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Abstract 

The paper considers the problem of optimal control of the process of thermal conductivity of a homogeneous disk (ball). 

An optimization problem is posed for a one-dimensional parabolic type equation with a mixed-type boundary condition. 

The goal of the control is to bring the temperature distribution in the disk (ball) to a given distribution in a finite time. To 

solve this problem, an algorithm is proposed that is based on the gradient method. The object of the study is the optimal 

control problem for a parabolic boundary value problem. Using the discretization of the original continuous differential 

problem, difference equations are obtained for which a numerical solution algorithm is proposed. Difference approximation 

of a differential problem is performed using an implicit scheme, which allows to increase the speed of calculations and 

provides the specified accuracy of calculation for a smaller number of iterations. An approximate solution of a parabolic 

equation is constructed using the one-dimensional sweep method. Using differentiation of the functional, an expression for 

the gradient of the objective functional is obtained. In this paper, it was possible to reduce the multidimensional heat 

conduction problem to a one-dimensional one, due to the assumption that the desired solution is symmetric. A formula is 

obtained for calculating the variation of a quadratic functional that characterizes the deviation of the current temperature 

distribution from the given one. The flowcharts and implementations of the algorithm are presented in the form of Matlab 

scripts, which clearly demonstrate the process of thermal conductivity and show the computation and application of optimal 

control in dynamics. 

Keywords: Optimal Control; Parabolic Equation; Gradient Method; Software Complex for Calculating Optimal Modes. 

 

1. Introduction 

Optimization problems are found in almost all spheres of human activity, since any activity must be effective in a 

certain sense. That is, an action plan must be chosen that ensures optimality, according to the chosen criterion. The 

search for optimal solutions led to the creation of special mathematical methods and the mathematical foundations of 

optimization (calculus of variations, numerical methods, etc.) were laid already in the 18th century. However, until the 

second half of the 20th century, optimization methods were used very rarely in many areas of science and technology, 

since the practical use of mathematical optimization methods required tremendous computational work, which was 

extremely difficult to implement without a computer, and in some cases impossible. If we do not take into account the 

economic, physical, chemical or other content of these tasks, then all tasks are reduced to the following optimization 

problem: to find the minimum (or maximum) of a function or functional on some admissible set of a given functional 
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space. That is, the value of the functional expresses the quality of management, and the allowable set is determined by 

the constraints on resources, the possibilities of economic or other processes in the system under study [1-5]. 

This paper is devoted to the problem of building a numerical solution and developing a script in the Matlab language 

to determine the optimal control of the process of heating a homogeneous disk. One of the main goals and important 

results of the work is the description of an actually universal algorithm for solving similar optimization problems. When 

solving specific tasks, it is necessary to change the initial and boundary conditions, difference expressions, and the 

objective function, but the sequence of actions performed is preserved [6-8]. 

2. Formulation of the Problem 

The problem of optimal control of a non-stationary process of heat conduction in a disk and in a ball is considered. 

There is axial symmetry in the first case, central symmetry in the second [9-11]. 

  

        Figure 1. Axial symmetry                                          Figure 2. Central symmetry 

  

In this case, the model of the process of heat conduction is described by a one-dimensional parabolic equation: 

𝜕𝜑

𝜕𝑡
=

1

𝑟𝑛

𝜕

𝜕𝑟
(𝑟𝑛𝑘(𝑟)

𝜕𝜑

𝜕𝑟
)                                                                                                                                                       (1) 

Where 𝑛 = 1 – for a flat case (see Figure 1), 𝑛 = 2  – for the three-dimensional case (see Figure 2), 𝜑(𝑡, 𝑟) – body 

temperature 𝑟 at a point in time 𝑡, 𝑟 = 𝑅√𝑥0 + 𝑦0, (0 ≤ 𝑥0 ≤ 1), (0 ≤ 𝑦0 ≤ 1), 𝑡𝑘 – final moment of time (0 ≤ 𝑡 ≤

𝑡𝑘), 𝑅 – cylinder or ball radius (0 ≤ 𝑟 ≤ 𝑅), 𝑘 – coefficient of thermal conductivity. 

When 𝑡 = 0, the initial condition is set: 

𝜑(0, 𝑟) = 𝜑0(𝑟)                                                                                                                                            (2) 

When 𝑟 = 𝑅 the boundary condition is: 

𝜕𝜑(𝑡,𝑅)

𝜕𝑟
+ 𝛼𝜑(𝑡, 𝑅) = 𝛼𝑈(𝑡)                                                (3) 

𝑈(𝑡) -  The temperature at the border, which is completely at our disposal. In this work, 𝑈(𝑡) is a control function 

depending on time, and 𝛼 is a heat transfer coefficient. 

When 𝑟 = 0, the condition of limitation is set, that is |𝜑(𝑡, 0)| < ∞, which is a consequence of the continuity and 

differentiability of the equation solution (1): 

lim
𝑟→0

𝑟𝑛𝑘(𝑟)
𝜕𝜑(𝑡,𝑟)

𝜕𝑟
= 0                                         (4) 

In this paper, we consider the problem of bringing the disk temperature to a given temperature to a finite point in 

time. It is required to find the function 𝜑(𝑡, 𝑟), which is a solution to Equation (1) and satisfies conditions (2) - (4). Find 

the admissible control𝑈(𝑡), the function𝑈(𝑡), satisfying the constraints of the form:  

0 < 𝑈− ≤ 𝑈(𝑡) ≤ 𝑈+                         (5) 

Where 𝑈+ and 𝑈− - given constants, so that by a given time point 𝑡𝑘  the temperature distribution in the region should 

be made as close as possible to the given distribution 𝜑𝑔(𝑟), 0 ≤ 𝑟 ≤ 𝑅. 

Consider the functional characterizing the temperature deviation at a given time from the target temperature. It is 

necessary to define the function 𝑈(𝑡), which delivers a minimum to this functional:  
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𝐽 = ∫ 𝑟𝑛
𝑅

0
[𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]

2𝑑𝑟 +  𝛽 ∫ 𝑈(𝑡)2
𝑡𝑘
0

𝑑𝑡                          (6) 

The construction of the required control function 𝑈(𝑡) will be carried out based on the condition that the first 

variation of the functional (6) is equal to zero. To do this, we hover the control 𝑈(𝑡):  

𝑈(𝑡) → 𝑈(𝑡) + 𝛿𝑈(𝑡)  

Then the function 𝜑(𝑡, 𝑟) → 𝜑 + 𝛿𝜑 , and the functional 𝐽 + 𝛿𝐽  change. In this case, Equation (1) for the new 

function 𝜑 will remain the same: 

𝜕(𝜑+𝛿𝜑)

𝜕𝑡
=

𝑘

𝑟𝑛

𝜕

𝜕𝑟
(𝑟𝑛

𝜕(𝜑+𝛿𝜑)

𝜕𝑟
)                        (7) 

And the functional will take the form: 

𝐽 + 𝛿𝐽 = ∫ 𝑟𝑛
𝑅

0
[𝜑(𝑡𝑘, 𝑟) + 𝛿𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]

2𝑑𝑟 +  𝛽 ∫ (𝑈(𝑡) + 𝛿𝑈(𝑡))2
𝑡𝑘
0

𝑑𝑡   

Next, subtract from Equation 7 to Equation 1: 

𝜕(𝜑+𝛿𝜑)

𝜕𝑡
−

𝜕𝜑

𝜕𝑡
=

𝑘

𝑟𝑛

𝜕

𝜕𝑟
(𝑟𝑛 (

𝜕(𝜑+𝛿𝜑)

𝜕𝑟
−

𝜕𝜑

𝜕𝑟
))   

From here, we obtain for 𝛿𝜑(𝑡, 𝑟)  an equation of the following form: 

𝜕𝛿𝜑

𝜕𝑡
=

𝑘

𝑟𝑛

𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝛿𝜑

𝜕𝑟
)                           (8) 

With appropriate boundary and initial conditions: 

𝛿𝜑(0, 𝑟) = 0,                                        

lim
𝑟⟶0

(𝑟𝑛
𝜕

𝜕𝑟
𝛿𝜑(𝑡, 𝑟)) = 0,                 

𝜕

𝜕𝑟
𝛿𝜑(𝑡, 𝑅) + 𝛼𝛿𝜑(𝑡, 𝑅) = 𝛼𝛿𝑈(𝑡)  

                                    (9) 

After simple calculations, it is possible to obtain an expression for the variation of the functional (6), which has the 

following form: 

𝛿𝐽 = ∫ 2𝑟𝑛
𝑅

0
[𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]𝛿𝜑(𝑡𝑘, 𝑟)𝑑𝑟 + 2 𝛽 ∫ 𝑈(𝑡)𝛿𝑈(𝑡)

𝑡𝑘
0

𝑑𝑡                    (10) 

Next, we define the adjoint system to the problem (1) - (3): 

𝜕𝜓(𝑡,𝑟)

𝜕𝑡
= −

𝑘

𝑟𝑛

𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝜓(𝑡,𝑟)

𝜕𝑟
)                                                                                                                                               (11) 

With initial and boundary conditions: 

𝜓(𝑡𝑘 , 𝑟) = 2[𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]                     (12) 

lim
𝑟→0

𝑟𝑛𝑘
𝜕𝜓(𝑡,𝑟)

𝜕𝑟
= 0,

𝜕𝜓(𝑡,𝑅)

𝜕𝑟
+ 𝛼𝜓(𝑡, 𝑅) = 0                    (13) 

It turns out that the variation of the functional (10) is linearly expressed through the increment variation and the 

following fact holds. 

3. Statement 

There is equality: 

∫ 2𝑟𝑛
𝑅

0

[𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]𝛿𝜑(𝑡𝑘, 𝑟)𝑑𝑟 = 𝛼𝑘𝑅𝑛∫ 𝜓(𝑡, 𝑅)𝛿𝑈(𝑡)
𝑡𝑘

0

𝑑𝑡, 

Where 𝜓(𝑡, 𝑟) − adjoint function, which is the solution of problem (11) - (13) in inverse time. 

Evidence. Perform a chain of calculations: 

∫ 2𝑟𝑛
𝑅

0

[𝜑(𝑡𝑘, 𝑟) − 𝜑𝑔(𝑟)]𝛿𝜑(𝑡𝑘, 𝑟)𝑑𝑟 = ∫ 𝜓(𝑡𝑘, 𝑟)𝛿𝜑(𝑡𝑘, 𝑟)𝑑𝑟
𝑅

0

= ∫ ∫
𝜕

𝜕𝑡
(𝜓(𝑡𝑘 , 𝑟)𝛿𝜑(𝑡𝑘 , 𝑟))𝑑𝑡

𝑡𝑘

0

𝑑𝑟
𝑅

0

=∬ −𝛿𝜑
𝑘

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝜓

𝜕𝑟
)

 

𝑄

+ 𝜓
𝑘

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝛿𝜑

𝜕𝑟
) 𝑑𝑟𝑑𝑡 =

=  ∫ (∫ 𝑘𝑟𝑛
𝜕𝛿𝜑

𝜕𝑟

𝜕𝜓

𝜕𝑟

𝑅

0

𝑑𝑟 − ∫ 𝑘𝑟𝑛
𝜕𝜓

𝜕𝑟

𝜕𝛿𝜑

𝜕𝑟

𝑅

0

𝑑𝑟) 𝑑𝑡
𝑡𝑘

0

=

= ∫ 𝑘𝑟𝑛
𝜕𝛿𝜑

𝜕𝑟
𝜓|𝑅𝑑𝑡

𝑡𝑘

0

−∫ 𝑘𝑟𝑛
𝜕𝜓

𝜕𝑟
𝛿𝜑|𝑅

𝑡𝑘

0

𝑑𝑡 ==  𝛼𝑘𝑅𝑛∫ 𝜓(𝑡, 𝑅)𝛿𝑈(𝑡)
𝑡𝑘

0

𝑑𝑡 
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Substitute the resulting ratio in the expression for the variation of the functional (10): 

𝛿𝐽 =  ∫ (𝛼𝑘𝑅𝑛𝜓(𝑡, 𝑅) + 2 𝛽𝑈(𝑡))
𝑡𝑘

0
𝛿𝑈(𝑡)𝑑𝑡                                 (14) 

It is worth noting that many researchers are studying the processes of thermal conductivity. In papers [12, 13], more 

complex models are considered and the question of the properties of discredited problems is investigated, namely, the 

questions of convergence of the proposed methods and difference schemes are studied. 

4. Numerical Method 

We introduce dimensionless variables as follows: 

𝑟′ =
𝑟

𝑅
, 𝑡′ =

𝑘𝑡

𝑅2
, 

And define the area 𝐷: 

𝐷 = (0 ≤ 𝑟 ≤ 1,0 ≤ 𝑡 ≤ 𝑡𝑘). 

Next, we introduce the grid: 

𝜔ℎ = {𝑟𝑖 = 𝑖ℎ, 𝑖 = 0,1, … , 𝑁}

𝜔𝜏 = {𝑡𝑗 = 𝑗𝜏, 𝑗 = 0,1, … , 𝑗0}
, 

With steps ℎ =
1

𝑁
 и 𝜏 =

𝑡𝑘

𝑗0
. Denote 𝜑𝑖

𝑗
 the value in the node (𝑟𝑖,𝜏𝑗) of the grid function 𝜑 defined on 𝐷. Performing the 

standard replacement of the derivatives 
𝜕𝜑

𝜕𝑡
 and 

𝜕

𝜕𝑟
(𝑟𝑛𝑘(𝑟)

𝜕𝜑

𝜕𝑟
) with difference expressions, we construct an implicit 

central difference scheme for Equation 1.  

𝜕𝜑

𝜕𝑡
=

𝜑𝑖
𝑗+1

−𝜑𝑖
𝑗

𝜏
     

𝜕𝜑

𝜕𝑟
=

𝜑𝑖+1
𝑗+1

−𝜑𝑖
𝑗+1

ℎ
.

                       (15) 

Applying the operator 
𝜕

𝜕𝑟
  to 𝑟𝑛

𝜕𝜑

𝜕𝑟
 , we will have: 

𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝜑

𝜕𝑟
) = (

𝑟𝑖+1+𝑟𝑖

2
)
𝑛 𝜑𝑖+1

𝑗+1
−𝜑𝑖

𝑗+1

ℎ2
− (

𝑟𝑖+𝑟𝑖−1

2
)
𝑛 𝜑𝑖

𝑗+1
−𝜑𝑖−1

𝑗+1

ℎ2
                                     (16) 

Therefore, the difference equation for determining the desired grid function will be as follows: 

𝜑𝑖
𝑗+1

−𝜑𝑖
𝑗

𝜏
=

1

𝑟𝑖
𝑛ℎ
((

𝑟𝑖+1+𝑟𝑖

2
)
𝑛 𝜑𝑖+1

𝑗+1
−𝜑𝑖

𝑗+1

ℎ
− (

𝑟𝑖+𝑟𝑖−1

2
)
𝑛 𝜑𝑖

𝑗+1
−𝜑𝑖−1

𝑗+1

ℎ
)                                              (17) 

In the following, for convenience, we will omit the superscript (𝑗 + 1), тthat is, we assume that 𝜑𝑖 = 𝜑𝑖
𝑗+1

. Imagine 

the scheme (17) as follows [14, 15]: 

𝐴𝑖  𝜑𝑖−1 + 𝐵𝑖𝜑𝑖+1 − 𝐶𝑖 𝜑𝑖 =
𝜑𝑖
𝑗

𝜏
                                 (18) 

Where: 

𝐴𝑖 =
(1−

1

2𝑖
)
𝑛

ℎ2
;   𝐵𝑖 =

(1+
1

2𝑖
)
𝑛

ℎ2
 ;  𝐶𝑖 = [

(1+
1

2𝑖
)
𝑛
+(1−

1

2𝑖
)
𝑛

ℎ2
+

1

𝜏
]                  (19) 

Here: 𝑖 = 1,… , 𝑁 − 1. 

Further, it is worth paying attention to the boundary conditions (3) and (4) in differential form. It is known that the 

order of approximation of the difference problem (17) is two. Therefore, the boundary conditions in the difference form 

must also have a second order of approximation. 

We obtain an approximation of condition (3). To do this, we introduce a fictitious point 𝑖 = 𝑁 + 1. Then condition 

(3) can be written as follows: 

𝜑𝑁+1−𝜑𝑁−1

2ℎ
+ 𝛼𝜑𝑁 = 𝛼𝑈(𝑡𝑗+1)                                   (20) 

In this case, the point with the number 𝑁 becomes an internal point, which means that Equation 18 is fulfilled in it, 

that is, 

𝐴𝑁 𝜑𝑁−1 + 𝐵𝑁𝜑𝑁+1 − 𝐶𝑁 𝜑𝑁 =
𝜑𝑁
𝑗

𝜏
                    (21) 
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From Equation 20, we can express 𝜑𝑁+1 and substitute it into Equation 21. As a result, we will have: 

𝜑𝑁+1 = 𝜑𝑁−1 − 2𝛼ℎ𝜑𝑁 + 2𝛼ℎ𝑈  

Here 𝑈 = 𝑈(𝑡𝑗+1). Substitute this expression for 𝜑𝑁+1 into the Equation 21: 

(𝐴𝑁 + 𝐵𝑁)𝜑𝑁−1 − (2𝛼ℎ𝐵𝑁 + 𝐶𝑁)𝜑𝑁 =
𝜑𝑁
𝑗

𝜏
− 2𝛼ℎ𝐵𝑁𝑈  

Or:  

𝜑𝑁−1 = �̃�𝑁𝜑𝑁 + �̃�𝑁 ,                                           (22) 

Where: 

�̃�𝑁 =
(2𝛼ℎ𝐵𝑁+𝐶𝑁)

(𝐴𝑁+𝐵𝑁)

�̃�𝑁 =

𝜑𝑁
𝑗

𝜏
−2𝛼ℎ𝐵𝑁𝑈

(𝐴𝑁+𝐵𝑁)

  

Thus, Equation 23 is an approximation of condition (3). To solve Equation 18, we will use the standard sweep 

method. The following fact should be noted. To solve the optimal control problem, it will be necessary to solve the 

direct problem and the adjoint problem (11)-(13). To do this, it is also possible to use an implicit central difference 

scheme. The solution of this equation occurs in reverse time, i.e. from 𝑡 = 𝑡𝑘 to 0, while the “-” sign on the right side 

turns into “+”. 

Since the control of 𝑈 depends on time, we will approximate it with piecewise constant functions of the form [15, 

16]: 

𝑈(𝑡) = 𝑈𝑖 ,   𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, 𝑖 = 0,1, … , 𝑗
0 − 1                                                (23) 

Where 𝑈𝑖 is a constant in the interval equal to the length of the time step. Then the minimized functional becomes a 

function of 𝑗0 variables, namely: 

𝐽 = 𝐽(𝑈1, 𝑈2, … , 𝑈𝑗0)                         (24) 

And to minimize it, well-known optimization methods, including gradient descent methods, can be used. 

It should be noted that in this case, the optimal control problem is reduced to the conditional optimization problem, 

since the variables 𝑈1, 𝑈2, … , 𝑈𝑗0  satisfy the constraint (5). 

Imagine a variation of the minimizing functional (14) in new dimensionless variables: 

𝛿𝐽 = ∫ (𝛼𝜓(𝑡, 1) + 2𝛽𝑈(𝑡))𝛿𝑈(𝑡)𝑑𝑡
𝑡𝑘
0

                                      (25) 

Replacing integration by finite summation, we have: 

𝛿𝐽 = ∑ (𝛼
𝜓(𝑡𝑗)+𝜓(𝑡𝑗+1)

2
+ 2𝛽𝑈𝑗) 𝛿𝑈𝑗𝜏

𝑁−1
𝑗=0   

We get from here that; 

𝜕𝐽

𝜕𝑈𝑗
= (𝛼

𝜓(𝑡𝑗)+𝜓(𝑡𝑗+1)

2
+ 2𝛽𝑈𝑗) 𝜏                         (26) 

𝑗 = 0,1, … , 𝑗0 − 1   

Knowing quantities (26), it is easy to write formulas for the gradient descent method 

𝑈𝑗
(𝑘+1)

= 𝑈𝑗
(𝑘)
− 𝛾

𝜕𝐽

𝜕𝑈𝑗
  

𝑈𝑗 =

{
 
 

 
 𝑈+,    if  𝑈𝑗

(𝑘+1)
> 𝑈+

𝑈𝑗 ,   if  𝑈− ≤ 𝑈𝑗
(𝑘+1) ≤ 𝑈+

𝑈−,    if  𝑈𝑗
(𝑘+1)

< 𝑈−

                      (27) 

Here, 𝛾 is the step along the gradient (𝛾 > 0). Figure 3 (a) shows the temperature graph 𝜑(10𝜏, 𝑟), Figure 3 (b) 

shows the graph of the solution of the adjoint problem 𝜓(10𝜏, 𝑟). 
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                                    (a)                                                                               (b) 

Figure 3. (a) Temperature 𝝋(𝟏𝟎𝝉, 𝒓); (b) Conjugate function 

Consider the algorithm for solving the direct problem. Figure 4 shows the block diagram of this algorithm. 

Figure 4. Block diagram of the direct problem solution 
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At the beginning, the number of points in the partition along the radius 𝑁, the maximum temperature bT and the 

constants gamma (𝛾), alpha (𝛼), which are necessary for organizing the calculations of not only the direct system, but 

also the whole task, are specified. Further, the initial temperature distribution fi (r) - which is a function and described 

in a separate m-file, is specified. Setting these variables in the script looks like this: 

N=50; 

bT=5; 

gamma=0.8; 

alpha = 0.4; 

function [ out ] = fi( r ) 

out= 2*r; 

end 

At the next stage, the values of h, taw, r, fi_old are calculated, the initial temperature distribution is set at t = 0. In 

the script, this stage has the form: 

h=1/(N-1); 

taw=gamma*h*h; 

fi_old=fi(r); 

r=0:h:1; 

t=0; 

l=zeros(1,N); 

m=zeros(1,N); 

u_mass_old=zeros(1,1+N); 

Calculations are organized in an iterative way and implemented in a while loop. The script code directly implements 

the sweep method, which is described by the formulas (17)-(22); 

while t<bT 

 

        l(1) = 4/((h*h)*(4/(h*h)+1/taw)); 

        m(1) = fi_old(1)/(taw*(4/(h*h)+1/taw)); 

  

        for i=1:N-1 

            den=1/(1/taw + (4*i-(2*i-1)*l(i))/(2*i*h^2)); 

            l(i+1)=((2*i+1)/(2*i*h^2))*den; 

            m(i+1)=(fi_old(i)/taw + ((2*i-1)*m(i))/(2*i*h^2))*den; 

        end 

  

        fi(N) = (alpha*h*u_mass_old(count)+m(N))/(1-l(N)+h*alpha); 

        i=N; 

 

        while i>1 

            fi(i-1)=l(i)*fi(i)+m(i); 

            i=i-1; 

        end 

 

        fi_old=fi; 

        t=t+taw; 

        count = count+1; 

 

end 

The solution of the conjugate problem is determined similarly to the solution of the direct problem. However, we 

note that the adjoint problem is solved in reverse time. Figure 5 shows the block diagram of the solution of the adjoint 

problem. 
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Figure 5. Block diagram of the solution of the conjugate problem 

We describe the algorithm for constructing optimal control. The zero values of the arrays grad1 and grad2, which 

are necessary to determine the parameter a, which is the proportionality coefficient, which connects the controls on the 

current layer and the previous one, are initialized with zero values. Further, in the external while loop, the main 

calculation is performed. The condition for exit from the cycle is a small difference of controls. 

In the loop body, the u_mass_old and u_mass values are exchanged to go to the current layer. This is followed by a 

block that is responsible for solving the direct system. In this block, the method of solving a boundary value problem is 

directly implemented. After receiving the solution of the direct system, the solution of the adjoint system is searched. 

At the same time, in the adjoint system, the grad2 grad2 values are determined through the values of psi (N) and psi (N-

1), which is used to determine the values of u_mass via u_mass_old. Before exiting the loop, the obtained values of 

u_mass are compared with the minimum (u_minus) and maximum (u_plus) values. The process is repeated until t <bT. 

After passing this cycle, we proceed to the next iteration of the external while loop with the condition abs (u_mass_old 

(M) -u_mass (M))> e. It should be noted that u_mass_old appears in the direct system, which leads to its change and 
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approximation to the objective function fi_g (r). As a result, we provide the gradient graphics and the constructed optimal 

control: grad2 and u_mass (Figure 6). 

 

 

Figure 6. Block diagram of the algorithm for constructing optimal control 
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This block diagram formed the basis of the software package for calculating the optimal modes of disk heating. The 

main algorithmic component of the algorithm for finding optimal control is presented in the script. 

while abs(u_mass_old(M-1)-u_mass(M-1)) > 0.00001 

    u_mass_old=u_mass; 

    count = 1; 

    fi_old=fu(r); 

    while t<bT 

        l(1) = 4/((h*h)*(4/(h*h)+1/taw)); 

        m(1) = fi_old(1)/(taw*(4/(h*h)+1/taw)); 

        for i=1:N-1 

            den=1/(1/taw + (4*i-(2*i-1)*l(i))/(2*i*h^2)); 

            l(i+1)=((2*i+1)/(2*i*h^2))*den; 

            m(i+1)=(fi_old(i)/taw + ((2*i-1)*m(i))/(2*i*h^2))*den; 

        end 

        fi(N) = (alpha*h*u_mass_old(count)+m(N))/(1-l(N)+h*alpha); 

        i=N; 

        while i>1 

            fi(i-1)=l(i)*fi(i)+m(i); 

            i=i-1; 

        end 

        fi_old=fi; 

        t=t+taw; 

        count = count+1; 

    end 

    subplot(1,4,1); 

    plot(r,fi_old,'b'); 

    xlabel('r'); 

    ylabel('fi_old(r)'); 

    grid on; 

    drawnow; 

    l=zeros(1,N); 

    m=zeros(1,N); 

    t = 0; 

    psi_old = (fi_old - fi_g(r)); 

    subplot(1,4,2); 

    plot(r,fi_g(r)); 

    xlabel('r'); 

    ylabel('fi_g(r)'); 

    count2 = 1; 

   while t<bT 

        l(1) = 4/((h*h)*(4/(h*h)+1/taw)); 

        m(1) = psi_old(1)/(taw*(4/(h*h)+1/taw)); 

        for i=1:N-1 

            den=1/(1/taw + (4*i-(2*i-1)*l(i))/(2*i*h^2)); 

            l(i+1)=((2*i+1)/(2*i*h^2))*den; 

            m(i+1)=(psi_old(i)/taw + ((2*i-1)*m(i))/(2*i*h^2))*den; 

        end 

        psi(N) = m(N)/(1-l(N)+alpha*h); 

        i=N; 

        while i>1 

            psi(i-1)=l(i)*psi(i)+m(i); 

            i=i-1; 

        end 

        grad2(count2) = (alpha*(psi(N)+psi_old(N))/2+ 2*betta*u_mass_old(count2))*taw; 

        u_mass(count2) = u_mass_old(count2)-(2/(abs(grad1(count2)-grad2(count2))+0.8))*grad2(count2); 

        if u_mass(count2) > u_plus 

           u_mass(count2) = u_plus; 

        elseif u_mass(count2) < u_minus 

               u_mass(count2) = u_minus;             

        end; 

        grad1=grad2; 

        psi_old=psi; 
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        t=t+taw; 

        count2 = count2+1; 

        subplot(1,4,3); 

       plot(grad2); 

       xlabel('M'); 

       ylabel(grad'); 

    end 

   subplot(1,4,4); 

    plot(u_mass,'b'); 

    xlabel('M'); 

    ylabel('u_mass'); 

end 

 

 

Figure 7. Graph 
𝝏𝑱

𝝏𝑼𝒋
 and 𝑼𝒋 

5. Conclusion 

The paper proposes a method for solving an extremal problem with a quadratic integral functional based on the 

gradient method for a one-dimensional heat equation with mixed boundary conditions. A formula for the first variation 

of the integral functional is derived, a numerical algorithm for constructing an approximate solution of a one-dimensional 

parabolic boundary value problem is implemented. A flowchart of the algorithm and the implementation of this 

algorithm in a script in the Matlab language are presented. The type of optimal control obtained based on the proposed 

algorithms is given. 
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