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Abstract 

Scour depth prediction is a vital issue in bridge pier design. Recently, good progress has been made in the development of 

artificial intelligence (AI) to predict scour depth around hydraulic structures base such as bridge piers. In this study, two 

hybrid intelligence models based on combination of group method of data handling (GMDH) with harmony search 

algorithm (HS) and shuffled complex evolution (SCE) have been developed to predict local scour depth around complex 

bridge piers using 82 laboratory data measured by authors and  615 data points from published literature. The results were 

compared to conventional GMDH models with two kinds of transfer functions called GMDH1 and GMDH2. Based upon 

the pile cap location, data points were divided into three categories. The performance of all utilized models was evaluated 

by statistical criteria of R, RMSE, MAPE, BIAS, and SI. Performances of developed models were evaluated by 

experimental data points collected in laboratory experiments, together with commonly empirical equations. The results 

showed that GMDH2SCE was the superior model in terms of all the statistical criteria in training when the pile cap was 

above the initial bed level and completely buried pile cap. For a partially-buried pile cap, GMDH1SCE offered the best 

performance. Among empirical equations, HEC-18 produced relatively good performances for different types of complex 

piers. This study recommends hybrid GMDH models, as powerful tools in complex bridge pier scour depth prediction. 

Keywords: Scour Depth Prediction; Complex Bridge Pier; Artificial Intelligence Method; GMDH. 

 

1. Introduction 

Physical and economic considerations may lead to complex bridge pier design. Complex piers are commonly 

constructed of columns and pile caps which are founded on pile groups. Schematic view of complex pier is presented in 

Figure 1 in which Lc= column length; Lpc= pile cap length; bc= column width; bpc= pile cap width; bpg= pile diameter; 

Sl= pile spacing in line with flow; Sb= pile spacing normal to the flow; Lu and Lf= extension of the pile cap upstream of 

and sides of the column, respectively; T= pile cap thickness; Y= pile cap top elevation to the initial bed level. This 

structure is embedded in the coastal and river environments. The interaction between these structures and their 

environments may lead to the scour process. Scouring could reduce the stability of these structures and they may 

collapse. By designing laboratory tests by authors, 82 experimental data points were measured experimentally [1]. Also 

615 experimental data sets with the same measured experimental conditions were collected from published literature to 

evaluate the effects of geometric parameters on complex pier scour depth. Experiments were executed with six complex 

pier models to quantify the influence of the pile cap upstream extension, pile group arrangement, pile group upstream 

extension, and pile cap thickness. In these studies, authors tried to find the relationship between the upper limit of the 
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pile cap undercut elevation and the pile cap thickness. A few experimental and numerical investigations have been 

carried out to predict scour depth around complex bridge piers [2-6]. By comparing the results of theoretical and 

empirical equations, it was obvious that they are not accurate enough to predict scour depth. Because empirical equations 

such as HEC-18 and FDOT are limited to the experimental and field data base and do not consider all of the conditions. 

In many years, researchers have been concentrated on presenting empirical formulas to predict scour depth at bridge 

piers. Because of many limitations, these formulas work in a specific range of experimental conditions. To overcome 

these difficulties, the focus of researchers has turned to use Artificial Intelligence (AI) method for prediction of bridge 

pier scour depth. Recently, different artificial intelligence approaches such as artificial neural networks (ANN), adaptive 

Neuro-Fuzzy inference systems (ANFIS), genetic programming (GP), gene-expression programming (GEP), support 

vector machines (SVM), model trees (MT), evolutionary polynomial regressions (EPR), POS-SVM, multivariate 

adaptive regression splines (MARS), and self-adaptive extreme learning machines (SAELM) have been applied to 

predict the local scour depth around hydraulic structures [7-16]. Among these soft computing techniques, group method 

of data handling (GMDH) methods were widely applied to predict the local scour depth around bridge piers and 

abutments, downstream of ski-jump bucket spillways, downstream of grade-control structures, and below pipelines 

induced currents and waves [17-20]. Through these applications, general structure of the GMDH network was easily 

developed by evolutionary algorithms genetic algorithm (GA), gravitational search algorithm (GSA), particle swarm 

optimization (PSO), and Neuro-Fuzzy (NF) in order to predict local scour depth at hydraulic structures. Previous 

investigations established that improvement of GMDH model using other evolutionary algorithms had a successful 

performance in the prediction of the local scour depth.  

The main objective of this study is to develop the GMDH network by means of two evolutionary algorithms as, 

harmonic search (HS) and shuffled complex evolution (SCE) to predict scour depth around complex bridge piers. A 

large set of data including 697 datasets were used to evaluate the ability of developed models. After training and testing 

stages of the proposed GMDH networks, all the performances related to the GMDH-HS and GMDH-SCE were 

evaluated quantitatively and qualitatively (R, RMSE, MAPE, BIAS, and SI). Furthermore, the results of the developed 

models were compared with those obtained using empirical equations in terms of precision level. 

 
Figure 1. Complex pier geometry characteristics 

2. Review of Experimental Study 

Local scour depth estimation around the bridge pier is a vital issue in bridges foundation design. Various design 

methods and formulas have been used to estimate local scour depth at the vicinity of bridge piers. Raudkivi described 

the effects of the flow and sediment parameters on the local scour around piers and discussed the functional trends of 

local scour based on laboratory data [21]. Melville comprehensively investigated the effective parameters in the pier 

and abutment scour and presented empirical relations that is called K-factors [22]. Also Ettema et al. discussed the 

effects of skew factors on scour geometry [23].  

Salim and Jones studied the scour around submerged and un-submerged pile groups and presented several equations 

for the effect of pile spacing and attack angle [24]. Zhao and Sheppard investigated the effect of attack angle on local 

scour in pile groups [25]. Ataie-Ashtiani and Beheshti conducted an experimental study on pile groups and suggested a 

correction factor to estimate maximum local scour [26]. Sumer et al. described scour geometry for pile groups with 

varying pile spacing [27]. Accordingly, scour around pile groups is caused by two mechanisms: first, causing local scour 

in individual piles and, second, causing a global scour (general lowering of the bed) over the entire area of the pile group. 

Dey et al. introduced a submerged factor to determine the scour depth in a submerged cylinder from the information of 

the scour depth in an un-submerged cylinder with same diameter [28]. Amini et al. evaluated the commonly used 

equations to estimate the local scour depth in a group of piles for different spacing, arrangements, and submergences 

[29]. 
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Circular compound pier and caissons local scour have been experimentally studied. Melville and Raudkivi studied 

the influence of the ratio of pier width to foundation width and scour depth at a non-uniform pier based on laboratory 

data [30].  

Physical and economic considerations often lead to bridge foundations designed including of a column founded on 

a pile cap supported by an array of piles. Piers of this configuration are referred to as complex piers [3]. Knowledge 

about local scour depth and scour mechanisms around complex piers has been investigated by many researchers [2-5, 

31-37]. All of research workers tried to develop a semi-empirical model to estimate the scour depth in non-uniform piers 

and complex piers with unexposed foundations using the concept of the primary vortex and sediment transport theory.  

3. Dimensional Analysis 

The functional relationship to investigate the effect of pier, fluid, bed sediments, and fully turbulent flow factors on 

scour depth, ys, at single uniform pier could be presented as [23]: 

Where ρ= the fluid density, μ= the fluid viscosity, U= the average velocity of approach flow, h= the flow depth, g= the 

gravitational acceleration, d50= the median particle size of sediment bed, Uc= the critical value of U associated with 

initiation of motion of bed sediments, and D= the pier diameter. By using the dimensional analysis Equation 1 can be 

expressed as: 
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Similarly, the following functional relationship for complex piers presented as: 

𝑦𝑠

𝐷𝑐

 𝑜𝑟 
𝑏𝑒

𝐷𝑐

= 𝑓3 (
𝑈

𝑈𝑐

 𝑜𝑟 𝐹𝑟,
ℎ

𝐷𝑐

,
𝐷𝑐

𝐷𝑝𝑐

,
𝑇

𝐷𝑝𝑐

,
𝑌

𝐷𝑝𝑐

,
𝑓𝑐𝑢

𝐷𝑐

,
𝑓𝑐𝑠

𝐷𝑐

, 𝑘𝑠𝑐, 𝑘𝑠𝑝𝑐 ,
𝑏𝑝𝑔

𝐷𝑐

, 𝑚, 𝑛,
𝑆𝑛

𝑏𝑝𝑔

,
𝑆𝑚

𝑏𝑝𝑔

) (3) 

Where Dc=column width, Dpc=pile cap width, T=pile cap thickness, fcu and fcs=upstream and side extensions of the pile 

cap with respect to the column, respectively, ksc and kspc=shape factors for the column and pile cap, respectively, as 

recommended by Melville and Coleman (2000), bpg=pile diameter, m=number of piles in line with the flow, n=number 

of piles normal to the flow, Sm= pile spacing in the flow direction, Sn= pile spacing normal to flow, Fr= Froude number, 

U= mean velocity of the approach flow, and Uc= critical mean velocity for particle motion. 

4. Description of Data Collection 

In this study, to investigate the scour depth prediction around complex bridge piers, 615 data points were collected 

from various literatures [3-5, 33-35, 38-43]. Overall, 615 data points were obtained from published literatures. The 

characteristics of collected data points are summarized in Table 1. In the case of application of GMDH model in the 

scour depth prediction, previous investigations have demonstrated that the performance of dimensionless parameters 

had more accurate prediction of scour depth than dimensional parameters applied in modelling the local scour prediction 

[44]. Hence, the following function can characterize the scour depth (output) and input (or independent) variables as 

Equation 3. 

Equation 3 is applied for both buried and partially buried pile caps. When pile cap is above the initial bed level, 

functional relationship for maximum scour depth can be expressed as: 
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According to the pile cap position: pile cap was above the initial bed level, partially-buried pile cap, and totally 

buried pile cap, the scour depth prediction problem categorized in three groups (Figure 2). Figure 3 illustrates the 

schematic process of the present study. 

The dimensionless parameters mentioned in Equation 3 were used as input parameters in the development of models. 

The ranges of data sets are presented in Table 1. In this study, about 80 % of data sets were selected randomly for the 

training stage, whereas the remaining 20 % were used for the testing stage. 

 

 

 

𝑦𝑠 = 𝑓1(𝜌, 𝜇, 𝑈, ℎ, 𝑔, 𝑑50, 𝑈𝑐 , 𝐷)  (1) 
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Figure 2. Schematic view of three different of pile cap elevation: (1) pile cap above the initial be level, (2) partially-buried 

pile cap, and (3) completely buried pile cap 

5. Introduction Advantages of GMDH Technique 

The GMDH is a heuristic self-organizing modeling method which Ivakhnenko has developed for modeling purpose 

as a rival method of stochastic approximation. GMDH is ideal for complex, unstructured systems where the investigator 

is only interested in obtaining a high-order input-output relationship. Alternatively, soft-computing methods, which 

concern computation in an imprecise environment, have gained significant attention. The main components of soft 

computing, namely, fuzzy logic, neural network, and evolutionary algorithms have shown great ability in solving 

complex non-linear system identification and control problems. Many research efforts have been expended to use of 

evolutionary methods as effective tools for system identification. Among these methodologies, Group Method of Data 

Handling (GMDH) algorithm is a self-organizing approach by which gradually complicated models are generated based 

on the elevation of their performances on a set of multi-input-single-output data pairs. The GMDH was first developed 

by Ivakhnenko as a multivariate analysis method for complex systems modeling and identification. In this way, GMDH 

was used to circumvent the difficulty of knowing a prior knowledge of mathematical model of the process being 

considered. Therefore, GMDH can be used to model complex systems without having specific knowledge of the 

systems. The main idea of GMDH is to build an analytical function in a feed-forward network based on a quadratic node 

transfer function whose coefficients are obtained using regression technique. The advantage of using pairs of input is 

that only six weights (coefficients) have to be computed for each neuron. The number of neurons in each layer increases 

approximately as the square of number of inputs. During each training cycle, the synaptic weights of each neuron that 

minimize the error norm between predicted and measured. There could be summarized that the GMDH-type polynomial 

networks influence be contemporary artificial neural network algorithms with several other advantages: They offer 

adaptive network representations that can be tailored to the given task; They learn the weights rapidly in a single step 

by standard ordinary least squares (OLS) fitting which eliminates the need to search for their values, and which 

guarantees finding locally good weights due to the reliability of the fitting technique; Those polynomial networks feature 

sparse connectivity which means that the best discovered networks can be trained fast [44].  

6. Development of GMDH Network 

In GMDH network, a set of neurons in each layer connected by quadratic (GMDH2) or nonlinear (GMDH1) 

polynomial and produced the new neurons in next layer. The learning of GMDH network is explained in brief for data 

series 3 with seven variables. The weighting coefficients of quadratic polynomial were determined using least square 

estimation method from input layer to output layer. In this study, number of neurons used in GMDH structure is 21 and 

6 of them are the selective neurons that have been selected based on minimum correlation determination. By executing 

the model, the weights, the computational output and the coefficient determination are calculated between the 

computational outputs in each neuron. After implementation of the GMDH model, in the first layer, the criteria of 

correlation determination is considered 0.295 to select the best neurons. The variables y1
1, y2

1, y3
1, y4

1, y5
1and y6

1are 
selected to form the second layer. These outputs account for 15 neurons in the second layer. Similarly, variables y1

2, y2
2, 

y3
2, y4

2 and y5
2 are chosen to form the third layer. These selected outputs account for 10 neurons in the third layer. 

Variables y1
3, y2

3, y3
3 and y4

3 are selected to form the fourth layer. These outputs make up 6 neurons in the fourth layer. 

The variables y1
4, y2

4and y3
4 are selected to form the fifth layer. These outputs make up 3 neurons in the fifth layer. The 

variables y1
5 and y2

5 are used to form the sixth layer. These outputs comprise 1 neuron in the sixth layer. Since there is 

only one neuron in the sixth layer, the y1
6equation is chosen as the final output. Figure 4 showed structure of the GMDH 

network. The equations of each layer for predicting scour depth in GMDH2 model presented as follows: 
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Table 1. Summary of experimental data used in evolution of GMDH models 

Researcher(s) h (cm) u/uc d50 Y (cm) T(cm) bpg (cm) Column shap Pile cap shape 

Parola et al. (1996) 15 0.95 0.58 -15-6.9 0.05-25.23 - rectangular rectangular 

Melville and Raudkivi (1996) 20 1 0.24, 0.8 -20-9 8.37-32.27 ? circular circular 

Fotherby and Jones (1993) 30.48 1.183 1 -3-15.24 3 ? rectangular rectangular 

Coleman (2005) 33- 60 0.75-0.85 0.84 -66-21.0007 6-8 2-2.4 rectangular rectangular 

Ataie-Ashtiani et al. (2010) 14- 60 0.71-0.86 0.6 -3.7-2.3 3.2-∞ 1.6 rectangular rectangular 

Ferraro et al. (2013) 10 0.92 0.83 -12.4-5 0.1, 5 2.5 Rounded rectangular Rounded rectangular 

Oliveto, Rossi, and Hger (2004) 10- 20 0.58-0.93 1.7- 2.4 0- 7.3 4-8 2-4 circular square 

Lu et al. (2011) 17.9- 20.4 0.65- 0.9 0.52 -5- 3 ? ? rectangular rectangular 

Kothyari and Kumar (2012) 16.5 0.75 0.4 0- 2.1 33- 64 ? circular ? 

Martine-Vide et al. (1996) 25.4 0.927 0.65 -25.4 26.4- 40.4 6 rectangular Circular 

Sheppard et al. (2004) 32.6- 33.5 1.5- 3.08 0.84 -22.86- (-10.36) 8 2.5 rectangular rectangular 

Beheshti and Ataie-Ashtiani (2010) 0.2853 1 0.71 -6.15 3.36 2.54 rectangular rectangular 

Zhao 21.3- 21.5 0.64- 0.65 0.17 - - 3.18 - - 

Hannah 14 0.7723 0.75 - - 3.3 --- - 

Present study 19.4- 22.6 0.8- 0.96 0.71 -8- 2 3 2 rectangular rectangular 
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Figure 3. Schematic presentation of the study 



Civil Engineering Journal         Vol. 6, No. 1, January, 2020 

    

74 

 

 

First the data sets divided into three categories based upon the pile cap elevation, second. Each of the categories run 

with the hybrid GMDH method, finally, the results compared with the empirical equations estimations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. General structure of the GMDH2 network 
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7. Results and Discussions 

In this paper, the capability of hybrid GMDH models in predicting the pier scour depth was comparatively 

investigated by a large set of experimental scour data. The results of GMDH networks including GMDH1, GMDH1HS, 

GMDH1SCE, GMDH2, GNDH2HS, and GMDH2SCE are presented in this section. The performance results were 

compared with those obtained by empirical equations such as HEC-18, FDOT, Coleman [2], revised HEC-18, and 

revised Coleman. Correlation coefficient (R), root mean square error (RMSE), mean absolute percentage error (MAPE), 

BIAS, and scatter index (SI) can be defined to evaluate error indicators in the training and testing stages. The results of 

training and testing stage performances are presented in Tables 2 to 4. The comparison of GMDH models performances 

are schematically illustrated in Figures 5 to 7 in for 1, 2, and 3 data series. 

𝑅 =
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(9) 

Where yp is the predicted values (network output), and yo is the observed values, and N is the total of events. 

Through the training stage, it can be concluded that the GMDH2SCE, produced more accurate performance 

(RMSE=1.121, MAPE=0.139, BIAS=1.39E-14, SI=0.190) compared to the other models, in data series 1, when the pile 

cap was above the initial bed level. Once the pile cap was partially-buried, the GMDH2HS and GMDH1SCE produced 

lower error parameters (RMSE=2.198, MAPE=0.183, and RMSE=2.744, MAPE=0.190, respectively) than that 

GMDH1, GMDH2, GMDH1HS, and GMDH2SCE in data series 2. In the case of completely buried pile cap, the results 

showed that the GMDH1SCE and GMDH2SCE indicated lower error and higher correlation coefficient index (R=0.927, 

RMSE=2.514, MAPE=0.228, BIAS=-1.49E-08, SI=0.313 and R=0.928, RMSE=2.510, MAPE=0.228, BIAS=-0.010, 

SI=0.312), compared to the other models. 

In the testing stage, according to Table 3 (pile cap was above the initial bed level), and it can be concluded that 

GMDH1SCE and GMDH2SCE predicted scour depth with a more accurate performance (R=0.923, RMSE=1.602, 

MAPE=0.663, BIAS=0.288, SI=0.222) compared to the GMDH1, GMDH2, GMDH1HS, and GMDH2HS models. For 

partially-buried pile cap, the results from Table 4 indicate that all of the applied models had the same performance in 

estimating scour depth around complex piers based upon the statistical indices (R=0.856, RMSE=3.239, MAPE=35.988, 

BIAS=1.106, SI=0.413). In the situation of completely buried pile caps (Table 5), the performance of GMDH2 and 

GMDH2SCE models in predicting scour depth was better than other models (R=0.878, RMSE=3.272, MAPE=1.052, 

BIAS=0.386, SI=0.352 and R=0.877, RMSE=3.310, MAPE=1.072, BIAS=0.438, SI=0.356, respectively). 

This study further compared AI technique estimates, with estimates produced by several empirical equations that 

have been widely applied to scour depth prediction. These approaches include HEC-18 (Richardson and Davis 2001), 

FDOT, Coleman [2], revised HEC-18 and revised Coleman procedures. These five empirical approaches generated 

significantly poorer values for the five criteria than that generated by the GMDH models. 

Figure 8 shows the plotted graph between the predicted and observed values of scour depth obtained using GMDH 

models and five empirical approaches. The lines -20% and +20% represents the ratio of predicted scour depth to masured 

scour depth, when a dot is placed between these two lines, it means that the ratio of predicted values to measured values 

lies in the range between -0.2 and +0.2. As it can be seen roughly 58% of the values predicted by GMDH2SCE lie 

between ±20% error margin of perfect agreement, while 46%, 53%, 50%, 47%, and 54% of the values predicted by the 

GMDH1, GMDH1HS, GMDH1SCE, GMDH2, and GMDH2HS models, respectively, achieved the same margin. 

However, with scour depths estimated by HEC-18, FDOT, Coleman [2], revised HEC-18, and revised Coleman 

methods; 33%, 25%, 32%, 40%, and 17%, of data points respectively, lie between ±20% error margin. 
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Table 2. Results comparison with DDM techniques for series 1 (when the pile cap was above the initial bed level) 

Model 
Train   Test 

R RMSE MAPE BIAS SI 

 

R RMSE MAPE BIAS SI 

GMDH1 0.900 1.355 0.160 5.60E-16 0.230 0.910 1.848 0.788 0.490 0.247 

GMDH1HS 0.912 1.273 0.160 0.065 0.216 0.900 1.782 0.745 0.277 0.244 

GMDH1SCE 0.926 1.171 0.144 -9.09E-10 0.199 0.923 1.602 0.663 0.288 0.218 

GMDH2 0.895 1.389 0.171 0.086 0.236 0.909 1.937 0.755 0.463 0.260 

GMDH2HS 0.926 1.171 0.144 -2.82E-09 0.199 0.888 1.824 0.805 0.189 0.251 

GMDH2SCE 0.932 1.121 0.138 1.39E-14 0.190 0.923 1.602 0.663 0.288 0.218 

Table 3. Results comparison with DDM techniques for series 2 (partially buried pile cap) 

Model 
Train 

 

Test 

R RMSE MAPE BIAS SI R RMSE MAPE BIAS SI 

GMDH1 0.785 3.186 31.685 3.13E-15 0.406 0.856 3.239 35.988 1.106 0.389 

GMDH1HS 0.817 2.965 0.181 5.42E-08 0.378 0.856 3.239 35.988 1.106 0.388 

GMDH1SCE 0.850 2.744 0.190 0.006 0.350 0.856 3.239 35.988 1.106 0.395 

GMDH2 0.819 2.945 0.189 4.52E-15 0.375 0.856 3.239 35.988 1.106 0.344 

GMDH2HS 0.838 2.918 0.183 0.663 0.362 0.856 3.239 35.988 1.106 0.337 

GMDH2SCE 0.828 2.886 25.712 0.047 0.368 0.856 3.239 35.988 1.106 0.308 

Table 4. Results comparison with DDM techniques for series 3 (completely buried pile cap) 

Model 
Train  Test 

R RMSE MAPE BIAS SI 

 

R RMSE MAPE BIAS SI 

GMDH1 0.892 3.038 0.244 -7.28E-16 0.378 0.884 3.437 1.089 0.714 0.362 

GMDH1HS 0.894 3.012 0.245 -0.001 0.375 0.887 3.406 1.083 0.753 0.357 

GMDH1SCE 0.927 2.514 0.228 -1.49E-08 0.313 0.885 3.422 1.086 0.712 0.360 

GMDH2 0.925 2.552 0.231 0.001 0.317 0.878 3.272 1.052 0.386 0.350 

GMDH2HS 0.924 2.572 0.232 0.010 0.320 0.874 3.339 1.083 0.410 0.357 

GMDH2SCE 0.928 2.510 0.228 -0.010 0.312 0.877 3.31 1.072 0.438 0.353 
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Figure 5. Evaluation criteria for data series 1 (when pile cap was above the initial bed level) 
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Figure 6. Evaluation criteria for data series 1 (semi buried pile cap) 
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Figure 7. Evaluation criteria for data series 1 (completely buried pile cap) 
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Fig. 8. Scatter plots of predicted versus observed scour depth 
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respectively. Once, the pile cap was partially-buried GMDH1SCE had a better performance in scour depth prediction. 

Through the testing stage, GMDH2 estimated scour depth more accurately than others when the pile cap was above the 

initial bed level. All the networks estimated relatively same values for RMSE, MAPE, and correlation coefficient in the 

case of partially-buried pile cap. Also, GMDH1SCE predicted the best scour depth than other networks when the pile 

cap was completely buried. By considering statistical parameters such as R, RMSE, and MAPE it can be seen that hybrid 

GMDH models as data driven models are reliable in estimating scour depth around complex bridge piers. 
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