. The interfacial shear and normal stresses in the adhesive layer are presented using an 
analytical uncoupled cohesive zone model with a mixed-mode fracture criterion. The results of the proposed FE model 
are verified by comparison with various selected experimental measurements available in the literature. The numerical 
results of the plated beams (beams strengthened with FRP plates) agreed very well with the experimental results. The use 
of FRP increased the ultimate load capacity up to 100 % compared with the non-strengthened beams as occurred in series 

(S). The major objective of the current model is to help engineers’ model FRP-strengthened RC continuous beams in a 
simple manner. 

Keywords: Finite Element; Continuous Beams; Plated Beam; Interfacial Stresses; Maximum Capacity; Debonding. 

 

1. Introduction 

In recent years, the external bonding of carbon (CFRP) or glass (GFRP) FRP plates/sheets to the beam tension face 

has become a common practice and is widely used to strengthen or repair structures. Strengthening RC beams in 

flexure with FRP plates/sheets is a powerful strengthening technique due to its simplicity of in situ application, small 

increase of the beam size and weight, and good resistance to corrosion. 

Extensive numerical and experimental research efforts have been carried out to study and model the behavior of 

simply supported beams with external FRP plates; as a result, there are many design guidelines for such beams [1-3]. 

However, many in situ RC beams are used in continuous construction; there has been very limited research into the 

behavior of such beams with external strengthening. Experimental studies were conducted to compare the behavior of 

RC continuous beams strengthened with FRP plates with non-strengthened beams (control beams) [4-15]. They 

concluded that the use of FRP plates/sheets to strengthen continuous beams was effective for reducing deflections and 

for increasing their load carrying capacity.                                          
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Subhashree [16] tested fourteen symmetrical continuous (two-span) beams. The beams were grouped into two 

series. Each series had a different percentage of steel reinforcement. One beam from each series was not strengthened 

and was considered a control beam, whereas all other beams were strengthened in various patterns with externally 

bonded GFRP sheets. The study concluded that the beam that was strengthened by U-wrap and anchored using a steel 

plate and bolt system; showed the highest ultimate load. The percentage increase of the load capacity of that beam was 

61.92%. The load carrying capacity of the beam that was strengthened by four layers of U-wrap in the positive 

moment zone had near the load capacity of the beam strengthened by two layers of U-wrap and anchored using the 

steel plate and bolt system. The percentage increase of the load carrying capacity of that beam was 59.61 %. The use of 

a steel bolt and plate system is an effective method of anchoring the FRP sheet to prevent the debonding failure. 

Strengthening the continuous beam by providing a U-wrap of an FRP sheet is also an effective way of enhancing the 

load carrying capacity. 

Previous FE studies of FRP-strengthened beams involved the use of refined FE meshes of two-dimensional 

plate/shell elements [17-20] or three-dimensional solid elements [21] using many commercial FE packages. Using the 

commercial numerical FE package Abaqus, Obaidat et al. [22]; suggested a 3D FE model to analyze plate end 

interfacial debonding in retrofitted RC beams. A nonlinear cohesive bond model under mode-II conditions was used 

for the concrete–FRP interface. The computational cost of structural response analyses based on FE models, such as 

the ones referred to above, is very high.  

Barbato [23] ‎proposed a force-based frame FE to estimate the load carrying capacity of simply supported RC beams 

strengthened with externally bonded FRP strips and plates. In this model, the bond between the RC beam and FRP 

plate is considered using an appropriate modification of a constitutive model representing FRP. The uniaxial model of 

[23] has a very low computational cost compared with the above 2D or 3D models constructed using FE-packages.  

Although many research studies have been carried out to understand and model debonding failure modes, it is still a 

very active field of research, mainly due to the complexity of the problem at hand. After thoroughly searching the 

literature, the authors found that there are no analytical solution models of the non-linear mode-I and mode-II fracture 

responses of the cohesive interface of strengthened RC beams with FRP plates or strips. Here, the importance of the 

current work appears. 

The research work presented in this paper develops a new uniaxial nonlinear finite-element model that is able to 

simulate the mechanical behavior of FRP-strengthened RC continuous beams utilizing realistic nonlinear constitutive 

relations for each strengthened beam component. The interfacial shear and normal stresses in the adhesive layer are 

presented using an analytical uncoupled cohesive zone (CZ) model based on nonlinear fracture mechanics. This model 

introduces accurate predictions for the ultimate load of FRP-strengthened RC continuous beams and; a sound 

mechanical description and interpretation for failure modes, the innovation of this UNFEM is to reduce the complexity 

of FE analyses based on existing 2D or 3D FE models constructed using FE packages; and simulates the structural 

response of the considered beams. 

2. Finite Element Modeling 

As shown in Figure 1. there are three components in a strengthened beam for the present analysis model, i.e., 

reinforced concrete, FRP and adhesive. 

Figure 1. RC beam bonded with an FRP plate 

The adhesive layer is modeled to handle cohesive forces in both the normal and tangential directions. The 

interfacial shear and normal stresses in the adhesive layers or in the CZ are shown in Figure 2. 
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Figure 2. (a) Differential element along the span; (b) general cross section geometry and layer discretization; and (c) strain 

distribution [24] 

A 21-degree of freedom element is developed to represent the strengthened RC beam. The 21 degrees of freedom 

are: (1) seven degrees of freedom represent the horizontal slippage, the vertical separation, and the rotation of the 

upper FRP plate (2) seven degrees of freedom represent the horizontal slippage, the vertical separation, and the 

rotation of the lower FRP plate (3) seven degrees of freedom represent the horizontal displacement, the vertical 

displacement, and the rotation of the concrete, as shown in Figure 3. The RC beam and FRP layer are modeled as 

beams with Euler-Bernoulli kinematics assumptions. Linear geometry, due to small deformations and displacements, is 

assumed. The CZ model is utilized for determining the normal and tangential stiffness of the adhesive layer. A perfect 

bond is assumed between the concrete and reinforcing steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) The developed finite element: (a) nodal degrees of freedom; (b) nodal forces 

2.1. Constitutive Equations of Materials 

A layered model approach was followed during the development of the proposed FE for the concrete beam cross 

section.  The cross section was divided into a finite number of layers, as shown in Figure 2.  The layered model 

approach is relevant for the formulation of these types of complex elements due to the difference between the 

properties of beam reinforcement and concrete and the dissimilarity between the behavior of concrete in tension and 

compression.  For concrete in compression, the stress-strain relationship suggested by [25] is adopted. This 

relationship is characterized by linear-elastic behavior up to 40% of the maximum strength   . Beyond the elastic limit, 

an elastic-plastic with final softening branch is assumed (Figure 4a). For concrete in tension, linear-elastic behavior is 

considered up to the cracking phenomenon, which occurs when the tensile strength      is reached. The tension 

stiffness of concrete between cracks, due to the presence of reinforcement, is taken into account by the nonlinear 
softening law proposed by [26] and modified by [27] to take into account the size effect. Compared to the case of 

concrete without reinforcement, the tensile stress does not vanish for large strain, but it tends to a positive value that 

depends on the percentage of reinforcement in the concrete beam.  For reinforcement steel, an elastic-plastic with 

small hardening law typically used for structural steel has been assumed (Figure 4b). In Figure 4b,   ; and    are the 

yield strength and strain, while    and    are the ultimate strength and strain. The FRP is modeled with linear elastic-

brittle behavior in tension and zero-strength and stiffness in compression (Figure 4c).     and    , shown in Figure 4c, 

are the ultimate tensile strength and strain.  



Civil Engineering Journal          Vol. 2, No. 11, November, 2016 

579 

 

 

Figure 4. The adopted stress-strain relationships 

Due to its simplicity, CZ modeling is largely used for the behavior of adhesive layers. The energy release rates in 

mode-I (GI) and mode-II (GII) are identified as the areas under the respective cohesive laws integrated up to the 

current values of stresses. The total energy release rate is the sum of GI and GII. Different approaches have been used 

in the literature for CZ modeling of interfaces under mixed-mode conditions:  

 In the uncoupled CZ approach, cohesive laws in the normal and tangential directions are independent of each 

other. Fracture is assumed to occur when the energy release rate equals the fracture energy of the adhesive (the total 

area under the descending part of the load-displacement curves). If the mixed-mode fracture criterion of the adhesive 

layer is known, the strength of the joint can be predicted by equating the energy-release rate to the fracture energy. 

The simplest possible mixed-mode fracture criterion is: 

1
G

G

G

G

IIf

II

If

I
 (1) 

Where GIf and GIIf denote, respectively, the fracture energies in pure mode-I and mode-II conditions. This approach 

was used by [28] and [29].  They suggested that, once the failure condition is reached, the element is considered no 

longer capable of bearing any load. 

 In the coupled CZ approach, cohesive laws in the normal and tangential directions are linked to each other, 

typically by means of a coupling parameter. Tvergaard [30] developed a coupled cohesive law derived from a 

potential using a dimensionless coupling parameter between the normal and tangential laws. With this approach, the 

fracture energy is the same in all mode mixities. This is often regarded as a drawback, as the experimental evidence 

indicates that the fracture energy is often significantly larger in mode-II than in mode-I [31].  

In the current study, uncoupled cohesive laws are considered both in the normal and tangential directions. Tension 

relates the normal relative displacement, g
N
 > 0, and the normal stress, p

N
, while shear relates the tangential relative 

displacement, g
T
, and the tangential stress, p

T
. This choice is made to help in using different values for the mode-I and 

mode-II interfacial fracture energies, in agreement with the experimental evidence. The cohesive laws implemented 

herein are bilinear (Figure 5).  

 

 

 

 

 

 

Figure 5. Relationship between interfacial tractions and relative displacements 

This simple shape is able to capture the three characteristic parameters of the interface, i.e., the fracture energies 

(the areas underneath the curves), the cohesive strengths, pN max and pT max, and the linear-elastic properties (the 

slopes of the curves in the ascending branch, KT and KN, which are defined below [32]). 
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at  is the adhesive layer thickness; ct is the concrete cover thickness; cE and aE are the modulus of the elasticity of 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VJS-4SNWW67-3&_user=739499&_coverDate=10%2F01%2F2008&_alid=1168317597&_rdoc=1&_fmt=full&_orig=search&_cdi=6102&_sort=r&_docanchor=&view=c&_ct=3&_acct=C000041101&_version=1&_urlVersion=0&_userid=739499&md5=09a4eb3d31ffb2c92a83481f662622e5#bib20
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concrete and adhesive, respectively, and cG  and aG  are the shear modulus of concrete and adhesive, respectively. 

The specific mode I fracture energy G If can be deduced from the load-displacement curve or the value given in the 

[2]. The specific mode II fracture energy GIIf  was considered in the manner conducted by [19]. The cohesive tensile 

strength  pNmax  was taken to be the concrete tensile strength, while the cohesive tangential strength pTmax value was 

taken from an equation derived by [19]. Following the approach given by [28] the energy release rates in mode-I and 

mode-II are identified as the areas under the respective cohesive laws integrated up to the current values of g
N
 and g

T
, 

and the simplest possible mixed-mode failure criterion is assumed, as in Eq. (1). The mode-mixities can be estimated 

directly from the numerical predictions by examining the value of GII/GI for a crack-tip CZ element just before it fails. 

The above cohesive models have been implemented in a 21-node composite element proposed by the current study, 

and generalized to handle cohesive forces in both the normal and tangential directions. Additionally, all the above 

constitutive equations of materials for concrete in tension or compression, reinforcement, and FRP have been 

implemented in that element. 

2.2. Element Formulation 

With reference to the parameters of the nodal displacements of the element shown in Figure 3, the following 

relationships can be written: 

 ; pl .   (x) UN pplu   ; pu .   (x) UN ppuu  ;  .   )( cUNcc xu   ; pl .   )( VNvppl xv   ; pu .   )( VNvppu xv 

c .   )( VNvcc xv   

(3) 

where c, pl, and pu are subscripts relating the symbol to the centroid of the reinforced concrete beam and the centroid 

of the lower and upper FRP plates, respectively; ],,[ 321 uuuT U  
is the vector of the nodal horizontal 

displacements, and )](),(),([ 321 xNxNxNN  is the vector of the corresponding shape functions.  Analogously, 

V  is the vector of the vertical nodal displacement, and vN is the vector of the corresponding shape functions.  The 

tangent displacement (horizontal slip) )(xg
T

 and normal displacement (vertical separation) )(xg
N

 

as: 

(i) Lower part: 

    plvpplcvcplpcc

T

l tHxg VNVNUNUN
'' 22)(                                                                                                               

plvpcvc

N

l xg VNVN )(                                                                                                                                   

 (ii) Upper part:                   

    puvppucvcpupcc

T

u tHxg VNVNUNUN
'' 22)(                                                                                                    

puvpcvc

N

u xg VNVN )(                                                                                                                                             

Where '

vcN  and '

vpN  are the first derivatives of the matrices 
vcN and 

vpN , respectively. The strain )(xci  

concrete layer can be expressed as a function of the element nodal displacements as follows:   

cvciccci yx VNUN
"')(                                                                                                                                                                                                                

where '

cN is the first derivative of the matrix 
cN , "

vcN is the second derivative of the matrix 
vcN ,and iy  

 can be written 

                        (4) 

                 (5)                                                                                           

 
          

(6)

             (7)

 of  the  ith

                  (8)                                                                                                                          

 is the distance 

from the middle of the reinforced concrete beam to the centroid of the ith concrete layer.  In a similar manner, the 

strains of the reinforcement steel layers and FRP plate are given as follows:  

cvcrccr yx VNUN
"')( 

          
(9)                                                                                

                                                                                              
                         

plvpplplppl yx VNUN
"')(                                                                                                                                     (10)                                                                                                           

 

puvppupuppu yx VNUN
"')(                                                                                                                                    (11)                                                                                             

where  '

pN is the first derivative of the matrix 
pN , "

vpN  is the second derivative of the matrix 
vpN , 

ry is distance 

between the centroid of the reinforcement bars to the middle surface of the reinforced concrete beam, and;     and     

are the distances measured from the centroid of the lower and upper FRP plates to the point at which the strain is 

calculated, respectively. The studied problem is nonlinear and can be solved through iterations. Applying the principle 

of virtual work to a certain element for a specific iteration j, the system of six equations can immediately be obtained 

and written in matrix form; 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VJS-4SNWW67-3&_user=739499&_coverDate=10%2F01%2F2008&_alid=1168317597&_rdoc=1&_fmt=full&_orig=search&_cdi=6102&_sort=r&_docanchor=&view=c&_ct=3&_acct=C000041101&_version=1&_urlVersion=0&_userid=739499&md5=09a4eb3d31ffb2c92a83481f662622e5#fd3
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kk )21*21(

j

kU )21*1( =
j

kf )21*1(                                                                                                                                                             (12)                                                                         

Where   
 
 represents the stiffness matrix of the generic element,   

 
 is the unknown nodal displacement vector of the 

element, and   
 
 is the load (known values) vector. 

.
jj j

UK F                 

 Once  the  system  of  Equation 12. has  been  obtained,  one  can  rearrange  the  equations  and  carry  out  a  static 

condensation  procedure  of  the  equations  of  the  internal  nodal  parameters ,     to  obtain  a  reduced 

system. For a generic beam made up of several elements, using the usual technique of the finite element method for 

assembling,  applying  the  boundary  condition,  and  adding  the  nodal  forces  to  the  load  vector  at  the  conventional 

position, the system of linear algebraic equations can be obtained in the following form:

                                                                                                                                                                               (13)                                                                                                                         

Where     are  the  stiffness  matrix,  the  vector  of  unknown  nodal  displacements,  and  the  load  vector 

including all nodal forces, respectively, for iteration j. 

 The discretization of  elements is not uniform. Thus, a fine mesh consisting of elements with different lengths is 

used. Elements where the stresses varied strongly, e.g., at the end of FRP plates, at the intermediate support and at the 

positions of concentrated loads, are relatively small with lengths in the range (0.2 to 0.5 cm), while the lengths of the 

other elements range from 1 to 5 cm.  These values are recommended based on many solved examples, which showed 

that using finer meshes does not  yield significant differences in results. The small lengths of  elements facilitate and 

improve the convergence. 

2.3. Solution Algorithm and Convergence 

 To solve the nonlinear response of the strengthened RC continuous beam  with FRP plates, the secant method is 

adopted  to  determine the  unknown  deformations,  considering  the  origin  point  as a  base  point  for all  secant models.  

The  secant method  is  relevant  for  implementation  in the  proposed  FE  model  because  the  secant modulus  is  always 

positive,  something  that  facilitates  convergence  of  the  solution.  The  total  nodal  deformations,  not  the  incremental 

deformations,  are  the  independent  variables  of  each  iteration.  Utilizing  the  total  nodal  deformations  and  material 

constitutive laws in total form is straightforward and makes it easy to consider time history analysis in a total form at a 

specific time.    

2.4. Plate end Debonding Failure Modes  

 At  the  plate  end,  the  beam  can  fail  by  two  different  modes,  either  by  interfacial  debonding  of  FRP  or  concrete 

cover separation due to a combination of interfacial shear and normal stresses concentrating near the plate end. Plate 

end failure is a complex phenomenon. The failure starts at the end of the FRP plate and propagates towards mid-span 

along a plane just above the adhesive layer between the RC beam and FRP (mode A) or along a plane immediately 

below the reinforcing steel bars (concrete cover separation - mode B). Thus, two different models (Model A and B) 

were developed in the proposed  uniaxial nonlinear finite-element model.  In Model A, the  CZ plane is inserted  just 

above  the  adhesive  layer,  while  in  Model  B,  the  CZ  is  inserted  immediately  below  the  reinforcing  steel,  and  the 

concrete cover and FRP plates are considered a composite beam with a perfect bond. In model B, the cohesive zone 

parameters are considered a tensile and shear strength, modulus of elasticity and rigidity, and tensile and shear fracture 

energies of concrete multiplied by the width of the RC beam. Effective stiffness factors for that composite beam were 

calculated depending on the nonlinear stress-strain relationship of concrete layers and FRP plates. The analysis using 

either Model A or Model B shows the same results for deformation and stresses until the initiation of the first crack at 

the  plate  end.  For  each  RC  continuous  beam,  analysis  using  the  two  different  models  should  be  conducted.  The 

expected failure mode (A) or (B) and ultimate load of the beams with plate end failure is the premature (minimum) 

one of either Model A or Model B.  

3. Numerical Validation 

3.1. Prediction of the Ultimate Load-Carrying Capacity 

 The  proposed  FE  model  is  evaluated  through  a  comparison  between the  experimentally  measured  and  the 

numerically predicted load-carrying capacity of the beams included in the experimental database. Table 1. and Table 

2. provide the geometric properties of the specimens shown in Figure 6. and the most important mechanical properties 

of  the  used  materials,  including  both  reference  (i.e.,  non-strengthened)  and  FRP-strengthened  beams.  Geometric 

properties  of  the  specimens  and  mechanical  properties  of  the  materials  are  taken  from  the  test  data  and  available 

experimental information provided in the referred literature [7, 16] and mostly obtained through steel coupon and FRP 

tensile tests or concrete compression tests.
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Figure 6. Geometric properties of the specimens tested in [7]  

The specific mode I fracture energy G If was considered to be 70 N/m, as recommended by the CEB-FIB Model 

code in [2] and [19]. The specific mode II fracture energy GIIf  was considered to be 200 N/m, as done by [19]. The 

cohesive tangential strength value, 3.0 MPa, was taken from the equation derived by [19]. 

Table 3. and Table 4. show a comparison between the experimental ultimate load capacity; Pexp, ultimate negative 

bending moment; M--
exp, and ultimate positive bending moment M+

exp at the failure of the test specimens and a 

comparison between the predicted FE ultimate load capacity PFE, ultimate negative bending moment; M--
FE, and 

ultimate positive bending moment M+
FE obtained by the uniaxial nonlinear finite-element model at the failure of the 

test specimens.  

The ratio between the predicted and the experimental values ranges from 0.93 to 1.17, 0.84 to 1.18, and 0.83 to 

1.16 for the ultimate load capacity, ultimate negative bending moment, and ultimate positive bending moment, 

respectively. The agreement between the experimental results and the predicted results is good for both the reference 

beams and the strengthened beams.  

Table 1. Experimental test database: geometry and material properties of the RC beam specimens 

Authors ID 
Span 

(mm) 

Width 

(mm) 

Height 

(mm) 

Astop (mm
2
) 

 

As bottom 

(mm
2
) 

fc 

(MPa) 

fy 

(MPa) 

Ey 

(GPa) 

Ashour et al. 

[7] 

H1 
3830 150 250 100.5 628.3 24.0 510 200 

H2 100.5 628.3 43.5 510 200 

H3 100.5 628.3 33.0 510 200 

H4 100.5 628.3 33.2 510 200 

H5 100.5 628.3 46.0 510 200 

H6 100.5 628.3 44.0 510 200 

S1 628.3 100.5 26.0 505 200 

S2 628.3 100.5 42.9 505 200 

S3 628.3 100.5 33.3 505 200 

S4 628.3 100.5 42.8 505 200 

S5 628.3 100.5 24.4 505 200 

E1 402.1 402.1 24.0 520 201 

E2 402.1 402.1 43.6 520 201 

E3 402.1 402.1 47.8 520 201 

E4 402.1 402.1 46.1 520 201 

E5 402.1 402.1 44.7 520 201 

Subhashree 

[16] 
CB1 

2000 150 200 

226.2+157.08
*
 100.53 22.67 578 200 

CB2 56.55+157.08
*
 157.08 25.34 429 200 

SB1 226.2+157.08
*
 100.53 23.3 578 200 

 TB1    56.55+157.08
*
 157.08 24.5 429 200 

*provided at the top tension zone  

As top =Area of the top steel 

As bottom= Area of the bottom steel 

Ey = Elastic modulus of the reinforcement bars 
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Table. 2 Experimental test databases: geometry and material properties of the FRP reinforcement for the FRP-

strengthened RC beams 

Authors ID Material 
Top FRP over the central 

support 
Bottom FRP at mid span 

bf 

(mm) 

fpu 

(MPa)
 

Ef 

(GPa) 

   tf (mm) L1 (mm) tf (mm) L2 (mm)    

Ashour et al. 

[7] 

 

H2 CFRP sheets 0.234 2000 - - 110 3900 240 

H3 CFRP sheets 0.702 2000 - - 110 3900 240 

H4 CFRP sheets 1.17 2000 - - 110 3900 240 

H5 CFRP sheets 0.702 1000 - - 110 3900 240 

H6 CFRP sheets 0.234 3000 0.234 1000 110 3900 240 

S2 CFRP sheets - - 0.234 2000 110 3900 240 

S3 CFRP sheets - - 0.702 2000 110 3900 240 

S4 CFRP sheets - - 0.702 3500 110 3900 240 

S5 CFRP sheets - - 1.17 3500 110 3900 240 

E2 CFRP plate 1.2 2500 - - 100 2500 150 

E3 CFRP plate - - 1.2 3500 100 2500 150 

E4 CFRP plate 1.2 2500 1.2 3500 100 2500 150 

E5 CFRP sheets .702 2500 - - 110 3900 240 

Subhashree 

[16] 

SB1 GFRP plate 3.0 880 1.0 880 150 172.79 6.829 

TB1 GFRP plate 3.0 880 1.0 880 150 172.79 6.829 

  Table 3. Comparison between the experimental results and numerical results of the load-carrying capacity of the reference 

RC beams (i.e., without FRP reinforcement) 

Authors ID 
     

(kN) 

PFE 

(kN) 

   

    
 

    
  

kN.m 

   
  

kNm 

   
 

    
 

 
    
  

kN.m 

   
  

kN.m 

   
 

    
  

Failure 

mode 

A
sh

o
u

r 
et

 a
l.

 

[7
]  

H1 138 137.2 0.99 21.21 23.89 1.12 56.78 53.73 0.95 Flexure 

S1 83.6 86.20 1.03 57.77 55.00 0.95 11.13 13.77 1.23 Flexure 

E1 149.7 148.2 0.99 54.49 48.95 0.90 44.41 46.47 1.04 Flexure 

S
u

b
h

a
-

sh
re

e 

[1
6

] 

CB1 260 256.2 0.99 - 29.24 - - 17.41 - Flexure
 

CB2 200 194.2 0.97 - 13.39 - - 17.58 - Flexure 

Table 4. Comparison between the experimental results and numerical results of the load-carrying capacity of the FRP-

strengthened RC beams 

Authors ID 
     

(kN) 

PFE 

(kN) 

   

    
 

    
  

kN.m 

   
  

kNm 

   
 

    
 

 
    
  

kN.m 

   
  

kN.m 

   
 

    
  

Failure 

mode 

A
sh

o
u

r 
et

 a
l.

 [
7

]  

H2 152.3 165.2 1.08 31.6 34.81 1.10 61.00 61.68 1.01 TR 

H3 172.9 180.2 1.04 46.5 51.20 1.10 59.56 60.66 1.01 PF 

H4 162.6 191.2 1.17 53.1 63.11 1.18 51.32 59.97 1.16 PF 

H5 162.6 153.2 0.94 35.0 40.48 1.15 64.27 53.1 0.83 PF 

H6 172.9 161.2 0.93 28.4 33.2 1.17 70.24 60.57 0.86 PF 

S2 121.8 119.2 0.98 71.3 61.24 0.86 22.67 26.45 1.16 SS 

S3 121.8 121.2 0.99 66.9 61.24 0.92 24.72 27.4 1.10 PF
* 

S4 170.5 166.2 0.97 89.0 74.80 0.84 37.15 42.17 1.14 PF
*
 

S5 111.7 115.2 1.03 50.2 45.19 0.90 28.36 32.55 1.14 SS 
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E2 178.6 175.2 0.98 79.8 75.83 0.95 45.64 45.96 1.00 PF 

E3 207.0 223.2 1.07 53.6 48.10 0.90 72.35 82.8 1.14 PF
*
 

E4 231.4 222.2 0.96 77.0 77.78 1.01 72.29 67.48 0.93 PF 

E5 174.6 175.2 1.0 77.4 75.75 0.98 44.87 45.99 1.02 PF 

S
u

b
h

as
h

re
e 

[1
6

] 

SB1 320 295.2 0.93 - 35.74 - - 19.03 - PF
 

TB1 224 223.2 0.99 - 18.34 - - 18.73 - PF 

 

 

Figure. 7 Comparison between the experimental measurement and FE simulation of the applied force-midspan deflection 

response for the tests presented in [7]  

3.3. Comparison of Hogging and Sagging Bending Moments 

Table 3. and Table 4. show that the numerical results of the hogging and the sagging bending moment for the 

reference beams specimens and FRP-strengthened beams specimens agreed very well with the experimental records. 

3.4. Comparison of the Failure Mode 

Numerical and experimental records showed that the reference beam failed in a ductile manner because of concrete 

crushing after large deformations, while the other four strengthened beams failed as a result of a peeling failure 

(debonding over the central support) of the external CFRP reinforcement.  

Figure 8. shows the interfacial shear stress along the adhesive layer of the upper FRP plate of beam E2 at different 

loads until failure. At a total load of 130.20 kN (before cracking), there is no peeling failure, and the shear stress in 

FRP is lower than its maximum strength pTmax (3.0 MPa). After the cracking load (155.20 kN), the shear stress in 

FRP increased significantly until failure (178.20 kN). Figure 8. shows that peeling started at the central support, where 

maximum stresses are concentrated at the load (170.2 kN) and then propagated to the beam end.  Additionally, Figure 

9. shows that the normal stress does not exceed the maximum strength pN max. 

0
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TR=  Tensile  rupture  of  the  CFRP  sheets  over  the  central  support  followed  by  flexural  failure,  PF=  Peeling  failure  (debonding  over  the  central 

support), SS=Sheet separation (under concentrated load), PF
*
= Peeling failure (under concentrated load)

3.2. Comparison of the Load-Deflection Response 

 This study also performs a comparison between experimentally recorded and numerically simulated applied load- 

midspan  deflection  response  of  reference  and  FRP-strengthened  beams.  Only  a  few  database  studies  contain  the 

applied  load-midspan  deflection  responses  of  the  tested  specimens.  Here,  the  results  corresponding  to  the  study 

presented in [7] are shown and described in detail. The geometric properties of the test specimens are shown in Figure 

6.  and  Figure 7. plots  the  applied  load-midspan  deflection  responses  for  the  reference  beam  specimen  and  FRP- 

strengthened  beam  specimens. The  agreement  between  numerical  simulations  and  experimental records  is  excellent 

for the reference beam and good for the FRP-strengthened beams. 
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Figure 10. shows the interfacial shear stress along the adhesive layer of the lower FRP plate of beam E3 at 

different loads until failure.  

 

Figure 8. Interfacial shear stress of the adhesive layer of the upper FRP plate of beam E2 at different loads until failure 

 

Figure 9. Interfacial normal stress of the adhesive layer of the upper FRP plate of beam E2 at different loads at the plate end 

 

Figure 10. Interfacial shear stress of the adhesive layer of the lower FRP plate of beam E3 at different loads until failure 

Additionally, Figures 11. and 12. shows that the normal stress along beam E3 does not exceed its maximum 

strength pN max. 
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Figure 11. Interfacial normal stress of the adhesive layer of the lower FRP plate of beam E3 at different loads at the plate end 

 

Figure 12. Interfacial normal stress of the adhesive layer of the lower FRP plate of beam E3 at different loads at the 

concentrated load 

4. Effect of Adhesive Fracture Energy on Moment Redistribution 

To study the effect of adhesive fracture energy on moment redistribution, four FRP-strengthened RC symmetrical 

continuous beams with different adhesive fracture energies, in addition to a reference beam, were analysed. Properties 

of the concrete, steel reinforcement and CFRP plate used in this study are similar to those of beam E4 in [7]. The 

results of the FE model were tabulated as shown in Table 5. 

Figure 13. indicates that it easy to redistribute the moment (
  
 

  
 ), as in CB, by increasing the adhesive fracture 

energy. Table 5. shows that 
  
 

  
  for beam G3 is equal to 0.90, the same as CB, which means that the high fracture 

energy improves the ductility of the strengthened beams. 

Figure 14. shows actual and elastic bending moments at failure for the CB, G0, G1, G2, and G3 beams. The moment 

redistribution ratios (
        
          

 

        
  ) at the central support for the CB, G0, G1, G2, and G3 beams are 16.90%, 

11.41%, 10.03%, 9.17%, and 17.20%, respectively. The observed results conclude that, by increasing the adhesive 

fracture energy of FRP-RC continuous beams, the bending moment can be redistributed, as in CB, and the 

redistributed bending moment ratios of CB and the beam G3 are very close; as mentioned above. 
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Figure 13. Comparison between the FE simulation of the applied load-hogging /-sagging moment ratio responses for the CB, 

G0, G1, G2 and G3 beams 

Table 5. Numerical results of the load-carrying capacity, ultimate negative and positive moment at failure and failure mode 

of the FRP-strengthened RC beams at different adhesive fracture energies 

ID 

 

G I 

MN/m 

G II 

MN/m 

  
 

 

(kN.m) 

  
 

 

 (kN.m) 

  
 

  
  

CB - - 51.82 57.00 0.91 

G0 0 0 62.58 62.64 1.00 

G1 0.00007 0.0002 77.48 75.77 1.02 

G2 0.0001 0.0009 86.40 83.28 1.04 

G3 0.001 .009 89.78 99.31 0.90 

 
Analytical bending moment (kN.m)             P      Load at failure (kN) 

      Elastic bending moment (kN.m)                    R      Reaction at failure (kN) 

Figure 14. Actual versus elastic bending moment at failure 
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5. Conclusions 

 A simple and efficient uniaxial nonlinear finite-element model that can accurately estimate the ultimate load 

and the behaviour of reinforced concrete (RC) continuous beams flexurally strengthened with externally 

bonded FRP plates on the upper and lower fibres is presented in this paper. A twenty one- degree- of- freedom 

element is suggested with layer-discretization of the cross-sections of the RC beam for FE modelling. Realistic 

nonlinear constitutive relations are employed to describe the stress-strain behaviour of each component of the 

strengthened beam. The FE model is based on nonlinear fracture mechanics. The uniaxial nonlinear finite-

element model is able to model different experimentally observed failure modes, i.e., collapse due to concrete 

crushing, reinforcing steel yielding, FRP rupture, plate end interfacial debonding, concrete cover separation at 

the plate ends, and intermediate crack induced interfacial debonding. 

 Results of the proposed FE model are verified by comparing them with experimental measurements available 

in the literature. The numerical results of the plated beams (beams strengthened with FRP plates) agreed very 

well with the experimental results. In addition, the uniaxial nonlinear finite-element model results provided 

good predictions of the specific failure modes obtained from tests.  

 Shear stresses, where maximum loads are concentrated and at the central support, demonstrate the failure 

mode, while normal stresses have a small effect. 

 The bending moment of FRP-RC continuous beams can be redistributed as in control beams when the adhesive 

fracture energy is considered.  
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