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Abstract 

The paper proposes a method for constructing guaranteed regions of stability of nonstationary nonlinear systems on the 

plane of parameters of a fuzzy PID controller. It is shown that this method allows to determine the full stability areas, 

which are significantly larger than the areas determined by classical methods (frequency circle criterion, quadratic 

Lyapunov functions). This improvement is achieved by using the algorithm for constructing spline Lyapunov functions. 

This type of Lyapunov functions is based on the necessary and sufficient conditions of stability, while the classical methods 

are only sufficient conditions of stability. In this regard, on the basis of the proposed method, it is possible to calculate the 

maximum sizes of the sectors in which the nonlinear characteristics in the channels of the fuzzy PID controller should be 

located. Examples of the synthesis of fuzzy P, PI, PID controllers for a nonstationary control object of the third order are 

given. Numerical experiments show that the expansion of the boundaries of nonlinear characteristics allows to improve 

the accuracy in the steady state, and also to almost double the speed of the automatic control system with a nonstationary 

object. The advantages over linear controllers are demonstrated. The proposed method guarantees the stability inside the 

calculated stability regions for any character of the change in the nonstationary parameter, as well as for any character of 

the change in the nonlinear characteristics in the corresponding sectors. 

Keywords: Nonstationary Nonlinear System; Stability Regions; Lyapunov Functions; Circle Criteria; Spine Functions; PID Controllers; 

Fuzzy Logic; Adaptive Systems. 

 

1. Introduction 

In recent decades, there has been a rapid increase in interest in the study of control systems for nonstationary objects. 

This is due to the fact that with the help of nonstationary models it is possible to describe rather complex technological 

objects in industry [1]. To achieve the required values of accuracy and speed of such a systems, artificial intelligence 

technologies are used in practice [2]. However, the analysis of the stability of intelligent control systems of nonstationary 

objects is a difficult task. On the other hand, the use of active controllers represents a perspective way of isolating the 

structure from earthquake-induced vibrations [3]. Since there are many uncertain parameters in the buildings and system 

coefficients are varying in the time, methods of absolute stability theory are proposed for control system synthesis [4].  

As part of solving the problem of the stability of systems with nonstationary nonlinear elements, algorithms for 

constructing special Lyapunov functions were developed in [5-7]. These algorithms are based on the necessary and 

sufficient conditions for absolute stability [8-10], which makes it possible to identify guaranteed (full) regions of stability 

in the system parameter space. This has a practical importance in the design of fuzzy control systems in which fuzzy 

controllers perform nonlinear transformations that ensure the improvement of the quality characteristics of automatic 

control system (ACS) [11]. In this connection, the problem arises of determining the permissible sector inside of which 

                                                           
* Corresponding author: berdnikov_vp@mail.ru 

 
http://dx.doi.org/10.28991/cej-2019-03091229 

 This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights. 

http://www.civilejournal.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 5, No. 1, January, 2019 

108 

 

 

a nonlinear characteristic of a fuzzy controller should be located.  

This paper studies the problem of synthesis of nonlinear characteristics in the channels of a fuzzy PID controller with 

a nonstationary control object. The study proposes a new method to construct stability regions in the system parameter 

space. The main difference with a classical methods is to use spline Lyapunov functions instead of frequency criterias 

and quadratic Lyapunov functions. This advantage allows significant expand of stability regions and thus, improve 

quality of the control as well as stability reserve. 

2. Research Methodology  

The purpose of this section is to present a method which is able to model a system with uncertain time-varying 

parameters and technique for sythesiz fuzzy PID controllers. The analysis of bibliography (see references in [1-5, 8]) 

shows that ACS with nonstationary control objects can be described by differential equations of the form: 
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Where x = (x1, x2, …, xd)T – is a d-dimensional column vector of state variables, A is constant (d × d) matrix, bj and         

cj (j = 1,...,m) are constant d-dimensional vector- columns, m – is the number of nonstationary nonlinear elements, (·,·) 

is the scalar product of vectors. It is assumed that the nonlinear nonstationary elements φj(σj, t) inherent in fuzzy 

controllers satisfy the sector constraints. 
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For all σj and t. A particular case of nonlinear nonstationary elements φ(σ, t) are linear nonstationary elements u(t)σ, for 

which the variable coefficient satisfies the constraints δ1 ≤ u(t) ≤ δ2. A system with nonstationary linear and nonlinear 

elements and nonlinear characteristics in the controller channels can be described using Equations 1. 

Algorithms based on the construction of Lyapunov functions and ensuring the construction of guaranteed stability 

regions were developed in [5-7]. The algorithm for constructing spline Lyapunov functions [7] is the most accurate and 

fast. In accordance with this algorithm, 2m matrices Ak are introduced for the analysis of system (1), then the level set of 

the homogeneous smooth Lyapunov function is constructed. Moreover, as shown in [8-10], if the constructed Lyapunov 

function has a everywhere negative derivative for all 2m linear systems dx/dt = Akx, then the original system (1) will be 

asymptotically stable. To construct the matrices Ak, it is necessary to replace each nonlinear nonstationary element 

φj(σj, t) in system (1) by δj
1 or δj

2. In consequence, the number of matrices Ak is equal to the number of all possible 

combinations of δj
1 and δj

2. Below are the main stages of the methodology for constructing stability areas: 

Step 1. The equations of the system are made up in the form (1); 

Step 2. The number m of elements φj(σj, t) (including both nonlinear nonstationary and linear nonstationary elements) 

and the boundaries of the sectors of change δj
1, δj

2 are determined. 

Step 3. A rectangular grid of nodes is defined on the plane of system parameters. Coordinate axes of the plane can 

serve the usual coefficients of the system and the boundaries of the sectors δj
1, δj

2; 

Step 4. Matrices Ak are compiled for each node of the grid. To compute Ak we need to replace φj(σj, t) in (1) with δj
1 

or δj
2. The number of matrices Ak is equal to the number of all possible combinations δj

1, δj
2, namely, 2m; 

Step 5. Matrices Ak are used in the algorithms for constructing Lyapunov functions from [7]. As the result, a 

conclusion about the stability or instability of a system with given parameters is drawn. 

Step 6. After calculating all the nodes of the parameter plane, the obtained discrete stability regions are approximated 

by smooth functions. 

Consider as an example a nonstationary control system, the structure of which is shown in Figure 1, where T1 = 0.5,    

T2 = 0.1. 
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Figure 1. Structure of an ACS with a nonstationary control object and a fuzzy PID controller 

As can be seen from the structural scheme, a third-order static control object contains a nonstationary element r(t), 

which varies according to an unknown law within certain limits δr
1 ≤ r(t) ≤ δr

2, where δr
1 = 1, δr

2 = 3. Let us write the 

equations of system dynamics, shown in Figure 1, in the form (1): 
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Where φr(σr, t) = r(t)σr, σp = (cp, x), σi = (ci, x), σd = (cd, x), σr = (cr, x). 

For the ACS described by Equations 2, in the next three sections we study the guaranteed stability regions on planes 

whose coordinate axes are the sector boundaries of nonlinear characteristics in the channels of the fuzzy PID controller. 

3. Synthesis of Stability Regions of ACS with a Fuzzy P Controller 

Using the method described above, we calculate the stability regions on the plane of the parameters of the fuzzy P 

controller, in which the zero equilibrium position of system (2) is asymptotically stable. To do this we need to transform 

the Equation 2 as follows:   

 Remove terms containing φi(σi, t), φd(σd, t); 

 Delete the last row and last column from matrix A; 

 Remove the last component from the vectors cp and cr. 

Since the total number of nonstationary elements is two (one nonlinear element φp(σp, t) and one linear r(t)σr), then 

the total number of matrices Ak is 22 = 4. We define the boundaries of the nonlinear characteristic of the fuzzy P controller 

as δp
1 = kp, δp

2 = kp + Δkp, then at kp ≥ 0 and Δkp ≥ 0 it follows that δp
2 ≥ δp

1. To build stability regions, we will change 

the kp value from 0.1 to 10, and Δkp from 0.0 to 10 with a step of 0.1, taking into account the fact that for these kp values 

the required accuracy is ensured in the steady state. The calculation results are illustrated in Figure 2. 
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Figure 2. The sectors boundaries of the nonlinear characteristics of the fuzzy  

P controller, providing guaranteed stability of nonstationary system (2) 

Figure 2 shows a comparison of the regions calculated on the basis of the algorithm for constructing spline Lyapunov 

functions and on the basis of quadratic Lyapunov functions. The choice of quadratic Lyapunov functions as an 

alternative method of analysis is due to the fact that frequency criteria in the presence of more than one nonstationary 

element (m ≥ 2) lose their simplicity and graphic visibility [12] and require, generally speaking, the use of numerical 

methods for calculating parameters [13]. Moreover, for m ≥ 2, the frequency criteria go over into sufficient conditions 

for the existence of a quadratic Lyapunov function [14, 15]. The last one means that the system may have a quadratic 

Lyapunov function, but the frequency criteria will not be realized. That’s why the presence of more than one 

nonstationary element in the system, leads to usage of numerical methods of convex optimization for constructing 

quadratic Lyapunov functions [16, 17]. 

Analysis of Figure 2 shows that method proposed in this paper gives bigger regions of stability than method based 

on quadratic Lyapunov functions. This means that sector boundaries of the nonlinear characteristic sector of a fuzzy P 

controller can be significantly expanded. Indeed, with the same lower sector boundaries δp
1 = kp

E = kp
C = 0.1, the upper 

limit calculated on the basis of Lyapunov's spline functions, δp
2 = kp

E + Δkp
E ≈ 5.3 (point E in Figure 2) is 1.6 times 

larger than the upper limit calculated on the basis of quadratic Lyapunov functions, δp
2 = kp

C + Δkp
C ≈ 3.2 (point C in 

Figure 2). Note that the upper limit of the sector can be further raised by raising the lower limit. For point F, the lower 

limit is δp
1 = kp

F = 2.0, and the upper one is δp
2 = kp

F + Δkp
F ≈ 6.2, which is 15% more than for point E. In this regard, 

the guaranteed stability region of the ACS is increased and the possibility to enhance the accuracy by rising kp is created. 

The nature of nonlinear transformations implemented by a fuzzy controller is studied in detail in [18-20], where it is 

shown that the generalized form of such transformations corresponds to Figure 3. The specific parameters of such a 

nonlinear relation are determined by the requirements for stability, accuracy and quality indicators. Below, from the 

standpoint of such transformations, the problem of the synthesis of fuzzy P, PI, and PID controllers for linear 

nonstationary objects is considered. 

a)  
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b)  

c)  

Figure 3. Nonlinear characteristics of the P channel inside the sectors, calculated on the basis of quadratic and spline 

Lyapunov functions 

The use of Lyapunov spline functions allows to increase the size of the sector, inside which the nonlinear 

characteristic is located, and, accordingly, the inclination of the central part of the nonlinearity (with the same level of 

the horizontal part). Indeed, in Figure 3.a nonlinear characteristic is built inside the sector, calculated on the basis of 

quadratic Lyapunov functions (point C in Figure 2), and in Figure 3.b – inside the sector, calculated on the basis of 

spline functions (point E in Figure 2). The greater inclination of the central section has a positive effect on the accuracy 

of the ACS with a fuzzy P controller in the input range g(t) > 5, which is clearly seen in Figure 4. 

 

Figure 4. Transients in automatic control systems with different nonlinear characteristics in the P channel of a fuzzy controller 

A further increase in the inclination of the central section is possible by raising the lower boundary of the nonlinearity 

sector. In Figure 3.c, the lower boundary of the sector coincides with the first part of the nonlinearity (point F in Figure 

2). A study of the benefits of a fuzzy P controller with such a nonlinear characteristic over conventional linear P 

controller is of great interest. Comparison of transient processes in nonstationary ACS with linear and fuzzy P controllers 
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is illustrated in Figure 5, where the gain of the P controller is equal to kp = 5.5 (point H in Figure 2). 

 

Figure 5. Comparison of transient processes in ACS with linear and fuzzy P controllers 

Analysis of transient curves shows that ACS with fuzzy and linear P controller have the same error in steady state. 

However, an ACS with a fuzzy controller almost completely suppresses the influence of a nonstationary parameter and 

provides significantly better indicators of the quality of the transition process (no overshoot). It should be noted that the 

gain of the linear P-controller can be increased to kp = 7.1 (point I in Figure 2), but together with an increase in the 

accuracy of such an ACS, the value of the overshoot will increase even more. In this connection, the usage of fuzzy P 

controllers instead of linear allows to improve the quality of control of nonstationary objects. At the same time, if the 

presence of an error in the steady state is unacceptable, then it is necessary to consider other modifications of the fuzzy 

controller. The next section focuses on the synthesis of a fuzzy PI controller based on guaranteed areas of stability 

4. Synthesis of Stability Regions of ACS with a Fuzzy PI Controller 

In accordance with the proposed method, we calculate the zero equilibrium point stability regions on the parameters 

plane of the fuzzy PI controller. In this case, it is necessary to remove the term containing φd(σd, t) from Equations 2. 

Since the total number of nonstationary elements is three (two nonlinear elements φp(σp, t) and φi(σi, t), as well as one 

linear r(t)σr), the total number of matrices Ak is 23 = 8. By analogy with the previous section, the boundaries of the 

nonlinear characteristic of the P channel are defined as δp
1 = kp, δp

2 = kp + Δkp, and for the I channel as – δi
1 = ki, 

δi
2 = ki + Δki. To build stability regions, we will change the Δkp value from 0.0 to 10, and Δki from 0.0 to 5 with a step 

of 0.1. The complete stability regions constructed on the basis of the Lyapunov spline functions for kp = ki = 0.1 and for 

kp = 2.0, ki = 0.5 are presented in Figure 6. 

 

Figure 6. Sectors boundaries of the nonlinear characteristics of the fuzzy PI controller, providing guaranteed stability of 

nonstationary system (2) 

Let us estimate the impact of the areas obtained on the quality characteristics of the ACS. So, for point C in Figure 

6, the value of the lower sector boundaries is δp
1 = δi

1 = 0.1, while the value of the upper boundaries is δp
2 = 4.1, δi

2 = 

0.6. Note that by changing kp, ki, we can increase the upper limit of the sector by almost 4 times. Indeed, for point E in 

Figure 6 δi
2 = ki

E + Δki
E = 2.0. It can also be noted that the upper boundary of the nonlinear characteristic sector in the P 
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channel for points C and E (Figure 6) coincide δp
2 = kp

C + Δkp = kp
E + Δkp

E ≈ 4.1. That’s why, we use the characteristic 

shown in Figure 3.a as a nonlinearity of the P channel of fuzzy controller. As the nonlinearity of the I channel, we use 

the characteristic from [18]. The general form of nonlinearities for points C and E (Figure 6) is illustrated in Figure 7.a 

and 7.b respectively. 

a)   

b)   

Figure 7. Nonlinear characteristics of the I channel inside the sectors, calculated on the basis of spline Lyapunov functions 

From Figure 7, it is easy to see that raising the upper boundary of the nonlinearity sector allowed to increase the 

inclination of the first and last characteristic sections, leaving the horizontal segment at the same level. At the same time, 

the speed of the system also changes, as can be seen from the analysis of transients in Figure 8. If for the characteristic 

shown in Figure 7.a, the time of entry into the 5% zone of the established value is 9 s, then for the characteristic in 

Figure 7.b this time is reduced to 4 s. 

 

Figure 8. Comparison of transients of nonstationary ACS with different nonlinear characteristics in the I channel of a fuzzy 

PI controller 

In this regard, the connection of the I channel allowed to get rid of the steady-state error, however, an overshoot 

occurred. In order to eliminate this effect, consider the possibility of synthesizing a fuzzy PID controller. 
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5. Synthesis of Stability Regions of ACS with a Fuzzy PID Controller 

By the method described above, we calculate the stability regions on the plane of parameters of the fuzzy PID 

controller. In this case, the total number of nonstationary elements is four: three nonlinear elements φp(σp, t), φi(σi, t), 

φd(σd, t) and one linear r(t)σr. Therefore, the number of matrices Ak is 24 = 16. We define the boundaries of the sector of 

the nonlinear characteristic of the D channel in the form δd
1 = kd, δd

2 = kd + Δkd. We calculate the full stability regions 

on the plane Δkp, Δki, while setting kp = 2.0, ki = 0.5, kd = 0.3. The results are presented in Figure 9. 

Comparing the areas in Figure 6 and 9, it can be noted that the introduction of a linear characteristic into the D 

channel (the region with Δkd = 0.0, i.e. when the upper and lower boundaries of the D channel sector coincide) makes it 

possible to almost double the region of the guaranteed stability of a nonstationary system. At the same time, raising the 

upper boundary of the D channel sector sharply narrows the regions of stability. Already at Δkd = 0.2, the region in 

Figure 9 is smaller than the corresponding area in Figure 6. 

 

Figure 9. Sectors boundaries of the nonlinear characteristics of the fuzzy PI controller, providing guaranteed stability of 

nonstationary system (2) 

However, for the given nonlinear characteristics in the previous sections (the characteristic in Figure 3.a for the P 

channel and the characteristic in Figure 7.b for the I channel), the introduction of a linear D channel with the coefficient 

kd = 0.3 (point E in Figure 9), does not allow to get rid of overshoots. This circumstance is seen from the comparison of 

the corresponding curves of the transition process in Figure 9 and 10. A further increase of the coefficient kd and the 

upper boundaries of the P and I channel will only increase the overshoot and oscillation. 

 

Figure 10. Comparison of transients of nonstationary ACS with linear and nonlinear characteristics in the D channel of a 

fuzzy PID controller 

For point C in Figure 9, it is possible to synthesize nonlinearity in the limits δd
1 = kd

С = 0.3, δd
2 = kd

С + Δkd
С = 0.5. 

As a nonlinear characteristic, it is proposed to use the characteristic from [18]. The specific form of nonlinearity for this 

case is presented in Figure 11. Note that to use a fuzzy D channel, it is necessary to reduce the upper limit of the I 

channel. Indeed, for point C, the value of the upper boundary is δi
2 = ki

С + Δki
С = 0.7. The transition process for this 

system is illustrated in Figure 10. Analysis of this transient process shows that the use of a fuzzy PID controller with 

nonlinear characteristics in all channels allows to achieve high quality and performance indicators for ACS with a 

nonstationary control object. 
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Figure 11. Nonlinear characteristics of the D channel inside the sectors, calculated on the basis of spline Lyapunov functions 

In this paper, it was assumed that the nonstationary parameter r(t) varies sinusoidally. It is worth noting that the 

method of calculating the stability regions proposed in this work guarantees stability for any character of a change in a 

nonstationary parameter within given limits [8-10]. Moreover, the nonlinear characteristics of fuzzy controllers may 

change arbitrarily within the calculated sectors over time. The last circumstance makes it possible to use the proposed 

methodology in the design of adaptive systems built on the basis of fuzzy logic, in which the parameters of a fuzzy 

controller are either changed by commands from a tactical level of control, or configured in the process of self-learning 

[21-23]. 

6. Conclusion  

The developed method of constructing the stability regions of nonstationary ACS allows to determine the guaranteed 

sectors of nonlinear characteristics of a fuzzy PID controller. In contrast to the well-known frequency methods and 

quadratic Lyapunov functions, this advantage over traditional sufficient conditions is achieved by using spline Lyapunov 

functions, which determine the necessary and sufficient stability conditions. It is shown that the fuzzy PID controller 

has a number of indisputable advantages over a linear PID controller in the tasks of controlling nonstationary objects 

(in particular, it can improve the accuracy and quality in the steady state). The proposed method can be used to analyze 

systems with an arbitrary nature of a change in a nonstationary parameter in a given range. A promising objective of the 

study is the use of calculated regions of stability for the synthesis of intelligent ACS with self-learning algorithms.  
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