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Abstract 

The objective of the paper is to compare and evaluate analytical and numerical solutions of one-dimensional consolidation 

of stabilized peat. The type of analytical method used to solve the problem is exact method by separation of variables and 

utilization of Fourier series. Plaxis 2D 8.2 Professional version software was used to find numerical solution to the problem 

by employing the finite element method. One-dimensional consolidation problem of stabilized peat was solved numerically 

and validated with the one solved analytically based on laboratory experimental results. From the results, it was discovered 

that the consolidation characteristics of stabilized peat evaluated numerically were found to have close approximation to 

those evaluated analytically. There is a novel value in developing an accurate numerical prediction for the vertical 

consolidation of stabilized peat considering the complexity of the soil treatment method. It must be noted that peat is highly 

problematic because it is produced from plant decomposition with extremely high organic matter. 
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1. Introduction 

Recent advancement of mathematical modelling in geomechanics has seen the development of numerous published 

research works of one-dimensional consolidation of soils by analytical and numerical methods [1-13]. Despite of that, 

not many analytical and numerical solutions that solved one-dimensional consolidation problem of stabilized peat were 

found in the literature of geomechanics. This is because not much research was done on one-dimensional consolidation 

problem of the stabilized soil due to the difficulty at finding suitable chemical additives that can be used to stabilize 

highly problematic peat. In fact, the complexity of peat stabilization is fueled by the presence of highly acidic organic 

substance in the soil and the soil rapid consolidation settlement. Unlike the behavior of saturated clay which is dependent 

on the types of mineral [14], the consolidation of peat is largely dependent on the amount of organic matter which 

dictates the soil long term deformation under a loading application. Consolidation is a time-dependent process involving 

the dissipation of porous fluid pressure and the deformation of the soil skeleton [15]. Soil consolidation is mainly caused 

by change in effective stress, which results from increase in total stress or decrease in pore pressure [16]. The process 

of consolidation must be carefully studied when evaluating the compression properties of stabilized peat. Following the 

success of stabilizing peat with calcium chloride and polycarboxylate induced rapid setting cement in laboratory with 

reference to the work of Wong [17]; standard oedometer consolidation tests were performed on the stabilized soil in 

order to study its consolidation characteristics. The optimal mix design for the stabilized peat specimen in the oedometer 

consolidation tests is comprised of 300 kg m-3 dosage of binder by mass of wet peat at natural moisture content of 677% 

(The binder is composed of 90% Portland Composite Cement and 10% fly ash in composition), 4% calcium chloride by 

mass of the binder, and 596 kg.m-3 silica sand by mass of the wet peat. The test specimen was allowed to cure in water 
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for 7 days before testing. It is notable that oedometer consolidation apparatus is sufficient for testing the stabilized soil 

due to the fact that the soil was homogeneously mixed with the binding admixtures and silica sand. As such, it could be 

reliably used to simulate the one-dimensional deformation and drainage characteristics of the stabilized soil as the soil 

dissipation of excess pore water pressure became less significant over time due to the cementation process in the 

stabilized soil. Furthermore, the equipment set up for oedometer testing is simple and not time consuming as compared 

to that of a more advanced equipment such as Rowe consolidometer. The complexity of Rowe consolidometer setup is 

evident in the published work of Baral et al. [18] which is about the study of radial consolidation characteristics of soft 

clay based on large specimens. To develop a proper understanding and to ensure the reliability of the test results, it 

would be helpful to back analyze and validate the experimental results based on the analytical equation with the ones 

developed from numerical solution using Plaxis 2D 8.2 Professional version software. As such, the paper is concentrated 

at evaluating the results of one-dimensional consolidation tests from standard oedometer consolidation apparatus, which 

were determined based on the idealization of analytical model and later, validating the results using the finite element 

software. 

2. Terzaghi’s One-Dimensional Consolidation Theory 

Since the inception of classical soil mechanics, Terzaghi’s one-dimensional (1D) consolidation theory for saturated 

soils has formed an extremely useful conceptual framework in geotechnical engineering [19]. According to Terzaghi’s 

one-dimensional consolidation theory [20-22], the process of primary consolidation of a fully saturated soil is due to the 

dissipation of excess pore water pressure from the soil as a result of gradual transition of applied load from water to the 

soil particles. Terzaghi's theory assumed that the stress-strain relationship of soil was linear in order to simplify the 

solution for practical use [23]. As a common issue in geotechnical engineering, consolidation is a process that reduces 

the soil volume due to the dissipation of excess pore water pressures [24]. Soil is a kind of porous media and saturated 

soil includes pore water and soil particles [34]. According to Bardet [25], the notable assumptions of the theory are listed 

in the following points. 

 The layer of soil is homogeneous and is laterally confined. 

 The soil particles and water are incompressible. 

 The flow of water is one-dimensional. 

 Darcy’s law describes the flow of water through the soil. 

 The coefficient of permeability of the soil remains constant.  

 The relationship between void ratio of the soil and effective stress is linear during a stress increment. 

 The soil’s own weight has negligible effects. 

Therefore, the rates of volume change and excess pore water diffusion of the soil is directly related to the soil 

permeability. Due to the positive influence of cement hydration process at stabilizing the peat, it is expected that the 

stabilized soil has low permeability, thereby implying its low compressibility as a result of slow rate of volume change 

under a load application.  

3. Idealization of One-Dimensional Consolidation of Stabilized Peat 

Typical one-dimensional consolidation of a stabilized peat element under the application of a stress σ is illustrated in 

Figure 1. The stabilized soil element has a thickness of H and is loaded in such a way that water is only allowed to drain 

into top and bottom rigid porous layers. In other words, only two-way vertical drainage of water is allowed in the 

stabilized soil element and the width of the element is infinite so that consolidation of the element is assumed to be one-

dimensional only in the vertical direction (y direction). Bardet [25] idealized Terzaghi’s one-dimensional consolidation 

theory of soil on the basis of the formulation of Equations 1 to 11. Since flow of water in the element is one-

dimensionally vertical in y direction with reference to Figure 1, it is assumed that there is no flow velocity from the 

element in the x and z directions and therefore, vx = vz = 0. Since Darcy’s law is valid, flow velocity in the vertical y 

direction is given by Equation 1. 

   
y

h
kvy




                                                                                                 (1)             

Where kv = coefficient of vertical permeability, h = total head of water.  

The rate of water volume change of the element in Figure 1, dVw/dt is equal to the difference between the rates of out 

flow and inflow of water of the element, which were 𝑣𝑦𝑑𝑥 × 1 and [𝑣𝑦 + (
𝜕𝑣𝑦

𝜕𝑦
) 𝑑𝑦] 𝑑𝑥 × 1  respectively. Hence, dVw/dt 

can be expressed as in Equation 2. 
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Total pore water pressure is defined as the total of static pore water pressure and excess pore water pressure. Since 

static pore water pressure varies linearly with y, the second order derivative of static pore water pressure with respect to 

y is equal to zero. Thus, Equation 3 can be formulated based on Equation 2. 
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vw

2

2







                                                                (3) 

Where u is the excess pore water pressure. Since the stabilized soil is elastic, change in its void ratio de is due the 

change in its effective stress dσ’ and therefore, Equation 4 shows the relationship. 

'

01
dm

e

de
v


                                                 (4) 

Where e0 is the initial void ratio and mv is the coefficient of volume compressibility. Relationship between the change 

in void ratio with initial volume V0, solid volume Vs and void volume Vv is given in Equation 5. 
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Where it is assumed that soil particles are incompressible (dVs = 0). The change in the void volume dVv over change 

in time t is given by Equation 6. 
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                                              (6) 

With total stress σ is constant     0'  tutt  ; the differential of effective stress with respect to 

differential of time can be stated as in Equation 7. 
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Since the static pore water pressure is independent of time, Equation 8 is formulated based on Equations 6 and 7. 
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t
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v




                                       (8) 

With full saturation of the stabilized soil element, the changes in the volume of voids and water are at the same rate. 

This gives Equation 9. 

dt

dV

dt

dV wv                                               (9) 

Substituting Equations 8 and 9 into Equation 3, the partial differential equation is denoted as Equation 10. 
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                                                                  (10) 

Where cv is referred to as the coefficient of vertical consolidation and is derived from Equation 11. 

vw
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Figure 1. Element of the stabilized peat undergoing one-dimensional consolidation with two way vertical drainage 

(Modified from Bardet [25]) 

4. Analytical Method 

The method employed to solve the analytical problem is by separation of variables and utilization of Fourier series. 

In analytical modelling, mathematical equations are proposed based on experimental data to express compression as a 

function of stress [26]. The analytical layer-element method is used to build relationships between displacements, 

stresses, and excess pore pressure and seepage velocity in the transformed domain [27]. According to Kreyszig [28], 

procedure to obtain the analytical solution of the method can be summarized into three steps namely, separating the 

variables to obtain two ordinary differential equations, determining solutions of the two ordinary differential equations 

that satisfy the boundary conditions, and composing the solutions using Fourier series in order to get a solution of the 

one-dimensional consolidation equation that satisfies the initial condition. Equation 10 is a partial differential equation 

with two independent variables, namely time t and vertical position y and a dependent variable, which is the excess pore 

water pressure, denoted as u(y,t). To ensure that the cv is positive, cv is equated to c2 in the formulation of the analytical 

solution. Thus, cv in Equation 10 is replaced by c2 to give Equation 12. 

2
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


                                                                         (12) 

With the one-dimensional two-way vertical drainage of water from the fully saturated stabilized peat element in Figure 

1, two boundary conditions as shown in Equations 13 and 14 must be satisfied. 

 u(0, t) = 0 for t ≥ 0                                                          (13) 

u(H, t) = 0 for t ≥ 0                                                          (14) 

Since the initial excess pore water pressure at time t = 0 is uniform, it can be expressed as a function of f(y) and the 

initial condition can be written as in Equation 15. 

u(y, 0) = f(y) = ui for 0 < y < H                                                              (15) 

Step 1: Formulation of two ordinary differential equations. 

Solution to Equation 12 is initially expressed as the product of two functions with each function is dependent on one 

of the variables y and t. The expression is given in Equation 16. 

u(y,t) = F(y) G(t)                                                                                     (16) 

Substitution of Equation 16 into Equation 12 yields GFcGF  2  with dtdGG   and 22 dyFdF  . Dividing the 

equation by c2FG, separation of the variables is achieved and this results in Equation 17. 

F

F

Gc

G 


2


                                                                       (17) 

In Equation 17, since the left expression depends only on t and the right on y, a change of t or y would only affect 

one side of the expressions, leaving the other side unchanged. Because of this, both sides must be constant, which is 

represented by k. For k ≥ 0, the only solution for u = FG that satisfies the boundary conditions is u = 0. Thus, for                    

k = −p2, Equation 18 is formed.  
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Equation 18 yields two linear ordinary differential equations, namely Equations 19 and 20. 

02  FpF                                                                                              (19) 

022  GpcG                                                                             (20) 

Step 2: Satisfying the boundary condition. 

A general solution for Equation 19 is given by Equation 21. 

pyBpyAyF sincos)(                                                                   (21) 

Based on the boundary conditions of Equations 13 and 14, it follows that u(0,t) = F(0) G(t) = 0 and u(H,t) = F(H) 

G(t) = 0. Since G = 0 would give u = 0, it is required that F(0) = 0 and F(H) = 0 in order to get F(0) = A = 0 by Equation 

21 and then F(H) = B sin pH = 0, with B ≠ 0 (to avoid F = 0). As such, sin pH = 0, hence p = (2n + 1) π/H Where n = 1, 

2, 3 …. 

Setting B = 1, solution to Equation 19 that satisfies Equations 13 and 14 is given by Equation 22.  

  HnyF n /12sin)(12   Where n = 1, 2, 3 ….                                                                     (22) 

For   Hnp /12  ,   0
2

12   GG n
 
Where   Hncn /1212   . Thus, Equation 20 has a general 

solution of Equation 23. 

    t

nn
neBtG

2
12

1212


 


                                                                                             (23) 

With B2n+1 is constant, Equations 22 and 23 are substituted into Equation 16 to give Equation 24. 
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Equation 24 is the solution of the one-dimensional consolidation equation that satisfies the boundary conditions. 

According to Kreyszig [18], it is also referred to as the eigenfunctions of the problem, corresponding to the eigenvalues, 

λ2n+1. 

Step 3: Solution of the entire problem 

To develop solutions that also satisfy the initial condition, a series of eigenfunctions are given in Equation 25 based 

on Equation 24. 
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Substituting Equation 15 into Equation 25, Equation 26 is obtained. 

 
)(

12
sin)0,(

0

12 yf
H

yn
Byu

n

n 










                                       (26) 

Hence, for Equation 25 to satisfy the initial condition, B2n + 1’s must be the coefficients of Fourier sine series. B2n + 1 

can be written as in Equation 27. 
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2 
, where n = 1, 2, 3 ….                                         (27) 

By substituting Equation 15 into Equation 27 and solving the equation by integration, Equation 28 is yielded. 

 0cos)12cos(
)12(
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n

u
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n                                             (28) 

For n ≥ 0, 2n + 1 is an odd number and as such, cos (2n + 1) = −1 and since cos 0 = 1, Equation 28 is solved and can 

be written as in Equation 29. 
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For two-way vertical drainage, the time t during the stabilized soil’s primary consolidation in relation to cv, H and Tv 

can be expressed in Equation 30. 
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                                                      (30) 

Where Tv = dimensionless time factor and H = drainage path. For two-way vertical drainage, the drainage path is 

equal to H/2. 

Equations 29 and 30 are substituted into Equation 25 to obtain the analytical solution to the one-dimensional 

consolidation problem of the stabilized soil element. The analytical equation can be written as in Equation 31. 
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Laboratory prediction on the rate of primary consolidation of the stabilized soil element can be done using curve 

fitting. According to Head [29], the process of comparing a laboratory consolidation curve with the theoretical one is 

known as curve fitting. The theoretical curve actually expresses the average degree of consolidation U as a function of 

theoretical time factor Tv of the stabilized soil element. Bardet [25] established Equations 32 to 38 to develop the 

theoretical curve. According to Bardet [25], when the change on the total stress ∆σ applied to the soil layer is kept 

constant, the change in effective stress ∆σ’(y,t) and excess pore water pressure u(y,t) = 0 in the soil layer can be related 

through Equation 32. 

   tyutyui ,,'                                                     (32) 

Because primary consolidation progresses as excess pore water pressure dissipates from the stabilized soil element, 

it is useful to characterize the whole process in term of vertical degree of consolidation Uy as defined in Equation 33. 
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Where Uy = 0 and Uy = 1 at the start and end of the soil primary consolidation respectively. It is important to note 

that at the start of the primary consolidation, ∆σ’(y,t) = 0 and u(y,t) = ui and at the end of the primary consolidation, 

∆σ’(y,t) = ∆σ and u(y,t) = 0. For a change in the thickness of the soil element dy, the corresponding settlement is 

represented as dsf after primary consolidation and as ds(t) at time t during primary consolidation. These can be defined 

as in Equation 34. 

dymds vf  and dyUmdytymtds yvv   ),(')(                                      (34) 

By integrating dsf and ds(t) in Equation 34, the corresponding total settlement and settlement at time t of the primary 

consolidation [sf and s(t)] can be written as in Equation 35. 
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Simplification of Equation 35 enables U to be defined as in Equation 36. 
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Substituting Equation 31 into Equation 36 and solving by integration, U can be defined as in Equation 37.  
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The variation of U with Tv in Equation 37 can be approximated using Equation 38 and the corresponding relationship 

can be plotted with U varies from 0 to 1. 
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5. Numerical Method 

Back analysis on the experimental results based on the solution developed from analytical method was done by 

validating the results with the ones generated from finite element method. This is important in order to examine the 

closeness of the agreement between the two solutions. The finite element method is the numerical method employed by 

PLAXIS 2D 8.2 Professional version software to develop numerical solution to the problem. Finite element modelling 

(FEM) of soil physical behavior can provide information which is difficult or impossible to obtain experimentally [30]. 

The basic idea in the finite element method is to find the solution of a complicated problem by replacing it by a simpler 

one [31]. With the simplification of the actual problem, an approximate solution rather than the exact one can be 

developed from the method.  

It is important to note that to produce a finite element model that simulates the analytical model, the initial conditions 

and material properties of the model must be correctly defined. With regard to that, the finite element model was set as 

a plane strain model with a width of 50 mm and a height of 20 mm so as to conform to the standard size of oedometer 

consolidation specimen (Figure 2). A mesh consisting of 15-node triangular elements was generated for the model. The 

elements must be made small enough to give usable results and yet large enough to reduce computational effort [32]. 

The boundary conditions were set on the model in such a way that both left and right boundaries of the model were 

closed to water flow and consolidation (impermeable), whereas the top and bottom boundaries of the model were opened 

to water flow and consolidation to allow for simulation of two-way vertical drainage of excess pore water from the 

model. A general phreatic level was set at the same level as the top surface of the model in order to simulate full 

saturation at the model’s initial condition. Uniformly distributed loads ranging from 50 to 800 kPa were applied 

incrementally on the model with a load increment ratio of 1 and the duration for each loading was 7 days. Based on 

laboratory experimental findings, the necessary stabilized soil parameters were inputted into the software in order to 

specify the material properties of the model. The stabilized soil parameters were summarized in Table 1. The type of 

material model used to simulate the behavior of the stabilized soil is Mohr-Coulomb model.  

Numerical solution to the finite element problem is a step by step process that adheres to the procedure and 

formulation of numerical equations adopted by the software in accordance to Brinkgreve [33]. As a first step, the solution 

region was discretized into 15-node triangular finite elements after the geometry model was completely defined with 

boundary and load conditions, and material properties. Basically, the discretization process involved replacing the 

solution region having infinite elements with a mesh consisting of finite elements. According to Dhatt and Touzot [34], 

the finite element discretization process, like the finite difference process, transforms partial differential equations into 

algebraic equations. Using Galerkin procedure, the discretization process was applied to satisfy the prescribed boundary 

conditions. Next, an interpolation model was selected to find a suitable solution that could be used to approximate the 

unknown solution. The assumed solution must be simple from computational point of view, but it should satisfy certain 

convergence requirements [32].  

Based on the assumption of the interpolation model, the element vectors (i.e. nodal displacement vector, excess pore 

water pressure vector, continuous displacement vector, residual force vector and incremental load vector) and matrices 

(i.e. strain interpolation matrix, stiffness matrix, coupling matrix and permeability matrix) were derived in equilibrium 

and continuity equations. Then, the element vectors and matrices were assembled and formed a block matrix equation 

that represented all the equilibrium and continuity equations taken into consideration. The block matrix equation was 

solved using a simple step by step simple integration procedure to find the unknown nodal displacements. With the 

nodal displacements determined, the element resultants such as stresses and strains were computed. 
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Figure 2. Finite element mesh for one-dimensional consolidation problem of the stabilized peat 

Table 1. Stabilized soil parameters required for the development of the finite element model in PLAXIS 8.2 Professional 

version software 

Stabilized soil parameter Parameter value 

Unsaturated bulk unit weight(γunsat) 1.240 × 10-8 kN mm-3 

Saturated bulk unit weight (γsat) 1.730 × 10-8 kN mm-3 

Coefficient of permeability (ky) 3.487 × 10-8 mm min-1 

Young’s modulus (E) 0.010 kN mm-2 

Poisson’s ratio (ν) 0.236 

Cohesion (c) 2.281 × 10-4 kN mm-2 

Friction angle (ф) 61.190 ° 

Dilatancy angle (ψ) 0.000 ° 

6. Finite Element Model Validation 

Square root of time method is a conventional curve fitting method that can be used to estimate cv of the stabilized 

soil with reference to the time-compression data obtained from both of the laboratory experimentation and finite element 

software. The method determines cv by comparing the stabilized soil compression as a function of square root of time 

from both experimental and numerical curves to U as a function of Tv from square root of time theoretical curve. Based 

on the assumption that the hydrodynamic process dominates up to 90% primary consolidation, the method determines 

cv of the stabilized soil by substituting Tv as 0.848 from the square root of time theoretical curve and the time to reach 

90 % of primary consolidation from experimental square root of time-compression curve into Equation 30. The values 

of cv were then compared to those predicted from numerical square root of time-compression curve, which was 

developed from the finite element software. Based on both of the experimental and numerical time-compression curves, 

compression index Cc, coefficient of volume compressibility mv, and coefficient of vertical permeability kv estimated 

under the various consolidation pressures were also compared. 

7. Results 

Figure 3 shows the time-compression curves of the stabilized peat under the application of consolidation pressures 

ranging from 50 to 800 kPa, of which the data were obtained experimentally and numerically. At 20.8 days (30000 

minutes) of applied loading, the numerical value for the stabilized soil compression was discovered to be 0.33 mm which 

overestimated the experimental compression value of the stabilized soil by 0.13 mm. However at 34.7 days (50000 

minutes) of applied loading, compression of the stabilized soil measured experimentally was found to be 0.91 mm. This 

was slightly lower when compared to that calculated numerically at the same duration of loading with the value was 

observed to be 1.01 mm. Although there was a 0.10 mm difference between the two final compression values, the 

differential gap was very small and the shape of the numerical time-compression curve approximated closely to that of 

experimental time-compression curve.   
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Figure 3. Time-compression behavior of the stabilized peat under various consolidation pressures 

Using square root of time method and based on average degree of consolidation, graphical plots for the purpose of 

evaluating the rates of primary consolidation under the application of the various consolidation pressures from both 

experimental and finite element analyses were illustrated in Figures 4 and 5 respectively. Using the same method, the 

rates of primary consolidation of the stabilized soil were also determined based on the time-excess pore water pressure 

relationship estimated from the finite element analysis (Figure 6). From the square root of time method of interpretation 

of both experimental and finite element analyses, the trends of coefficients of vertical consolidation cv with consolidation 

pressures of the stabilized soil were graphically depicted in Figure 7. It is evident in Figure 7 that for a range of 

consolidation pressures of 50 to 800 kPa, cv was determined experimentally to vary from 0.006 to 0.013 m2 yr-1. Back 

analysis on cv of the stabilized soil on the basis of the average degree of consolidation by finite element method revealed 

that the soil parameter was found to range from 0.019 to 0.024 m2 yr-1 under the same range of consolidation pressures. 

A better approximation on the range of the cv was discovered when the coefficients were evaluated based on excess pore 

water pressure measurement at the center of the stabilized soil by finite element method. The cv analyzed by the method 

ranged from 0.015 to 0.016 m2 yr-1. Over the range of consolidation pressures, it is observable from Figure 7 that both 

numerically predicted values of cv for the average degree of consolidation and pore water pressure measurement of the 

stabilized soil tend to slightly overestimate the experimental values of cv of the stabilized soil. Despite of the slight 

differences in the values of cv of the stabilized soil evaluated experimentally and numerically, the low values of the cv 

from both analyses indicated that there was a reasonable agreement between the two analyses and that the rate of 

compression of the stabilized soil was very low as compared to that of untreated peat, of which the cv was found to range 

from 12.803 to 50.953 m2 yr-1 under the same range of consolidation pressures.  

 

Figure 4. Square root of time-compression curves derived from experimental time-compression behavior of the stabilized peat 
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Figure 5. Square root of time-compression curves derived from numerical time-compression behavior of the stabilized peat 

by finite element method 

 

Figure 6. Time-excess pore water pressure relationship of the stabilized peat derived from numerical analysis by finite 

element method 

 

Figure 7. Trend of coefficients of vertical consolidation of the stabilized peat over a range of consolidation pressures 
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soil was found to be 0.113. A slightly higher value of Cc of 0.226 of the stabilized soil was determined from the numerical 

e-log p curve in Figure 8. Both experimental and back analyses on Cc of the stabilized soil confirmed that the stabilized 

soil had a very low value of Cc when compared to that of untreated peat which was found to be 3.928 by Wong et al. 

[35]. A good approximation of the numerical results to those obtained in the experimental tests was also found in the 

study of Silva et al. [28], with mean relative errors lower than 5%. Silva et al. [36] made comparison of the simulation 

and experimental void ratio-log vertical effective stress curves of the oedometric tests on compacted soil for water 

contents of 10%, 15% and 20%. 

 

Figure 8. Void ratio-logarithm of consolidation pressure curves of the stabilized peat 

With reference to the values of cv in Figure 7 and the e-log p curves in Figure 8, mv and kv of the stabilized soil over 

the range of consolidation pressures could be determined as shown in Figures 9 and 10 respectively. It is evident in 

Figure 9 that experimentally, mv of the stabilized soil was found to range from 0.037 to 0.191 m2 MN-1. The related 

numerical results of the stabilized soil in the same figure showed that the mv ranged from 0.077 to 0.086 m2 MN-1. At 

the application of 50 kPa consolidation pressure, the numerical value of kv for the stabilized soil was noticed to be 0.077 

m2 MN-1 which slightly underestimated its experimental value of kv by 0.114 m2 MN-1. However, when the consolidation 

pressure was increased to 800 kPa, the numerical value of kv for the stabilized soil was realized to be 0.084 m2 MN-1 

which slightly overestimated its experimental value by 0.042 m2 MN-1. Anyhow, both of the experimental and numerical 

results indicated that there was a close agreement and that mv of the stabilized soil was very low as a result of low 

compressibility of the stabilized soil. The low compressibility of the stabilized soil also implied that it had low 

permeability under the application of various consolidation pressures as shown in Figure 10. The experimental values 

of kv of the stabilized soil in Figure 10 were found to range from 1.1 × 10-13 to 5.9 × 10-13 m s-1. Their numerical values 

were found to range from 4.4 × 10-13 to 6.5 × 10-13 m s-1. The close approximation in the numerical values of kv for the 

stabilized soil to its experimental values of kv confirmed that it had very low permeability under the application of 

consolidation pressures.  

 

Figure 9. Trend of coefficients of volume compressibility of the stabilized peat over a range of consolidation pressures 
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Figure 10. Trend of coefficients of vertical permeability of the stabilized peat over a range of consolidation pressures 

8. Discussion 

Although there was some drift in the final compression of the stabilized soil evaluated numerically in comparison to 

that evaluated experimentally in Figure 3, the difference between the two results was extremely small. This affirmed 

that compression of the stabilized soil was relatively small due to the slow rate of compression under various applied 

loadings as evident in both experimental and numerical results of cv in Figure 7. Close agreement between experimental 

and numerical values of Cc and mv of the stabilized soil as shown in Figures 8 and 9 respectively confirmed that the 

small compression of the stabilized soil was a direct result of small reduction in its void ratio. The small reduction in 

the void ratio of the stabilized soil can be linked to the soil hardening process as a result of its cement hydrolysis and 

pozzolanic activity. In a similar way, a reasonably good agreement between the results of laboratory test and numerical 

simulation of vertical displacement of foundation plate loaded on soil could be traced from the study of Krejci et al. 

[37]. 

Due to the brittle nature of the stabilized soil, it actually behaved like an elastic-plastic material. This is evident when 

the stabilized soil was subjected to the first consolidation pressure of 50 kPa for 7 days as shown in Figure 4, elastic 

compression predominated when it comprised of 75.6 % of the total compression of the stabilized soil. This provides an 

indication that the stabilized soil has large elastic strain which is a typical characteristic of hard soil. According to 

Whitlow [38], hard soils are likely to exhibit brittle failure by shearing.   

The small and slow compression of the stabilized peat also implied that excess pore water pressure dissipation in the 

stabilized soil occurred at a very slow rate and thus, it exhibited extremely low permeability as verified by both of the 

experimental and numerical analyses on its kv under the application of various consolidation pressures in Figure 10. In 

other words, a longer time is required under the application of each loading for the excess pore water pressure to dissipate 

from the stabilized soil. It must be noted that when pore pressure is extracted from saturated soil, pore water pressure 

will decline, which leads to the increase in the effective stress and the compression of soil skeleton [27]. Due to the 

domination of elastic compression in the stabilized soil, dissipation of excess pore water pressure from it had 

insignificant impact on its compressibility. Validation from the finite element solution on the exact solution regarding 

the compressibility of the stabilized soil proved that the strong interparticle bonding in it as a result of cement hydration 

process actually caused the stabilized soil to have slow rate of compression due to a load application. By comparison, it 

is also evident from the published work of Liu and Lei [3] that there was a close agreement in the results of pore water 

pressure isochrones for a one-layered soil calculated using the numerical and analytical inversion of Laplace transform. 

Liu and Lei [3] studied one-dimensional consolidation of layered soils with exponentially time-growing drainage 

boundaries. 

9. Conclusions 

In conclusion, comparison between the analytical and numerical solutions on the one-dimensional consolidation 

problem of stabilized peat indicated that there was a reasonable agreement between the two solutions. Results from the 

finite element analysis satisfactorily validated the experimental results based on analytical solution of the one-

dimensional consolidation problem of the stabilized soil on the following remarks. 

 The compression of the stabilized soil was very small due to its stiff and brittle behavior as a result of strong 

interparticle cementation bonds in it. 
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 The low values of cv of the stabilized soil proved that its rates of compression under various application of loadings 

were slow due to the slow dissipation of excess pore water pressure from it. 

 Values of Cc, mv and kv of the stabilized soil were relatively low due to its small reduction of void ratio under the 

application of loadings and the low ability of excess pore water to drain off from it.  
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I. Appendix 

According to Brinkgreve [22], the equilibrium and continuity equations considered in the finite element computation 

of PLAXIS 2D 8.2 Professional version software on the consolidation problem can be expressed in a block matrix 

equation as in Equation A.1. 



























































n

n

nn
T

q
dt

df

p

v

H

dt

dp
dt

dv

SL

LK

0

00
                         (A.1) 

By employing a simple step by step integration procedure, the equation is solved iteratively. Assigning the symbol 

∆ to represent finite increments, the integration yields Equation A.2. 
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Where 

StHS *  

nnn qqq  0*  

α = Time integration coefficient 

K = Stiffness matrix 

L = Coupling matrix 

v = Nodal displacement vector 

pn = Excess pore water pressure vector 

t = Surface tractions 

fn = Load vector 

  dVNRNH w

T
  

N = Interpolation functions 

R = Permeability matrix 

γw = Unit weight of water 

dV = Integration over the volume of the body considered 

 


