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Abstract 

The objective of this research is to investigate the advantage of using large-diameter 0.7-inch (18 mm) strands in pretention 

applications. Large-diameter strands are advantageous in bridge construction due to the increased girders capacity required 

to sustain exponential increase in vehicle numbers, sizes, and weights. In this research, flexure capacity of girders 

fabricated using 0.7-inch (18 mm) diameter strands will be calculated and compared to bridge capacities constructed using 

smaller strands. Finally, two similar bridge sections will be designed using 0.6-inch (15 mm) and 0.7-inch (18 mm) 

diameter strands to quantify the structural advantages of increased strand diameter. The research findings showed that a 

smaller number of girders is required for bridge construction when larger strands are used. Four girders are required to 

design the bridge panel using high performance concrete and large diameter strands, as compared to 6 girders required 

when regular concrete mix designs and normal size strands are used. The advantages of large strands and high-performance 

concrete mixes include expedited construction, reduced project dead loads, and reduced demand for labor and equipment. 

Thus, large strands can partially contribute to the improvement of bridge conditions, minimize construction cost, and 

increase construction site safety. 
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1. Introduction 

The percentage of structurally deficient bridges within the United States National Bridge Inventory (NBI) is more 

than 10%, excluding railroad bridges, according to recent statistics. Structurally deficient bridges include all bridges 

with severe deterioration in one or more of the bridge structural components (i.e. bridge substructure, girders, and/or 

deck). Bridge deterioration is enough to reduce the load rating of bridge structural component. Majority of structurally 

deficient bridges result from increased traffic, the exponential increase of vehicle loading, environmental attacks (i.e. 

scour, freeze and thaw cycles, etc.), and the use of de-icing salts and chemicals in northern states. The Federal Highway 

Administration (FHWA) and State Departments of Transportation (DOTs) have recently launched multiple research 

programs to investigate the possibility of constructing bridges with longer life spans and/or using new generations of 

construction materials with superior characteristics to minimize maintenance, repair, and replacement activities for 

different bridge structural elements. New generations of construction materials include reactive powder concrete [1-4], 

commercially known as ultra-high-performance concrete, fiber reinforced polymers, and large diameter strands.  

The main objective of this research project is to investigate the possible use of large-diameter prestressing strands in 

fabricating bridge I-girders with superior strength and quantify the structural advantages attained when large diameter 

strands are used in I-girder fabrication. The research project includes two phases: First, an analytical phase to calculate 
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the structural advantages of using large-diameter strands in fabricating precast/prestressed concrete I-girders, as 

compared to current practices. Second, an experimental phase to explore the possibility of using large diameter strands 

without violating the AASHTO LRFD specifications for estimating strands transfer length, development length, and end 

zone reinforcement [5]. In this paper, the advantages of high-performance concrete and large diameter prestress strands 

are listed. Precast/prestressed I-girders are fabricated using larger strands, and the girder performance is tested through 

a full-scale destructive testing. Finally, a case study is presented, where a bridge section is designed using conventional 

concrete mixes and regular strands diameters and compared to similar bridge section designed using high performance 

concrete and large diameter strands to compare the performance of the two sections. 

2. Literature Review 

Seven-wire prestress strands are commonly used in the United States in different types of construction projects, 

including heavy construction. Strands of 0.5-inch (13 mm) diameter were widely used in the industry until early 1990s. 

Minimum strands centerline spacing was four times the strand diameter. Thus, I-girders were fabricated using strands 

placed at a centerline spacing of 2.0 inch. (50 mm) In 1996, the Federal Highway Administration (FHWA) released a 

memorandum allowing the use of 0.6-inch (15 mm) strands at 2.0-inch (50 mm) spacing and reduced the minimum 

centerline spacing of 0.5-inch (13 mm) strands to 1.75 inch [6]. According to the FHWA memorandum, 0.6-inch (15 

mm) diameter strands are safe to use at a centerline spacing less than four times the strand diameter without violating 

the existing code transfer and development length equations. Currently, several research programs within the United 

States are investigating the possibility of using seven-wire strands of 0.7-inch (18 mm) diameter in precast/prestressed 

concrete industry. Large 0.7-inch (18 mm) strands have been used for decades in cable-stayed bridges and mining 

applications in the United States, and as post-tensioned tendons in Europe and Japan. Due to its limited applications, 

0.7-inch (18 mm) strands are produced by limited manufacturers. Large 0.7-inch (18 mm) strands have a cross-section 

area of 0.296 in2 (1.9 cm2) compared to 0.217 in2 (1.4 cm2) for 0.6-inch (15 mm) strands, and 0.153 in2  (0.9 cm2) for 0.5-

inch (13 mm) strands. Large diameter 0.7-inch (18 mm) strands are shipped to precast yards in spools [7], as shown in 

Figure 1. Strand properties include minimum strand yield strength of 1% elongation (fy = 71,500 lbs. (32432 kgm)) and 

minimum breaking strength is 79,400 lbs (36015 kgm). according to ASTM specifications [8]. 

 

Figure 1. Spools of 0.7 in. strands [7] 

Large 0.7-inch diameter strands were introduced for the first time for pretensioned applications in North America in 

the construction of the Pacific Street and Interstate 680 highway bridge in Omaha, Nebraska, as shown in Figure 2. The 

bridge girders were fabricated using 0.7-inch (18 mm) strands placed at a center-line spacing in excess of 2.0 inch (50 

mm). Strand spacing greater than 2.0 inch (50 mm) was requested by the bridge department at the Nebraska Department 

of Roads to avoid potential structural problems associated with minimal spacing including possible increase in strand 

transfer and development length. Larger strand spacing was supported by pre-casters to avoid potential fabrication 

problems due to the increased prestressing force applied. Additional prestressing force, which is linearly proportional to 

strand cross section, may result in multiple construction problems including: 1) failure of prestressing beds, which was 

designed for use with smaller strands, 2) insufficient statistical data regarding strands mechanical properties as yielding 

and ultimate strength, 3) safety hazard associated with strand draping (harping) due to the insufficient pull-down devices 

capacity, 4) excessive cracking at girder end zone due to the higher forces applied to the girder ends upon strand release, 

5) larger camber, which may result in excessive tensile cracks at girder’s top fiber. 
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Figure 2. Pacific Street and interstate 680 highway bridge in Omaha, Nebraska 

The analysis of I-girders fabricated using 0.7-inch (18 mm) strands at 2.0-inch (50 mm) centerline spacings was 

investigated in a recent research study. The study concluded that additional steel reinforcement is recommended towards 

the beam ends (end zone reinforcement) to avoid splitting or excessive cracking at the interfacing surface between 

bottom flange and web. The study highlighted the structural advantages and the substantial increase in girders capacity 

when 0.7-inch (18 mm) strands are used at 2.0 inch (50 mm) spacing in girder fabrication [9, 10]. A different research 

investigated the durability of high strength girders fabricated using larger strands. The study found that a typical concrete 

mix designs used in fabricating these girders include relatively high content of supplementary cementitious materials 

(SCMs). SCMs high content is required to attain high compressive strength. In addition, SCMs result in a substantial 

decrease in deleterious alkali-silica and alkali-carbonate reactions [11]. In a relevant study, high performance concrete 

mixes are developed using economic pozzolanic materials to use in precast/bridge industry which could result in a 

positive impact on environment [12]. 

Mix designs included a high percentage of binder and limited water-to-powder ratio. Similarly, high performance 

concrete mixes were used in fabricating bridge I-girders using welded wire reinforcement (WWR) for increasing girders 

shear capacity. The fabricated girders displayed a substantial increase in load bearing capacity. The girder capacity was 

comparable to girders fabricated using proprietary UHPC girders and tested at the FHWA research facility in Virginia 

[13]. In a different research project, the use of micro and nano materials including micro-silica and multi-wall carbon 

nano-tubes showed the possibility of pouring structural elements with superior characteristics and substantial increase 

in load-bearing capacity [14]. 

Higher grade large-diameter prestressing strands were investigated in a different research project. The outcomes of 

the research investigation showed that sufficient confinement and high concrete capacity are required for successfully 

utilizing larger strands in precast/prestressed bridge girders fabrication [15, 16]. Currently, multiple research projects 

are investigating the reliability of girder designs using different concrete grades [17]. Further investigation is required 

to identify the reliability index for shear and flexure capacities of girders fabricated using larger diameter strand. 

3. Structural Advantages of 0.7 In. Strands 

The prestressing force applied during girders fabrication is linearly proportional to the total cross section area of 

strands. The area of a single 0.7-inch (18 mm) strand (0.294 in2) is 35% greater than the area of 0.6-inch (15 mm) strand 

(0.217 in2) and 92% greater than the area of 0.5-inch (13 mm) strand (0.153 in2). The increase in the strand cross section 

area is associated with an equal increase in pretension force applied to the girder. Thus, the girder flexure capacity is 

increased if 0.5-inch (13 mm) or 0.6-inch (15 mm) strands are replaced with similar number of 0.7-inch (18 mm) strands. 

Similarly, the girder flexure capacity is maintained by replacing 0.5-inch (13 mm) and 0.6-inch (15 mm) strands with 

fewer number of 0.7-inch (18 mm) strands. The increase of prestressing force due to the use of 0.7-inch strands at 

different centerline spacing compared to the current practice of using 0.6-inch (15 mm) strands at 2.0-inch (50 mm) 

spacing is shown in Table 1. 

Table 1. Prestressing force increase due to 0.7-inch strand compared to 0.6-inch (15 mm) strands 

Vertical Spacing (in.) 
Horizontal Spacing (in.) 

2 inch (50 mm) 2.1 inch (53 mm) 2.2 inch (56 mm) 2.25 inch (57 mm) 

2 inch (50 mm) 35.5% 29.0% 23.2% 20.4% 

2.1 inch (53 mm) 29.0% 22.9% 17.3% 14.7% 

2.2 inch (56 mm) 23.2% 17.3% 12.0% 9.5% 

2.25 inch (57 mm) 20.4% 14.7% 9.5% 7.0% 
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Due to the limited area of the bottom flange of different types of I-girders (AASHTO girders, NU I-girders, etc.), it 

is required to maintain a minimal strand centerline spacing to maximize the number of strands used in girder fabrication. 

In this research, NU I-girders are used in analytical and experimental investigation of 0.7-inch strands structural 

advantages. NU I-girders are standard I-girders developed at the University of Nebraska-Lincoln and are widely used in 

several states and Canada. NU I-girders are characterized by their standard wide bottom flange, which accommodate a 

maximum number of 60 strands placed at a centerline spacing of 2.0 inch (50 mm). NU I-girders are currently produced 

in different standard depths ranging from 35.4 inch (90 cm) to 78.8 inch (200 cm). An example of a standard NU I-

girder dimensions and bottom flange strands placement are shown in Figure 3. Structural advantages of using large 

diameter strands are attained when girders are poured using high strength concrete (HSC), and a minimum concrete 

compressive strength (fc
’) of 5000 psi (35 MPa) is used in pouring cast-in-place bridge decks. Increased flexure capacity 

of NU I-girder and the effect of girder and deck strength on structural advantages of 0.7-inch (18 mm) strands are 

discussed in the following sections. 

 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
                      

 

Figure 3. Typical NU I-girder with maximum number of strands in bottom flange (60 strands) 

    The ultimate flexure capacity of a typical NU I-girder composite section was calculated using different girder concrete 

compressive strength and different strand diameters. The NU I-girder had a total depth of 43.3 inch (110 cm). A 1.0-

inch (25 mm) deep haunch was poured on the girder, followed by a deck of 7.5-inch (19 cm) structural depth and 120-

inch (305 cm) width. A maximum number of 60 strands were used in bottom flange fabrication. Strands of different 

diameters (0.5, 0.6, and 0.7 inch) were used at a centerline spacing of 2.0 inch (50 mm), and concrete of compressive 

strength ranging from 6,000 psi (42 MPa) to 12,000 psi (84 MPa) were used in girder fabrication. Details of NU I-girder 

composite section is shown in Figure 3.  

   The ultimate flexural capacity of the girder was calculated using AASHTO LRFD Strength I equation. The flexure 

capacity of the I-girder using 0.7-inch strands substantially increased when high strength concrete was used in girder 

fabrication versus no flexural capacity improvement attained when 0.5-inch (13 mm) and 0.6-inch (15 mm) strands were 

used. The girder compressive strength had no effect on girder flexure capacity when 60-0.5-inch (13 mm) and 0.6-inch 

(15 mm) strands are used as the compression block (Whitney stress block) depth was smaller than the deck structural 

thickness. The increase in prestressing force associated with large diameter strands resulted in a higher compression 

block depth. The increased depth resulted in a partial existence of the compression block within the girder. Hence, the 

increase in girder concrete compressive strength resulted in increased girder-deck composite section flexural capacity. 

Composite section capacity calculation when 60 strands of different diameters were used at different girder concrete 

compressive strength is shown in Figure 4. 
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Figure 4. Composite section capacity for different strand diameters at different girder strength 

   Similarly, the value of strands tensile stress at section ultimate capacity is proportional to slab and girder concrete 

compressive strength. Higher concrete strength results in higher strand tensile stress (tension failure), which is required 

for optimized girder design. According to current strand mechanical properties, tensile stress greater than 243 ksi (1700 

MPa) (strands yield strength) is highly recommended for design optimization. Effect of girder compressive strength on 

Strands tensile stress at a deck concrete capacity of 4,000 psi (28 MPa) is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Strands tensile stress at section ultimate capacity (deck strength = 4,000 psi (28 MPa)) 

3.1. NU-I Girder Capacity for 0.7-inch Strands at Different Deck Concrete Strength  

The depth of the compressive block is dependent on deck width and concrete compressive strength. Increased deck 

strength results in a compression block with reduced depth, and increased moment arm value. Thus, ultimate section 

capacity is increased when deck concrete strength is increased. The ultimate capacity of composite section shown in 

Figure 3 is calculated when 60-0.7-inch diameter strands are used at different deck capacities of 4,000, 5,000, and 6,000 

psi (28, 35 and 42 MPa) respectively. Composite section ultimate flexure capacity was calculated as shown in Figure 6. 

Based on calculated strength values, the following conclusions were made: 1) increased deck compressive strength 

results in a significant increase in composite section flexure capacity when large number of 0.7 (18 mm) strands is used, 

2) for smaller values of deck strength; the rate of increase in composite section capacity is highly dependent on girder 

strength, and 3) a minimum compressive strength of 5,000 psi (35 MPa) is required for the deck strength to minimize 

the effect of girder strength on composite section capacity. 

Based on the structural advantages attained when 0.7-inch (18 MPa) prestressing strands, experimental investigation 

was conducted to explore the possibility of using 0.7-inch (18 MPa) strands at centerline spacing of 2.0 inch (50 mm) 

to fabricate I-girders.  The experimental investigation focused on: 1) the impact of larger pretension force associated 
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with 0.7-inch (18 MPa) strands on the end zone cracks developed upon strand release, 2) the possibility of using current 

AASHTO equations in calculating strands transfer and development length. Results of a previous research regarding the 

fabrication of girders using 0.7-inch (18 MPa) strands at a centerline spacing of 2.2 inch (56 mm) were used to fabricate 

and test a NU I-girder at a centerline spacing of 2.0 inch (50 mm). Girders fabrication, test setup, experimental 

investigations, and test results are described in the following section. 

 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

                                  

Figure 6. Ultimate composite section capacity for different deck strength (60-0.7 strands) 

4. Experimental Investigation 

Two full-scale girders were tested in the University of Nebraska-Lincoln using 0.7-inch (18 mm) prestressing strands. 

The results of the two girders were used to investigate the possibility of using large strand diameters in girder fabrication 

without violating the AASHTO LRFD specifications. First girder, denoted as girder (A), was fabricated using 0.7-inch 

(18 mm) strands placed at a centerline spacing greater than 2.0 inch (50 mm) to minimize the end zone cracking and 

reduce possible fabrication problems resulting from the increased prestressing force and lack of prestressing bed 

capacities. Based on successful fabrication and test results of girder (A), a second girder, denoted as girder (B), was 

fabricated using 0.7-inch (18 mm) strands placed at centerline spacing of 2.0 inch (50 mm). Detailed fabrication and test 

results of the two girders are shown in the following sections: 

4.1. Girder A Fabrication 

NU900 girder was designed and tested to investigate the potential of using 0.7-inch (18 mm) strands in fabricating 

I-girders. Due to the lack of technical knowledge, fabrication experience, and bed capacities, 0.7-inch (18 mm) strands 

were not used at the standard 2.0-inch (50 mm) centerline spacing to reduce the prestressing force upon strands release. 

Girder (A) contained 24 0.7-inch (18 mm) strands in the bottom flange as tension reinforcement and 4-0.5 inch (13 mm) 

partially stressed stands in the top flange. The girder transverse reinforcement included the following: 

- 4 #6 bars for end zone reinforcement 
- 2 #4 bars at 3-inch spacing for shear reinforcement 
- 15 #3 hairpins for strand confinement at the bottom flange within the first 45 inch of the girder ends. Cross-section 

of the girder is shown in Figure 7. 

 

Figure 7. NU900 girder (Pacific Street Project, Omaha, NE) [3] 
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     Girder (A) design and fabrication processes included multiple problems including: 1) lack of prestressing bed 
capacities in most prestressing yards, 2) absence of pull-down devices with sufficient capacity to fabricate girders with 
draped strands, and 3) possible development of excessive end zone cracking upon strand release. Due to the afore-
mentioned problems, 0.7-inch (18 mm) strands were used at a horizontal spacing of 2.2 inch (56 mm) and a vertical 
spacing of 2.25 inch (57 mm) Larger strand centerline spacing resulted in a reduced number of strands, which reduced 
the potential problems due to lack of bed capacity. Straight strands were used in girder fabrication to avoid possible 
safety problems due to possible failure of pull-down devices. Finally, sufficient bottom flange confinement was used 
towards the end of the girder to reduce the end zone cracking upon strands release. 

4.2. Girder Test Setup and Results 

The girder experienced minimal end zone cracking upon strand release. Cracks were scattered along the height of the 

girder section, as shown in Figure 8.  

 

 

 

 

 

 

 

 

Figure 8. End zone cracking upon strand release at girder ends [3] 

A reinforced concrete deck of 6.0-inch (15 cm) depth was poured over the deck top flange prior to girder testing. The 
girder was instrumented by a series of 19 detached mechanical discs (Demec points) on each side of its two ends to 
measure the strands transfer length. The transfer length was determined by measuring the distance from the end of the 
girder to the point were 95% of the maximum strain was measured [18]. The Demec discs reading, shown in Figure 9, 
displayed that strain stabilized at 35-inch (89 cm) distance from the girder end. This distance, considered as the transfer 
length of the 0.7-inch (18 mm) strands, is less than the transfer length estimated for strands by the AASHTO LRFD 
specifications, which is calculated as:  

Transfer length = "427.0*60*60  bt dl (107 cm) 

Finally, the girder was tested by a applying a concentrated load at distance of 15 ft. from the girder end and 14 ft. 

(427 cm) from the support centerline. According to the AASHTO LRFD equation, the development length is calculated 

as follows: 

Development length = 1.6 (270 −
2

3
160) 0.7 = 182.9𝑖𝑛. = 15.2𝑓𝑡 (463 cm). 

           

Figure 9. Demec point reading for transfer length measurement [5] 
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The girder ultimate flexure capacity at development length was calculated as 5,157 k-ft. The ultimate capacity is 

equivalent to a point load of 582 kip (264 ton). at distance of 15 ft (457 cm). from the girder’s end, which is equivalent 

to the calculated development length. The load test setup of the girder is shown in Figure 10. The load versus deflection 

for the tested girder was recorded. The load versus deflection chart displayed that the beam elastic behavior ended at a 

load of 400 kips (181.4 ton) while the ultimate load reached prior to failure was 600 kips (272.2 ton). 

 

Figure 10. Load testing of NU900 girder 

The ultimate girder capacity for flexure, shown in Figure 11 at distance of 15 ft. (457 cm) showed that the 

development length for the 0.7-inch (18 mm) strands can be conservatively calculated according to the current AASHTO 

LRFD equation. 

 

Figure 11. Girder (A) load versus deflection relation 

4.3. Girder (B) Fabrication 

Based on the successful fabrication and testing of girder (A) fabricated with 0.7-inch (18 mm) strands at a centerline 

spacing of 2.2 and 2.25 inches (56 and 57 cm) the research team decided to fabricate a similar I-girder using 0.7-inch 

(18 mm) strands at 2.0-inch (50 mm) centerline spacing. The fabricated girder, denoted as girder (B), represents the first 

precast/prestressed girder fabricated using 0.7-inch (18 mm) strands at a centerline spacing of 2.0 inch (50 mm) in North 
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America. Girder (B) was an NU900 with a 1-inch haunch and a 7.5-inch deck (19 cm). The girder bottom flange 

contained 30-0.7 inch (18 mm) straight prestressing strands. Welded wire reinforcement (WWR) was used for girder 

shear reinforcement, and the girder end zone reinforcement contained 4#6 bars at 2.0 inch (50 mm) spacing. Details of 

girder cross section and reinforcement are shown in Figure 12. 

 
 
 
 
 
 
 
      
 
 
 
 
 
 

 
 

Figure 12. Girder (B) cross section and reinforcement details 

4.4. Girder Test Setup and Results 

   The development length for girder (B) was calculated using AASHTO LRFD equation as follows: 

𝐿𝑑 = 1.6 × (𝑓𝑝𝑠 −
2

3
𝑓𝑝𝑒) . 𝑑𝑏 = 1.6 × (270 −

2

3
× 160) . 0.7 = 183 𝑖𝑛𝑐ℎ (465 cm) 

Based on development length calculation, the girder was tested to its ultimate capacity with a point load acting on 15 

ft (457 cm)) from its end, as shown in Figure 13 The load point of action existed at a distance from the girder end equal 

to the development length, and no slippage was noticed on the strands until the load reached to 800 kips (362 ton). It 

was decided to stop the load application once a total load of 800 kips (362 ton) is applied and sustained, as the ultimate 

flexure capacity is already attained at this level of loading. 

 

Figure 13. Girder (B) test setup 

5. Case Study 

The successful fabrication and test results of precast/prestressed concrete I-girders using 0.7-inch (18 mm) strands 

placed at 2.0-inch (50 mm) centerline spacing will allow for the wide spread of large strands in construction industry, 

especially for heavy construction projects where considerable material, labor, and time savings may be achieved. In 

order to calculate the afore-mentioned savings, a two-span bridge was designed using 15,000 psi (105 MPa) concrete 

and 0.7-inch (18 mm) strands for girder fabrication. The designed bridge was 46 ft 8-inch (14.22 m) wide, and girder 

span was 105 ft. (32 m). The designed bridge has the following parameters: 

 Girders are continuous for live load; 

 Standard NU I-girders were used, with 35.4-inch (90 cm) depth; 

 Bottom flange was reinforced by 60 0.7-inch (18 mm) strands at centerline spacing of 2.0 in (50 mm); 
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 Deck structural thickness of 7.5 (19 cm) inch was used. Total deck thickness = 8.0 inch (20 cm); 

 A 1.0-inch (25 mm) thick haunch was poured on top of girders to account for camber; 

 Haunch and deck compressive strength were 5,000 psi (35 MPa); 

 Four girders were used at a centerline spacing of 12 ft. (366 cm). 

The afore-mentioned bridge specifications were successfully used to design a 105 ft. (32 m) span bridge. For 

comparison purposes, a similar bridge was designed using 8 ksi (56 MPa) concrete and 0.6- inch (15 mm) diameter 

strands. The equivalent design required the use of 6 girders spaced at 8 ft. (2.44 m) spacing. Material quantities and 

production prices price of the two design alternatives are shown in Table 2. The pricing of bridges included $850 per 

cubic yard for 8 ksi (56 MPa) concrete girders, $950 per cubic yard for high strength concrete girders (15 ksi (105 

MPa)), $450 per cubic yard for cast-in-place haunch and slab, $0.85 per pound for prestressing strands, and $0.75 per 

pound for reinforcing steel  

By comparing the production cost of both design alternatives for the bridge superstructure, a direct saving of 14% is 

achieved when bridge girders are fabricated using high strength concrete and 0.7-inch (18 mm) prestressing strands 

compared to the current practices, where 8 ksi (56 MPa) concrete and 0.6-inch (15 mm) diameter strands are used. 

Table 2. HSC girder cost analysis vs. regular concrete girders 

 
Girder Concrete 

(yd3) 

Slab Concrete 

(yd3) 

Huanch Concrete 

(yd3) 

Strands weight 

(lbs) 

Slab steel 

(lbs) 

0.7 in. + 15 ksi Girders 142 245 10.6 51,000 68,000 

Cost (USD) 135,000 110,000 5,000 43,350 51,000 

Total Cost (USD) 344,350 

0.6 in. + 8 ksi Girders 213 245 15.9 56,000 68,000 

Cost (USD) 181,000 110,000 7,000 47,600 51,000 

Total Cost (USD) 396,600 

 

The use of larger strands and higher strength concrete requires a fewer girders to be used, as shown in Figure 14. 

This reduction in girder number results in expedited construction and minimizes labor crews; and reduces the capacity 

and working hours of heavy construction equipment 

 

Figure 14. Superstructure Savings using Large strands 
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6. Conclusion 

Large prestressing strands of 0.7-inch (18 mm) diameters were successfully used in fabricating NU I-girders at 2.0-

inch (50 mm) centerline spacing. Transfer and development lengths of 0.7-inch (18 mm) strands used at 2.0-inch (50 

mm) centerline spacing were conservatively estimated by AASHTO LRFD specifications equations. The use of end 

zone reinforcement at bottom flange confinement minimized the end zone cracking developed upon strand release. The 

structural advantages of 0.7-inch (18 mm) strands are maximized when high strength concrete (fc
’> 12,000 psi (84 MPa)) 

are used in girder fabrication and a minimum concrete compressive strength of 5,000 psi (35 MPa) are used to pour cast-

in-place bridge decks. Based on the analytical study, I-girder flexure capacity increase of 35.5% and 92% can be attained 

when similar number of 0.7-inch (18 mm) strands are used as compared to 0.5-inch (13 mm) and 0.6-inch (15 mm) 

diameter strands respectively. The structural advantages of 0.7-inch (18 mm) strands allow the bridge designer to use 

similar number of strands to achieve an increased girder capacity, which results in shallower girder sections and a higher 

girder span-to-depth ratio. Similarly, bridge designers are allowed to use fewer strands to achieve a given capacity. The 

used of fewer strands results in material savings, labor savings, and expedited construction due to fewer strand pretension 

and release operations during girder fabrication, and the possible reduction in the total number of girders required for a 

given bridge construction project. 

Future research is required to 1) investigate the possibility of increasing the prestressing bed capacities to enable the 

use of large number of 0.7 inch strands, 2) increase the capacity of pull-down devices to produce structural members 

using draped (harped) strands, and 3) provide sufficient statistical data required for reliability analysis of I-girders 

produced using high strength concrete and 0.7 inch (18 mm) diameter prestressing strands. 
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