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Abstract 

The objective of this article is to generating the design charts deals with the axially ultimate capacity of single pile action 

by relating the soil and pile engineering properties with the pile capacity components. The soil and are connected together 

by the interface finite element along pile side an on its remote end.  The analysis was carried out using ABAQUS software 

to find the nonlinear solution of the problem. Both pile and soil were modeled with three-dimensional brick elements. The 

software program is verified against field load-test measurements to verify its efficiency accuracy. The concrete bored 

piles are used with different lengths and pile diameter is taken equals to 0.6 m. The piles were installed into a single layer 

of sand soil with angles of internal friction (20° t0 40°) and into a single layer of clay soil with Cohesion (24 to 96) kPa.  

The getting results showed that for all cases study the total compression resistance is increased as pile length increased for 

the same property of soil, also illustrious that the total resistance of same pile length and diameter increased as the soil 

strength increasing. In addition, the same results were obtained for the end bearing resistance, skin resistance and tension 

capacity. Design charts were constructed between different types of soil resistance ratio and the pile length/diameter ratio 

(L/D) for all cases of study. One of improvement found from these curves that it is cheaply using piles of larger diameter 

than increasing their lengths for dense sand and to increasing piles lengths for loose sand. Moreover, it is inexpensively 

using piles of larger length in soft clay soil than increasing their diameter and piles of larger diameter in firm and stiff clay 

soils than increasing their length. 

Keywords: Pile; Compression Load; ABAQUS Program; Design Charts; Pile Action. 

 

1. Introduction 

Piles defined as a slender long columns put in into the ground to utilized for transferring applied toad (vertical, 

horizontal, uplift) to stronger soil layers. Piles were usually used to reduce a large settlements of constructions structures 

that occurred by shallow foundations due to the soil void rate [1]. Also, piles were widely used in many buildings and 

structures such as basement mats, offshore platforms, transmission towers, piers an abutments of bridge, and etc. For 

vertical load resistance, piles can be categorized as a friction (flouting) piles or an end-bearing piles. But this 

classification has questionable remark for piles utilized in transmitting by a collection of the end-bearing and side friction 

portions. Tomlinson (1995) proposed a simple classification founded on the British Normal Program (BS 8004) of 

Repetition for Foundations [2]. 

Many methods had been developed during past decades by different researchers to find accurately the ultimate pile 

capacity such as Winker method, plasticity theories, numerical methods, an etc. But all of these methods have an 
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approximate nature according to the omitting or ignoring some aspects of the variables which controlling the behavior 

of problem domain (pile, soil, force transfer, force component of pile). To illustrate some of the above methods, below 

a number of researchers work are given as follows:  

Coyle et al. (1966) [3] used load transfer method, which involves an iterative analysis procedure.  The procedure 

relies on curves which relate the ratio of load transfer to soil shear strength versus pile displacement along the length of 

the pile. The curves are constructed from data obtained from the field or laboratory-instrumented piles. 

Goodman et al. (1968) [4] was the first in the field of rock mechanics to apply a special two dimensional joint elements 

and combining their rigidity to the structure global stiffness. This method has developed to symbolize the jointed rock 

masses behavior. The element of joint was presented as an one dimensional simple tube, with eight freedom grades 

represent the translation freedom degree, offering resistance to shear and compressive forces acting along parallel and 

normal direction to its axis. 

Randolph et al. (1978) [5] produced an approximate analytical solution for a rigid pile by considering separately the 

load sustained by the pile shaft and the load sustained by the pile base. They assumed a uniform shave stress circulation 

alongside heap shaft, and the normal stresses beneath the pile base as those of arising from a rigid punch at the surface 

of an elastic half space. 

Laethem et al. (1983) [6] used a combined boundary element and finite element methods to represent SSI in two and 

three dimensional analyses, the region near the applied load which behaves as non-linear are modeled as a finite element 

while the far end are represent by a boundary element, which is used to model the elastic behavior of far field. 

Eduardo et al. (1999) [7] presented an obvious finite element method for determining load-settlement history of 

axially loaded skin friction piles in linear range. The method is based on an exact analytical solution of the differential 

equation governing the behavior of skin friction piles. A fourth order polynomial is used to fit the soil resistance 

distribution along element length. 

McCabe et al. (2006) [8] dealt with a case history involving to the five pile capacity classified as closely spaced, 

precast concrete piles casted in a soft clay-silt that made throughout the installation in addition  to load testing regarding 

of pile groups. The maintain full  compression test scale and tension load test on groups, in addition to tests achieved on 

indication single piles including to an individual test on a pile inside a pile group, were be used to be assessed  the 

facilitated the estimation of these effects of multiple pile installations and interaction between piles under load. The 

results ha to be assessed been compared with the accessible simple methods of pile group analysis furthermore with 

other reporting results of case histories on small pile groups. A straightforward expression to evaluate pile group stiffness 

efficiency was proposed. 

Lashkari (2012) [9] projected a simple semi-hyperbolic state-dependent constitutive model communicated to sand-

structure interfaces. The model had been formulated by consisting  the soil mechanics of critical state given that the 

continuous devolvement of void ratio with shear strain that has a movement from an initial state towards asymptotic 

critical state at extremely large shear strains. The model concerned the effect of normal stiffness on volume change in 

addition to stress path, and interface model in a pile performance. Results had been showed that the analysis of the 

proposed pile segment was a good indication for the prediction of the pile shaft resistance, side friction, which embedded 

in different sandy soils. 

Dong-dong et al. (2017) [10] studied the interactive effects amongst the group piles via the shear displacement method 

using the principle of superposition. The displacement of single pile shaft at a given depth was understood to be 

composed of the soil-pile comparative displacement that developed at the disturbed soil which surrounding pile and the 

elastic vertical displacement of soil urbanized during soil mass. A new load-transfer function (hyperbolic model) had 

been constructed to clarify the relationship between the unit skin friction of pile and its shaft displacement by a given 

depth. In the same way, the hyperbolic model was used to imitate the association between unit end resistance of pile and 

pile end displacement. The results of the proposed method was checked with the measured results and the estimated 

values consequential from further methods.  

Shengyang et al. (2017) [11] considered the settlement of piles in soft soil by introducing a suggestion model to 

involve both the pile shaft nonlinearity based on visco-elastic and the (t − z) models of pile load transfer of the modified 

model of Burgersby substituted its spring as a hyperbolic model. For these models, the developed a nonlinear came 

closer to estimate the settlement (time-dependent) occurred of a vertically loaded single pile and pile groups in layered 

soft soil. Parametric studies had been achieved to examine the effect of these parameters on the single pile settlement so 

that this settlement was confirmed to a single pile by an instrument pile loading test.  

Hasan et al. (2018) [12] investigated the interaction in the pile-soil-pile in a pile group for battered piles. The effect 

of a little spacing between piles on the group or one to another using the interaction between them had been examined. 

The interaction of battered piles in a group was numerically modeled using finite element method analysis so both the 

frictional and frictional double pile groups under static lateral and axial loadings were analyzed independently. The 
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property of parameters on interaction factors such as the pile–soil stiffness ratio, batter angle, slenderness ratio, spacing 

between piles, and soil plasticity had been estimated and obtainable in an appropriate curves. 

  Tiago et al. (2018) [13] made two modifications to the load-transfer technique of traditional formulation using a 

distinct unloading path that define the load-transfer functions. Also, the displacement variable was modified to regard 

as the effects of passive soil displacements. The formulation used can description for most dissimilar properties all along 

the pile depth such as the case of various soil layering. The different modeling of unloading functions enables the loading 

cycles to be imitation as well as the analysis of residual loads. An instrumented pile load test had been used to calibrate 

the method. Examples calculation are offered and discussed the highlighting of the major features of the studied model 

  Md. Nafiul Haque et al. (2018) [14] offered the analyses of twelve pre-stressed concrete instrumented test piles that 

driven in different bridge construction projects of Louisiana in order to develop an analytical models for estimating the 

increase in pile capacity with time as known a pile setup. These test piles had been mainly driven in cohesive soils. 

Comprehensive soil characterizations counting laboratory and in situ tests were conducted to conclude the various soil 

properties. The test piles were instrumented with vibrating wire strain gauges, piezo-meters, pressure cells that were 

monitored throughout the whole testing period. Several static load tests and dynamic load tests were conducted on each 

test pile at different times after end of driving to calculate the pile capacity magnitude and rate of setup. 

 Yunlong (2019) [15] made assessment method of load transfer mechanism for piles in unsaturated expansive soils 

as they designed by another way than conventional design procedures of saturated soils. He developed a simple methods 

to predict the load transfer mechanism changes of piles in the expansive soils upon infiltration in which more importance 

was heading for the calculation of the pile performance. The model included three parameters that given as the load-

displacement relationship of pile head, the axial pile force (shaft skin or friction) distribution, and the pile end bearing 

(base resistance) using unsaturated mechanical as a solver tool. The proposed modified shear displacement method 

together with the modified load transfer curve method were being a simple and necessitate  a limited number soil 

properties including the metric wetting and drying suction profile upon, characteristic curve of soil water, and some 

physical properties of soil. 

Psaroudakis (2019) [16] analyzed work of single pile behavior which submitted to axial loading. He examined the 

static stiffness coefficient at the head of a flexible pile, vertically embedded in a homogeneous or multilayer soil of 

random geometry, and the mechanical properties. For solving the problem, Winkler’s theory was used to develop an 

analytical closed form. The model had been used in combination with appropriate shape functions that described the 

consistently the vertical movement of the pile all along the depth. Choosing the suitable shape functions along with “t–

z” and “q–z” curves and following an iterative process, a relatively accurate estimation of the vertical displacement at 

the head of the pile had been achieved. Distinct traditional numerical solutions, the method proposed did not required 

discretization of the pile into finite elements but only discretization in sections aiming integration with depth. 

2. Mechanism of Load Transfer 

When compressive load is applied on pile head, then pile head will have settled and the corresponding curve of load-

settlement will result as presented at Figure 1(a). The soil-pile scheme initially works elastically up to point A, after that 

the curvature take place continued to reach point B which being the highest friction. When load releasing, the curve 

takes a straight line pattern to point C in which the distance OC known as "permanent set". As the reloading begin, the 

curve behaves a nonlinear until point E and beyond this point a large curvature is happened until Point D so that no 

further loads is resist by pile [2].  

The compression load is resisted by two pile actions, the first one is by the side pile surface, sometimes is referred as 

skin resistance or friction resistance as indicate in Figure 1(b) which appear the pile transfer the load to the soil in every 

step of loading appeared at Figure 1(a). The second action is achieved by the end pile area which well known as the tip 

point action or sometimes end bearing action.  

Therefore, when a pile is overloaded till point A basically the total load is supported via friction on the shaft of heap 

and there's no or little transferrable of load to the pile toe (as appear in Figure 1.b). When the applied load arrives to B 

the shaft of the heap will carry its greatest frictional confrontation then also the toe of the pile will carry roughly of the 

load. On D the base capacity will arrive its critical value and no more rise in the load which is transported in friction. 

Typical load/settlement curves shown in Figure 2 for a compressive load of the total load capacity (Qt) and the base  load 

capacity (Qb)and the shaft load capacity (Qs) typical reliant on stratums of soil as Figure 2(a) shown a friction heap while 

Figure 2(b) show an end-bearing heap [17]. 

 

 

 



Civil Engineering Journal         Vol. 5, No. 4, April, 2019 

925 

 

                    
                                                                      (a)                                                                                      (b) 

Figure 1. Load transfer from head of pile with corresponding settlement, (a) Load/settlement curve for pile compressive load to 

failure, (b) Load transfer to shaft at points A, B, and D 

 

 

 

 

 

 

 
 

 

  

Figure 2. Typical load/settlement curves for compressive load tests: a) friction pile; (b) end-bearing pile 

The target of this study is to assembly the soil and pile engineering properties together with pile load components in 

single chart by considering different analyffiguresis stages and to achieve this proposed target the finite element method 

via ABAQUS program is utilized to generate these design charts of single pile action which loaded in the axial direction 

(compression or tension). In the first, the method used in constructed these charts are compared with field measurements 

to find the degree of compatibility between them. These curves depend on the engineering properties for both the pile 

and soil and they give the ultimate pile capacity at failure and the contribution of pile components i.e. the shaft resistance 

and end bearing. 

3. Research Methodology 

In present work, the problem domain involve three types of different element materials which are the pile, soil, and 

the interface material which has different engineering properties for each one as shown in Figure 3 and therefore they 

have a different structural behavior – response under the action of forces and applied loads.  

3.1. Pile Formulation 

The pile was modeling by using twenty node brick element in this study [17] which formulated by a linear elastic 

model because in most real situation the failure of piling foundation occurs in the weaker materials i.e. the soil element. 

This element is more capable and more accurate for modeling problems with curved boundaries than the eight-node 

brick element. According to the Hook law, it simply offers two input factors, that is, Poisson’s ratio and Young’s modulus 

to achieve the pile formulation. For briefly, the search will not include the equations and related modeling which used 

for the formulated of pile that are amiable in the relevant topics. 

 

 

 
 

Behavior of friction pile 

0.00

6.00

L
o
ad

, 
Q

Displacement

Qs Qb Qt

 
 

Behaviour of end-bearing pile 

 

0.00

8.00

L
o
ad

, 
Q

Displacement

Qs Qb Qt



Civil Engineering Journal         Vol. 5, No. 4, April, 2019 

926 

 

 

Figure 3. The model of domain (pile, soil, and interface element) 

3.2. Soil Formulation 

For soil formulation, the elastic-plastic model, considering the Mohr-Coulomb model, was used on the soil failure 

simulation because it is suitable model in practical states which was recognized by including the internal friction angle 

and the cohesion intercept to determine the whole stress-strain performance.  

Mohr-Coulomb condition adopts that yield is organized by the full shear stress and this yield shear stress be subject 

to the normal stress. This could be characterized through scheming Mohr’s circle for stress conditions on yield in 

relations of the minimum and maximum main stresses. The failure line of Mohr-Coulomb is the finest traditional line 

that drops these Mohr’s circles, as in Figure 4. Therefore, the Mohr-Coulomb principle thus, the Mohr-Coulomb criterion 

can be written as can be inscribed as [18]. 

τ = c + σ × tan⁡∅                                                                                                                                                                 (1) 

σ1+σ3

2
sin ∅ −

σ1−σ3

2
− c cos∅ = 0                                                                                                                                       (2) 

Where (σ)  is the normal stress, (c) is the material cohesion, (τ) is the shear stress, and (∅)  is the friction angle of 

material. 

 

Figure 4. Mohr-Coulomb failure criterion 

3.3. Interface Formulation 

There are two different interface element types which used to formulation the pile-soil interaction in which the first 

one known as the tangential interface element applied to represent the pile-soil interaction at shaft pile area while the 

second type defined as the only compression element which practically used to capture the pile-soil interaction at the 

remote pile. 

The first interface element formulation was utilized in the numerical investigation of soil–structure major changed in 

the continuity due to materials changes such as structures and surrounding soils. The interface part is formulated as three 

dimensional elements which are divided into two types, the first one is side element in which it consists of two normal 

stresses and one shear stresses as depicted in Figure 5.a [4, 19] and this type is capable to take one tangential movement 

(up and down) along pile shaft and two normal movements. 

The second type is known as end (Tip Point) bearing which has only normal stress (sometimes called only 

compression element) that is capable of supporting axial compression loading only as shown in Figure 5.b. This bearing 

element is performed as a nonlinear spring element that present to income into excuse the interface among the soil and 

end pile. If the pile has tensile stress then zero stiffness value had been assigned to it. 
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3.4. Solution of the Problem                                                                                                     

The formulated problem involved into two types of nonlinearity aspects which can be came from the physical 

nonlinearity (soil material and interface) and the geometrical nonlinearity (pile). In material nonlinearity, the connection 

among strain and stress is a complex nonlinear occupation which produce quantities dependent on the answer. 

Geometrical nonlinear results from finite changes in geometry of the deforming body. To solve this problem, ABAQUS 

software was adopted here which has the advantages to solve the problem with strong nonlinear and discontinuous 

property. The final model of current problem is shown in Figure 6. 

To find the required solution, the next steps are employ as follows: 

 The pile properties and geometry are specified fixed and they include pile diameter, length, density, elastic 

modulus, and Poisson ratio.  

 In the similar manner, the soil properties are given which involved soil density, elastic modulus (related to soil 

cohesion), Poisson ratio, and angle of internal friction.  

 Soil boundaries are established so that zero displacement are assigned to it. 

 Interface properties are assigned like pile and soil processes.  

 The load is applied in incremental manner so that for each load step the whole analysis was carried to find the 

pile force components with pile head displacement. This operation is continued until no further load is resisted 

by pile i.e. displacement at pile head increased without increasing applied load. At this stage the last load is 

considered the ultimate pile capacity. 

 

(a) Side Interface element                            (b) End bearing interface element 

Figure 5. Interface Element Types 

5. Verification Case 

The computer program is verified against real behavior through making comparisons between the computed and the 

measured results obtained from field tests (pile load test) from a case study. These comparisons are presented in terms 

of the relationships between the applied axial loads and the pile head settlement. The reference data in this study are soil 

investigation and pile load test results for Majnoon gas project in Majnoon oil field, southern Iraq [20]. The piles were 

tested according to ASTM D1143 method for bored concrete piles as shown in Figure 7. The finite element prediction 

(present study) shows satisfactory comparisons with field test with the selected verification problems as degree of 

compatibility equals to 99% at failure load which it controls the design of piles. One of the most important point associate 

with load transfer is the combined action of pile side friction and end bearing as mentioned in Figure 7. 

It is found from the pile load test curves that the FEM model is closer to the real behavior near the failure portion than 

the initial curve, this reflects the following two important facts: 

1. The first portion is more sensitive to the adjustment to force distribution to the test plates which make some 

disturbance at the beginning of the test.  

2. There are a great match not in the quantity between FEM and PLT but also in the quality behavior near failure zone. 

The finite element prediction (present study) shows satisfactory comparisons with field test with the selected 

verification problem. Therefore, ABAQUS package could be used here with satisfactory accuracy. 
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Figure 6. Boundary condition in the symmetry plane and other edge of the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of Load-settlement curve between field load test and ABAQUS results for bored pile for 

failure static axial load equal to 1765.197 kN 

6. Results and Discussion 

This section focuses on the concrete bored piles than precast piles, one of the reasons related to the huge domain 

applications of the bored pile dimensions’ variations (pile length and pile diameter) in different projects than the precast 

concrete piles which found by predefined limited dimensions (0.3×0.3) m or (0.4×0.4) m. The pile diameter is usually 

ranging from 0.6 m to 1.5 m but frequently taking 0.6 m in most projects, therefore in present work this value is taken 

as 0.6 m as a reference in the design charts. The second reason related to the pile bearing capacity which in the bored 

concrete piles reach many times greater than the precast concrete piles.  

6.1. Axially Loaded Single Bored Piles in Sand 

A bored pile which it's properties are shown in Table 1 was installed into a single layer of soil (sand only), five types 

of sand have been used their properties shown in Table 2 [59]. The pile was loaded axially (compression and tension), 

and the results of the analyses give the ultimate capacity of the pile for the compression and tension loads. In order to 

construct the design curves of the piles studied here, the following parameters are used as defined as following: 
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L= Pile length (m), D= Pile diameter (m), Ft= Total compression pile resistance or ultimate load of pile capacity 

(kN), Fb= End bearing pile resistance or base resistance (kN) for compression load only, Fs= Side or skin friction pile 

resistance (kN), Ften=Tension pile capacity (kN), Ø= Angle of internal friction, K= Modulus of sand subgrade reaction 

(kN/m³), L/ D= Length pile ratio, (Fb/Ftх100)%= End bearing percent ratio (%), (Fs/Ft)%= Skin resistance percent ratio 

(%), End Bearing Parameter=Fb/(kDL2), Skin Resistance Parameter=Fs/( kDL2), Compression Resistance Parameter= 

Ft/( kDL2), Tension Resistance Parameter= Ften/( kDL2). 

Table 1. Types and properties of concrete piles in this study 

Properties Bored pile 

Young’s modulus (E), MPa 25 000 

Poisson’s ratio (υ) 0.16 

Unit weight (γ), kN/m3 24 

Table 2. The properties of sand soils 

Modulus of Elasticity 

(MPa) 

Poisson’s ratio 

(υ) 

Cohesion 

(kPa) 

Angle of Internal 

Friction (Ø) 
Density (kN/m³) 

20 0.3 0 20 18 

30 0.3 0 25 19 

40 0.3 0 30 20 

50 0.3 0 35 21 

60 0.3 0 40 22 

The pile with different length (12, 14, 16, 18, 20) m was analyzed and load- settlement curve was obtaining for each 

length regardless the compression or tension load case and then the failure criteria the ultimate load was found until it 

was reached the failure criteria t find the ultimate load for the pile as previously defined for the pile as previously defined, 

the results are shown in Table 3 the associate result are drawn in Figures 10 to 17. 

From Table 3 it is so clearly that in loose sand the pile capacity depends on side friction (66% average over length)  

resistance than the end bearing (34% average over length) while for dense these ratios become side friction (33% average 

over length)  resistance than the end bearing (67% average over length). These results can be attribute to the effect of 

great change in soils strength parameters which alter the pile strength components so that an important fact is obtained 

that is the trend of pile resistance type from friction to end bearing mainly related to sand soil type other than pile length. 

Moreover, Table 3 shows that the pile capacity were controlled by dual action of side an end pile for selected dimensions 

regardless of strength value, therefore is not practical consideration to assume the pile in sand soil behave as end bearing 

pile. 

From Figure 10 it is noted that the end bearing% {(62-71) for the dense sand and (31-35) for the loose sand and other 

sand types lies within above range values} value at the same pile length increase as the soil strength increasing, therefore 

the skin resistance% {(29-38) for the dense sand and (65-69) for the loose sand and other sand types lies within above 

range values}is decreasing as the soil strength increasing at the same pile length as shown in Figure 11. It is depicted 

from last two figures that the shaft resistance become larger value and end bearing lesser value as pile length increased 

regardless soil strength and this result came from the contribution of pile length in side friction other than end bearing 

resistance. 

Figure 12 showed the variation of total resistance which is increased as pile length is increasing for the same property 

of sand soil which indicate the total resistance at same pile length increase as the soil strength increasing but with the 

same performance as the soil strength changed. And the same situation for Fb and Fs as shown in Figures 10 and 11. 

Figures 13 to 15 showed the same tendency of pile resistance parameters with enlarged length pile ratio in which all 

pile strength parameters reduced their values but maintain their performance as soil type changed. These results indicated 

a new facts associated with the design chart that giving a unique model of pile behavior with different coefficients used 

in developed these charts for derivative the proposal mathematical expression equation in further studies.  

Figure 16 display the same trend of tension pile capacity with increasing pile length in which the soil strength shifted 

the relation line to above without changed its shape. Also, the tension resistance parameter in Figure 17 is more sensitive 

to soil strength in loose type, reduce with pile length ratio, than dense.  
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6.1.1. Important Results Regarding Sandy Soils 

     The obtained results reveal two important notes. The first one related to compression load of pile that the increasing 

of pile length causes a decreasing in the end bearing ratio for dense and medium sand soils types and increasing for 

loose sand and this result can be explained that the increase in pile length will cause an increase in the friction side area 

of pile shaft leading to growing the skin resistance force other than the end bearing resistance. Therefore, it is 

economically to use piles of larger diameter than increasing their lengths for dense sand and to increasing piles lengths 

for loose sand. The second point is the end bearing results show the assumption of the end bearing controlling the 

capacity of pile in sand soils is a questionable remark especially for loose to medium sand soils (the friction portion is 

larger than end bearing portion) and consequently it is valid approximately for dense sand of short length (L/D less 15) 

after that the behavior of piles in all sand soils become a friction-bearing actions which control of the pile analysis and 

design.  

Table 2. The results for the variation of different soil resistance types with pile length increasing of pile diameter equals to 

0.6 m in sand 

Soil L Ft Fb Fs 
(Fb/Ft) 

 % 

(Fs/Ft) 

% 
Ften 

Ø=20 K=3.0 

MN/m³ 

12 761.00 240.00 521.00 31.5 68.5 546.92 

14 935.42 301.27 634.15 32.2 67.8 664.39 

16 1142.64 397.96 744.68 34.8 65.2 779.24 

18 1341.52 464.76 876.77 34.6 65.4 915.65 

20 1592.11 558.74 1033.37 35.1 64.9 1076.57 

Ø=25 K=4.0 

MN/m³ 

12 996.18 385.88 610.30 38.7 61.3 636.22 

14 1202.99 428.60 774.39 35.6 64.4 804.63 

16 1439.98 511.76 928.22 35.5 64.5 962.78 

18 1605.02 591.72 1013.30 36.9 63.1 1052.18 

20 1865.83 662.35 1203.48 35.5 64.5 1246.68 

Ø=30 K=6.8 

MN/m³ 

12 1240.40 514.88 725.52 41.5 58.5 751.44 

14 1576.50 655.41 921.09 41.6 58.4 951.33 

16 1882.88 779.22 1103.66 41.4 58.6 1138.22 

18 2123.96 885.12 1238.84 41.7 58.3 1277.72 

20 2316.17 926.55 1389.62 40.0 60.0 1432.82 

Ø=35 K=24.4 

MN/m³ 

12 2096.90 1324.10 772.80 63.1 36.9 798.72 

14 2400.91 1427.76 973.15 59.5 40.5 1003.39 

16 2789.84 1594.21 1195.63 57.1 42.9 1230.19 

18 3076.25 1752.40 1323.85 57.0 43.0 1362.73 

20 3484.54 1982.56 1501.99 56.9 43.1 1545.19 

Ø=40 K=61.0 

MN/m³ 

12 3034.37 2151.89 882.48 70.9 29.1 908.40 

14 3397.60 2352.46 1045.14 69.2 30.8 1075.38 

16 3880.94 2609.04 1271.90 67.2 32.8 1306.46 

18 4093.12 2689.93 1403.19 65.7 34.3 1442.07 

20 4387.13 2728.31 1658.82 62.2 37.8 1702.02 
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Figure 10. Relationship between end bearing % and pile length in sand soil  

 

Figure 11. Relationship between Skin Resistance% and pile length in sand soil  

 

Figure 12. Variation of total resistance with pile length in sand soils 
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Figure 13. variation of total resistance ratio with L/D in sand soil  

 

Figure 14. Variation of end bearing resistance ratio with L/D in sand soil  

 

Figure 15. Variation of skin resistance ratio with L/D in sand soil  
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Figure 16. Variation of tension resistance with pile length in sand soil  

 

Figure 17. Variation of tension resistance ratio with L/D in sand soil  

6.2. Axially Loaded Single Bored Piles in Clay 

The same bored pile which shown in Table 1 was installed into a single layer of soil (clay only), three types of clay 

have been used their properties that shown in Table 4 in which these selected values for soil properties represent the 

strength values range (soft, firm, stiff) clay in the most practical situations. The pile was also loaded axially (compression 

and tension), and different soil resistance types were obtained. To construct the design curves of piles in clay soils, the 

definitions in previous section are used here, the additional parameter is the strength parameter that equal to ratio 

between the specified piles resistances divided by the external pile dimensions multiplied by soil resistance expressed 

as the soil cohesion. Therefore, there are four specified strength parameters used which are defined as follows: 

 End Bearing Parameter=Fb/(CuхDL), Skin Resistance Parameter=Fs/(CuхDL), Compression Resistance Parameter= 

Ft/(CuхDL), Tension Resistance Parameter= Ften/(CuхDL), where Cu= Soil Cohesion (kN/m²). 

Different pile lengths (12, 14, 16, 18, 20 m) were used that have been modeled and analyzed, and the results of 

compression and tension load with pile length increasing are shown in Table 5 which indicate a reduction of shaft 

resistance as pile length is increased and a dissimilar effect is found for end bearing resistance. The results of soil 

resistance ratio with length/diameter pile ratio are drawn in Figures 18 to 25. 
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Table 4. The properties of clay soils 

Modulus of Elasticity 

(MPa) 

Poisson’s 

ratio (υ) 

Cohesion 

(kPa) 

Angle of Internal 

Friction (Ø) 

Density 

(kN/m³) 

12 (soft) 0.49 24 0 18 

24 (firm) 0.45 48 0 20 

48 stiff) 0.4 96 0 21 

Table 5. The results for the variation of different soil resistance types with pile length increasing of pile diameter 

equals to 0.6 m in clay 

Soil L Ft Fb Fs (Fb/Ft) % (Fs/Ft) % Ften 

Soft 

Cu = 24 

12 619.59 88.36 531.23 14.3 85.7 557.15 

14 769.59 125.60 643.99 16.3 83.7 674.23 

16 930.63 165.50 765.13 17.8 82.2 799.69 

18 1076.07 199.50 876.57 18.5 81.5 915.45 

20 1219.34 259.32 960.01 21.3 78.7 1003.21 

Firm 
Cu = 48 

12 1064.00 170.90 893.10 16.1 83.9 919.02 

14 1304.31 240.27 1064.04 18.4 81.6 1094.28 

16 1540.00 293.14 1246.86 19.0 81.0 1281.42 

18 1767.69 393.50 1374.19 22.3 77.7 1413.07 

20 2015.87 533.60 1482.27 26.5 73.5 1525.47 

Stiff 

Cu = 96 

12 1349.86 411.06 938.80 30.5 69.5 964.72 

14 1744.22 544.20 1200.02 31.2 68.8 1230.26 

16 2102.88 698.01 1404.87 33.2 66.8 1439.43 

18 2450.42 888.35 1562.07 36.3 63.7 1600.95 

20 2960.00 1121.14 1838.86 37.9 62.1 1882.06 

From Table 5 it is so obviously that in soft clay the pile capacity depends on side friction (82% average over length)  

resistance than the end bearing (18% average over length) while for stiff clay these ratios become side friction (66% 

average over length)  resistance than the end bearing (34% average over length). These results can be attribute to the 

effect of soils strength parameter which effect in the end bearing (larger by 16% as average) other than the side friction 

without alter the pile strength components i.e. the pile performance was still friction style. The reason can be assigned 

to the increasing pile length causes an increasing of the end bearing ratio for all clay soils types and decreasing for skin 

resistance ratio and this result can be explained from the increase of pile length will cause an increase in the overburden 

pressure that prevent the tip point movement leading to an increase in confined pressure at these regions. The friction 

side area of pile shaft leading to growing the skin resistance force other than the end bearing resistance. 

Also, an important fact is obtained that is the larger pile length increases the end bearing resistance by (7%,10%,8%) 

for soft, firm, and stiff clay respectively. Moreover, Table 5 shows that the pile capacity were controlled by dual action 

of side an end pile for selected dimensions for stiff clay value while the shaft resistance become predominate in soft 

clay, therefore is not practical consideration to take for granted the pile in high clay strength act as floating pile. It is 

depicted from last two figures that the shaft resistance turn out to be lower value and end bearing larger value as pile 

length increased regardless soil strength changes.    

Figure 18 show that the end bearing variation {(30-38)% for the stiff clay, (14-21)% for the soft, and (16-26)for firm 

clay}with the same pile length increasing as the soil strength is increasing, and therefore the skin resistance% {(62-70) 

for the stiff clay, (79-86) for the soft, and (74-84) for firm clay}is reducing as the soil strength is growing at the same 

pile length as shown in figure (19). The increasing in the total resistance at same pile length is distinguished as the soil 

strength increasing as shown in Figure 20, and also noted that the total resistance is increased as pile length is linearly 

increasing for the same soil strength.  

Figures 21-23 show the variation of total resistance ratio and end bearing resistance ratio and skin resistance ratio 

with L/D, respectively. Figure 22 shows approximately linear relationship between end bearing strength parameter with 

the pile length diameter ratio regardless of clay soil types while skin or side friction strength parameter is less influenced 

by pile geometry parameter especially as strength is increased.  

The tension resistance at same pile length is increased as the soil strength is increasing as shown in Figure 24 which 

exhibits a linear increase in tension pile capacity with increasing pile length for all clay soils. It distinguished that the 

tension resistance parameter is slightly changed as pile length- diameter ratio increasing for the same soil strengths as 
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declared in Figure 25 which show the variation of tension resistance ratio with L/D. Figures 21 and 23 show the same 

trend of total and end pile resistance parameters with greater length pile ratio in which both pile strength parameters turn 

out to be bigger their values but maintain their routine as soil type changed. But for shaft resistance parameter as display 

in Figure 22 the relation had so approximately a constant value communicate to each soil type. These results can be 

further investigation so approximately for pile behavior with different coefficients for developing a mathematical model 

to matching the real pile performance.  

Figure 24 display the same trend of tension pile capacity with increasing pile length in which the soil strength shifted 

the relation line to above without changed its shape. Also, the tension resistance parameter in Figure 25 is so closely 

have constant value regardless of length ratio changed. 

6.2.1. Important Results Regarding Clay Soils 

Looking at the results of clay soils, two important remarks are observed. The first one related to the assumption of 

the floating idea of piles in clay soils which has some uncertainty due to a sensible amount of end bearing resistance in 

these soils as mentioned in the related figures that may reach to 37% of stiff clay as previously mentioned. Therefore, 

the partial of pile capacity shall be included in the design of such piles noting that the only exception for these piles are 

the bored piles of diameter 0.6 m and small length constructing in soft and firm clayey soils length (L/D less 15) after 

that the behavior of all piles in all clay soils become a friction-bearing actions which control the analysis and design of 

such piles.   

 

Figure 18. Relationship between end bearing % and pile length in clay soil  

 

Figure 19. Relationship between Skin Resistance% and pile length in clay soil 
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Figure 20. Variation of total resistance with pile length in clay soil  

 

Figure 21. Variation of total resistance ratio with L/D in clay soil  

 

Figure 22. Variation of end bearing resistance ratio with L/D in clay soil  
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Figure 23. Variation of skin resistance ratio with L/D in clay soil 

 

Figure 24. Variation of tension resistance with pile length in clay soil  

 

Figure 25. Variation of tension resistance ratio with L/D in clay soil  
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7. Conclusion 

In all studied cases it’s noted that the total compression resistance is increased as pile length is increasing for the 

same property of soil and same diameter. The total resistance at same pile length and diameter is increased as the soil 

strength is increasing, also noted for the same property of soil and same length that the total compression resistance is 

increased as pile diameter is increasing. The same situation is observed for end bearing resistance, skin resistance and 

tension capacity. 

For bored pile in sand soil: For the pile under compression load the increasing in pile length caused a decreasing 

in the end bearing ratio for dense and medium sand soils types and increasing for loose sand because the increasing in 

pile length will causing an increasing in the friction side area of pile shaft leading to growing skin resistance force other 

than the end bearing resistance. 

The end bearing results show the friction portion is larger than the tip point or end bearing portion for loose to 

medium sand soils and consequently it is valid approximately for dense sand of short length (L/D less 15). 

It is economically to use piles of larger diameter than increasing their lengths for dense sand and to increasing piles 

lengths for loose sand. 

For bored pile in clay soil: For the compression load on pile, increasing pile length cause an increase in the end 

bearing ratio for all clay soils types and decreasing for skin resistance and this result can be attributed to the increasing 

pile length will cause an increase in the overburden pressure that prevents the tip point movement leading to increase 

confined pressure at this regions. The friction side area of pile shaft leading to growing the skin resistance force other 

than the end bearing resistance. 
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