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Abstract 

Excessive richness of nutrients in water bodies such as rivers, lakes and ponds lead into deterioration of aquatic life as a 

results of dense growth of algae. Phosphate is one of the main nutrients that should be controlled to prevent this serious 

issue. Utilizing low cost material as a phosphate sorbent is offering a treatment method characterized as a sustainable 

solution. In this study the efficiency of biomass bottom ash BBA as phosphate sorbent material from aqueous solution is 

investigated. Batch experiments were undertaken, in which a particular mass of BBA was brought into contact with the 

phosphate solution. The experiments studied the influence of pH (different phosphate solutions were prepared with pH 

range 4 to 8), temperature (adsorption capacity measured at the temperature range of 10 to 30 °C), and contact time. In 

addition, the adsorption isotherm models were also applied to better understand the mechanism of phosphate sorption by 

BBA. The results revealed that the bonding between the cations (BBA surface) and anions (phosphate solution) is 

significantly affected by the pH of the solution. BBA presents an excellent phosphate sorption, especially, at low pH value 

and temperature around 20 oC. The method of this research can be adopted as a followed strategy for examination the 

capability of selected material for phosphorus removal from wastewater. 
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1. Introduction 

Phosphorus is one of the essential nutrients that contribute in eutrophication the water bodies such rivers and lakes 

[1, 2]. Eutrophication or also called algal blooms is the process of extraordinary growth of the algal as a results of 

nutrients release into the water bodies. The Eutrophication play a negative role by preventing the sunlight from reaching 

the aquatic vegetation; and decrease the dissolved oxygen as a result of decomposition of their organic matter that lead 

to present of adverse effects on the aquatic life. The diversity of the higher forms of the aquatic life will be reduced 

because of the poor conditions of the water system that caused by eutrophication such as anoxic, acidic, detrimental 

conditions [3]. Recently, many regulations were enacted to protect the water bodies from the nutrients; specifically, the 

phosphorus. Water Framework Directive (WFD) which is legislated by European Union EU is one of these regulations 

that tightening the nutrient discharge into water bodies [4]. All over the world, a significant attention was paid to prevent 

the effluent of nutrients into the ecosystems to avoid their adverse effects. Therefore, seeking for new techniques to 

control the nutrients concentrations became significantly required. 
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Phosphorus is released into the aquatic environment as a result of many human activities [5]. Sewage effluent 

represent one of the main P sources that release into the water bodies; Bowes et al [6] stated that the most significant 

source of P in UK is come from sewage effluent and he mentioned that up to 70% of P contributed by sewage discharges. 

Installation of P removal technology in large wastewater treatment plants become quite common [7]. However, receiving 

P discharges from small wastewater treatment plants is often treated less rigorously; and the potential adverse effects of 

phosphate that results from small communities may be underestimated [8]. 

The recent advances in the process of phosphate removal [9, 10] suggested to combine a techniques such as filtration 

and tertiary-ballasted flocculation with metal salt dosing to control the phosphate concentration at a permissible limit. 

However, these suggestions still have high cost and sophisticated to be implemented in wastewater facilities for small 

communities. The most important aspect in the process of wastewater treatment is to eliminate the contaminant from it 

and release it as safe effluent into the aquatic environment. However, achieving low cost wastewater treatment 

technologies became vital element in the plant design [11]. Recently, utilize of active filter media to remove the 

contaminants from wastewater has been considered for use in treatment units of the wastewater plants. [12-14]. Process 

of selection the active filter media is a significant step that should be considered in the stage of filtration system design. 

The proper selection of active filter media will help to achieve the required quality that proposed by water environmental 

bodies. Based on literature review, the phosphate capture chemically by phosphate sorbent materials PSM is the 

dominant mechanism [15-17]. The PSMs which they contain Fe/Al hydroxides or easily soluble Ca/Mg compounds are 

showed significant efficiency to retain the phosphorus [18]. Various sorts of PSMs were investigated for phosphate 

removal; but most these filter materials investigated at high phosphate concentrations in wastewaters [19-21]. 

Batch experiments were conducted to introduce the estimates for phosphate retention by BBA. In a typical batch test, 

a fixed amount of substance comes into contact with the phosphate solution [22]. Commonly, the sorption isotherm 

models are used in the studies of phosphate sorption by PSMs to evaluate the phosphate sorption capacity and the nature 

of affinity [15]. 

This paper seeks to demonstrate that BBA can act as a filter media for the removal of soluble phosphate in an aqueous 

solution. In addition, the paper also aims to assess the fluctuation of the solution's pH value on the sorption process 

according to the experimental work and the mathematical model. Phosphate control is one of the essential action that 

should be taken to maintain the aquatic life in water bodies. This work introduce a sustainable solution by control the 

waste by waste and suggest a method for the researchers to be followed in regard the PSMs selections. 

2. Materials and Method 

2.1. Materials 

The BBA sample was collected from the Fiddlers Ferry Power Station in the North-West of England; the BBA is 

result of burning different types of timber. Sieve analysis has been performed to identify the BBA particle size in the 

collected samples. According to the results in table 1 there are different masses of BBA retained on sieve 10, 16, 30 and 

50. It is noticeable the largest amount has been retained on sieve 10. Then sequentially the quantity of BBA sample has 

decreased at sieves 16, 30 and 50 at percentage 28, 12 and 8.5% respectively. The BBA sample offers a wide range of 

particle sizes. However, the dominator particle size was 1-2 mm.   

Table1. The results of sieve analysis for BBA sample 

Sieve No. Diameter (mm) Mass of sample (g) Percent retained (%) Cumulative retained (%) Percent finer (%) 

4 4.75 0.00 0.00 0.00 100.00 

6 3.35 14.00 2.00 2.00 98.00 

10 2.00 304.5 43.50 45.50 54.50 

16 1.18 196.00 28.00 73.50 26.50 

30 0.60 84.00 12.00 85.50 14.50 

50 0.30 59.50 8.50 94.00 6.00 

Pan  42.00 6.00 100.00 0.00 

  Sum = 700    

X-ray fluorescence spectrometer XRF was performed to characterize the chemical composition of the BBA as 

shown in table 2. The key target of this test is to determine if the materials are consisting of the oxides that tend to 

retain the phosphate ions such as Al2O3, Fe2O3, CaO and MgO. In addition, to inspect if the materials contained an 

oxide that indicates a hazardous level of heavy metals. 
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Table 2. X-ray fluorescence analysis of the composition of BBA 

Composition Weight % 

Al2O3 7.168 

SiO2 12.49 

K2O 2.973 

CaO 7.615 

Fe2O3 4.397 

MgO 0.451 

CHO 63.95 

ZrO2 0.007 

ZnO 0.005 

fines 0.939 

In this experimental work a phosphate aqueous solutions at concentration of 10 mg/l was prepared as a source of 

phosphorus. The aqueous solutions of phosphate was prepared by dissolving potassium dihydrogen orthophosphate 

(KH2PO4) in deionized water. According to several researchers the concentration of Phosphorus in municipal 

wastewaters is vary [23-25]. However, Jenkins et al. [26] stated that the concentration of total phosphorus (organic and 

inorganic) in municipal wastewater is 10 mg/l; bacterial action will cause to decomposed most of the phosphorus into 

orthophosphate. Based on the above literature review, the aqueous solution was prepared at a concentration of 10 mg/l 

to simulate the highest expected concentration. In this work the modification of pH for aqueous solutions has required. 

The pH was adjusted by adding either hydrochloric acid (HCl) or sodium hydroxide (NaOH). 

HACH LANGE DR 2800 spectrophotometer was used to measure the phosphate concentration in this experiments 

based on Amino Acid method, which helps to measure the phosphate concentration at range 0.2 to 30 mg/l. 

2.2. Method  

Batch experiments were conducted to obtain an initial understanding of how the BBA can be used as a PSM. Firstly, 

a specific volume of the phosphate solution was brought into contact with FBA mass in one-liter capacity flask to 

determine the contact time of optimal removal efficiency. The experiment was performed at room temperature so as to 

maintain the environmentally relevant condition. The material soaked in the solution did not show any upward buoyancy 

at material/solution ratio of 1/1.74. The suspension was shaken at a constant speed (100 rpm) for 2 min to allow all the 

surface area to come in contact with solution ions. Then it was allowed to stagnate over the course of the experiment to 

prevent the effect of mixing on the sorption results. In the beginning, the samples were collected at minor intervals; then 

the collection time was increased with the progress of the experimental time. Therefore, the samples collection times 

were 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 16 h, and 24 h. The Batch experiments conducted for BBA samples in 

two situations. Firstly, the BBA samples as raw material without any pre-treatment. Secondly, BBA samples were 

washed several times with deionized water until run-off was clear. Then, BBA samples were dried at 110 oC. 

Secondly, phosphate solutions were brought into contact with different BBA masses at various temperature ranges 

(10 oC, 20 oC and 30 oC) to identify the variation in phosphate sorption behavior according to isothermal models. The 

temperature was controlled by placing the flasks in a water bath. In the previous batch experiment, BBA mass of 23 g 

and a 40 ml solution were used to achieve a material/solution ratio at 1/1.74. Hence, to obtain the required data for 

isothermal models, the amount of solution was kept at 40 ml, and the BBA masses were changed to 16 g, 23 g, 30 g, and 

37 g. 

In addition, the phosphate solutions with pH 4, 5, 6, 7 and 8 were prepared, and the absorption of BBA at each pH 

value of the solution was measured at the same contact time and temperature. The typical pH of municipal wastewater 

before treatment is 6.5 to 8 [26]. However, the pH range was 4 to 8 to present a broad perspective on the pH variation 

and its influence on phosphate sorption by BBA. 

All samples were filtered through a 0.45 µm filter paper to exclude the suspension particles that may interfere in the 

scattering of light when applied to the spectrophotometer. All experiments were carried out in triplicate, and the average 

value was used. An additional flask containing 40 ml of phosphate solution was run as a blank over all experiments for 

quality assurance.  
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Figure 1. Schematic diagram for research methodology 

2.3. Isothermal Adsorption Models  

The equilibrium isotherm models are a significant tool for interpreting the adsorption mechanism in any system. 

Adsorption isotherm represents the magnitude of a solute adsorbed at a constant temperature and its concentration in the 

equilibrium solution. In addition, the applicability of the adsorption process as a complete operation was assessed 

through the physicochemical data provided by the adsorption isotherm model [27]. Several isotherm models are available 

for analyzing the data of experimental adsorption equilibrium. In this work, the BBA sorption characteristics were 

analyzed according to the Langmuir and the Freundlich models, which are widely used to describe phosphate retention 

isotherms for natural materials. The obtained data of the phosphate equilibrium concentration was fitted to the Langmuir 

and Freundlich isotherm models, as per the following isotherm equations: 

The Langmuir equation is as follows: 

qe = 
Q K Ce

1+K Ce
  (1) 

Where qe is the mass of adsorbed per mass unit of adsorbent (mg/g). Ce is the equilibrium concentration of adsorbed 

(mg/L). Q is the maximum mass adsorbed at saturation conditions per mass unit of adsorbent (mg/g), and K is the 

empirical constant with a unit (l/mg) [28]. The Langmuir equation in linear form is given as follows: 

1

qe
 = 

1

Q
 + 

1

K.Q
 . 

1

Ce
 (2) 

The constants, K and Q, relate to the energy of adsorption and maximum adsorption capacity. The Freundlich equation 

is stated below: 

qe = Kf Ce1/n (3) 

    Where qe is the mass of adsorbed per mass unit of adsorbent (mg/g), Ce is the equilibrium concentration of adsorbed 

(mg/L), and Kf and are 𝑛 Freundlich constants, which correspond to the adsorption capacity and adsorption intensity, 

respectively. The equation can be linearized as below: 
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log qe = log Kf + 
1

n
 log Ce (4) 

      The application of isotherm equations becomes valid when the obtained data is fit to the model. In some cases, the 

model cannot analyze the findings. Langmuir isotherm model was suggested for homogeneous adsorption, and it is 

supposed to be a uniform adsorbent surface with energetically same sorption sites [29]. On the other hand, the Freundlich 

model describes equilibrium on heterogeneous surfaces. 

3. Results and Discussion 

3.1. Estimate BBA Efficiency 

As mentioned in the method section the BBA samples has been brought in contact with phosphate aqueous solutions 

at concentration 10 mg/l. All Batch experiments were conducted at room temperature and the pH of aqueous solutions 

was maintained at 6.5. Figure 2 showed the capability of BBA for phosphate removal when it's raw material RBBA and 

after washing it WBBA. 

RBBA and WBBA remove 79% and 90%, respectively from the total phosphate at the end of the experiment. It is 

noticeable that both samples have the same removal pattern; where the removal was steep at the beginning. Specifically, 

for first 2 hours of the experiments (55% and 59.5% for RBBA and WBBA). It is clear that the phosphate uptake was 

slow in rest of contact time. However, the removal period between 2 to 8 hours showed better removal efficiency in 

comparison with removal from 8 to 24 hours. Based on the outcomes, the process of phosphate uptake onto BBA consist 

of three phases (fast, moderate and slow phase). It is expected that the fast uptake it take place onto the external surface 

for the BBA samples, and the uptake became slower in lately phases because the phosphate will start to transfer from 

the external surface into the pores. 

The removal efficiency for both samples in fast phase was close to each other. While, in the moderate phase the 

removal efficiency for WBBA was better than RBBA. Along the moderate phase period the phosphate removal was 

21.3% and 15.8% for WBBA and RBBA, respectively. Finally, in the slow phase the removal efficiency for both samples 

back to be close. The run off of the BBA washing indicated appearance of some debris; it might be the debris removal 

allow the phosphate solution to reach more deep pores that increase the chance of contact. However, the removal 

efficiency for both samples decreased in the final phase as a results of transfer the phosphate ions from wide pores into 

microspores and the concentration of phosphate aqueous solution became very low. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Influence of contact time on P sorption by RBBA and WBBA (Solution concentration = 10 mg P/l, pH 

= 6.5, contact time = 24 hr) 

The contact time for the rest of the batch experiments was set at 8 hours because after this time the removal efficiency 

became very low. 

3.2. Adsorption Isotherm Study 

The behavior of phosphate adsorption at different temperatures is illustrated in Figure 3, which represents the function 

of equilibrium of phosphate concentration (Ce) vs. mass of adsorbed per mass unit of adsorbent (qe). The results revealed 

a similar pattern of phosphate adsorption by BBA at different experimental temperatures. However, the adsorbed 
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phosphate at 20 ○C looked much better than the adsorption at 10 ○C and 30 ○C. Moreover, the lowest value of adsorbed 

phosphate at 20 ○C (0.025 mg P/l) seemed to be the highest than the adsorption at 10 ○C and 30 ○C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Adsorption isotherms of phosphate on furnace bottom ash 

It is hard to deny the fluctuation of temperature in real life; the sharp decrease or increase in temperature will 

negatively affect the phosphate sorption via BBA. The removal capacity can be maintained by increasing the quantity 

of BBA. Since BBA is a waste material and freely available, it is required to increase the units' number of the treatment 

facility to accommodate the increase of BBA quantity. Consequently, this might have a negative impact on the footprints 

of the treatment facilities. 

Langmuir and Freundlich isotherm models were applied to describe the distribution of ions between the liquid phase 

PO4-3 and the solid phase BBA. The linear form of the Langmuir equation represented in Equation 2 leads to the 

redrawing of the adsorption isothermal relationship as the inverse of equilibrium concentration 1/Ce vs. the inverse of 

the mass of adsorbed per mass unit of adsorbent 1/qe, as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Langmuir isotherm model (1/Ce vs. 1/qe) at initial pH 6.5, contact time 8 hours 

The determination of the maximum phosphate adsorption by the BBA surface indicates the BBA saturation point. 

The constant (Q) in the Langmuir equation represents the maximum adsorption by the surface. This constant is obtained 

from the interception of the plot in Figure 4. As shown in Table 3, the maximum adsorption capacity for BBA at 20 ○C 

can be estimated to be 0.035 mg/g. This result indicates that the BBA had a higher affinity for P at 20 ○C in comparison 

with the values at 10 ○C and 30 ○C, where the maximum adsorption capacity was 0.02 and 0.03 mg/g, respectively. 
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Table 3. Langmuir and Freundlich isotherm models’ parameters for P adsorption on furnace bottom 

Langmuir Freundlich 

Temperature (○C) Q K R2 RL Kf 𝑛 R2 

10 0.020 0.7 0.69 0.11 0.013 7.77 0.64 

20 0.035 0.6 0.83 0.12 0.020 5.58 0.75 

30 0.030 0.3 0.77 0.22 0.011 3.75 0.69 

The coefficient R2 indicates that the phosphate adsorption by BBA gives a good fit with the Langmuir model as seen 

from the values of regression coefficients presented in Table 3. The data well-obeyed the Langmuir model at 20 ○C, 

where the R2 value was 0.83. The slope of the plot of 1/q vs. 1/C gives the value of constant K. The K and the initial 

phosphate concentration (Ci) were applied to estimate the affinity between the P and BBA using a constant called 

separation factor or equilibrium parameter (RL) [27], which can be expressed as follows: 

RL = 
1

1+K Ci
   (5) 

The values of RL between 0 and 1 indicate favorable adsorption while RL values over 1 indicate unfavorable 

adsorption. The values of K are illustrated in Table 3. These parameters were used to calculate RL values; from Table 

3, the RL values were found to be 0.11 to 0.22, which identified the favorability of phosphate ion to be adsorbed onto 

BBA. 

The Freundlich isotherm is another model that was applied in this investigation. The Freundlich constants Kf and 𝑛 

were calculated from the intercept and slope of the straight line, as shown in Figure 5. The values in the range of 2–10 

represented good adsorption [28]. As shown in Table 3, the values were found to be in the range of 3.75–7.77. The 

Freundlich constant Kf was found to be related to adsorption capacity. The adsorption capacity at a temperature of 20 
oC was found to be better than the other values obtained at other temperatures. Based on the findings of the isothermal 

models, BBA has a good affinity for P ions, and its adsorption capacity decreased with the increase or reduction in the 

optimal temperature (i.e., 20 oC). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Freundlich isotherm model (log Ce vs. log qe) at initial pH 6.5, contact time 8 hr 

It is true that ashes are chemically and physically different from each other, but most authors have indicated that the 

Langmuir model was the best isotherm model that explained the sorption via ashes [16, 30]. 

3.3. Effect of pH on Phosphate Removal 

The adsorption of anions and cations at the liquid P–solid BBA interface seems to be influenced by the pH of the 

aqueous solution. The effect of variation of pH of the phosphate solution was measured by applying batch experiments 

at different pH (4, 5, 6, 7 and 8). 

The results of the experiments, as shown in Figure 6, revealed that the phosphate removal efficiency of BBA was 

substantially dependent on the pH of the solution. It was apparent from the plot findings that the effectiveness of 

phosphate removal decreased with increasing pH of the solution from 4 to 8. After running the experiments for 8 h, the 

final phosphate concentrations were found to be 3.81 and 9.89 mg/L at pH 4 and 8, respectively. The experiments were 
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conducted at different contact times (1, 6 and 12 h) and a temperature of 20 oC. At all conditions, there was a decreased 

phosphate removal tendency of BBA with increasing pH of the solution. The highest removal efficiency of BBA was 

found at pH 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The effect of pH on the P removal 

Multiple linear regressions were used as a mathematical tool to create a model for interpreting the relationship 

between the pH of the solution and phosphate sorption by BBA (qe). The pH and contact time between the phosphate 

solution and BBA were the independent variables in this model; while qe was the dependent variable. In addition, the 

exclusion of the contact time from the model was conducted as shown in model 2 of Table 4 to verify the influence of 

pH on phosphate sorption independently. 

Table 4. Multiple linear regression models for phosphate sorption by furnace bottom ash 

Model Variables 
Unstandardized Coefficients 

R R Square 
Adjusted 

R Square 

Std. Error of 

the Estimate B Std. Error 

1 

Constant 0.129 0.009 

0.959 0.920 0.907 0.007284 pH −0.015 0.001 

Time 0.002 0.000 

2 
Constant 0.139 0.012 

0.907 0.823 0.0809 0.010408 
pH −0.015 0.002 

The equations 6 and 7 are obtained from the findings of multilinear regression models illustrated in Table 4. 

qei = 0.129 – 0.015 pHi + 0.002 Ti (6) 

qei = 0.139 – 0.015 pHi   (7) 

The value of phosphate sorption can be predicted from equation 6, but the validity of this model was proved at 20 

○C. The standard error of the estimate in model 2 was 0.010408 and in model 1 was 0.007284. The little value of the 

standard error of the estimate showed a positive result, which refers to the improvement in the model depending on pH 

and time of contact. However, the models revealed that pH significantly influenced the phosphate sorption; the R-value 

did not decrease much when the contact time was excluded in model 2. 

 According to some studies [30, 31], the phosphate sorption capacity decreases with an increase in pH; the results of 

our study are also consistent with this finding. However, the studies did not find a mathematical model to link their 

findings of the pH to the phosphate sorption or other factors, as we did in this study. 

4. Conclusion 

The use of low cost adsorbent material for phosphate removal from wastewater is enhance the methods of treatment 

which is in line with the sustainability approach. BBA considered as a waste material and available for free. Therefore, 

using BBA as phosphate sorbent material is contributing in treatment waste by waste. The chemical composition of 

BBA indicated presence of oxides such as Fe, Al and Ca that might be the essential factors supporting the adsorption of 
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phosphate. The findings of this study revealed that the phosphate uptake onto BBA take place according to three phases 

(fast, moderate and slow). These phases bring our attention that removal process is issue of time more than it is issue of 

saturation. Specifically, if the majority of phosphate concentration take place in the fast phase as in case of BBA. 

Langmuir and Freundlich isotherm models are appropriate models for phosphate adsorption by BBA. It is evident 

through the values of RL, and 𝑛 that both models are favorable for use However, the determination coefficient R2 

indicates that data fitted to Langmuir model is better than Freundlich model. 

Furthermore, an increase in the pH of the solution caused an extreme decrease in the adsorption capacity. It might be 

due to the weakening of the electrostatic force of attraction between the negative charge of the phosphate and the positive 

charge of the BBA, which eventually caused the reduction of adsorption capacity. The key impact of this study is to 

enhance the research in utilizing the PSMs and use the method of this work as a strategy for examination the validation 

of the selected PSMs. 
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