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Abstract 

A micromechanical constitutive damage model accounting for micro-crack interactions was developed for brittle failure 

of rock materials under compressive dynamic loading. The proposed model incorporates pre-existing flaws and micro-

cracks that have same size with specific orientation. Frictional sliding on micro-cracks leading to inelastic deformation is 

very influential mechanism resulting in damage occurrence due to nucleation of wing-crack from both sides of pre-existing 

micro-cracks. Several homogenization schemes including dilute, Mori-Tanaka, self-consistence, Ponte-Castandea & Willis 

are usually implemented for up-scaling of micro-cracks interactions. In this study the Self-Consistent homogenization 

Scheme (SCS) was used in the developed damage model in which each micro-crack inside the elliptical inclusion 

surrounded by homogenized matrix experiences a stress field different from that acts on isolated cracks. Therefore, the 

difference between global stresses acting on rock material and local stresses experienced by micro-crack inside inclusion 

yields stress intensity factor (SIF) at the cracks tips which are utilized in the formulation of the dynamic crack growth 

criterion. Also the damage parameter was defined in term of crack density parameter. The developed model was 

programmed and used as a separate and new constitutive model in the commercial finite difference software (FLAC). The 

dynamic uniaxial compressive strength test of a brittle rock was simulated numerically and the simulated stress-strain 

curves under different imposed strain rates were compared each other. The analysis results show a very good strain rate 

dependency especially in peak and post-elastic region. The proposed model predicts a macroscopic stress-strain relation 

and a peak stress (compressive strength) with an associated transition strain rate beyond which the compressive strength 

of the material becomes highly strain rate sensitive. Also the damage growth process was studied by using the proposed 

micromechanical damage model and scale law was plotted to distinguish the dynamic and quasi-dynamic loading boundary. 

Results also show that as the applied strain rate increases, the simulated peak strength increases and the damage evolution 

becomes slower with strain increment. 
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1. Introduction 

Brittle materials such as rocks show highly non-linear and complex response to external dynamic loads especially in 

peak and post-peak region. The comprehension and interpretation of the rock failure mechanism under dynamic loading 

is important for engineering practices. The measures to promote the failure of rocks in open pit mines and underground 

spaces rely on the fundamental understanding of the failure mechanisms in rock materials. The degree of issue greatly 

increases when the rock material is under dynamical loading. The rock materials have intrinsic defects in micro-scale 

such as in-homogeneities, micro-pores, micro-cracks and grain boundaries mismatches that cause stress concentration 

and decrease the overall rock strengths [1]. These intrinsic defects could be categorized into different families in term 

of size and orientation. According to the weakest link theory under quasi-static loading condition some of the large flaws 
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in the material are activated that affect significantly overall behavior of material. In other words, small flaws within the 

material do not activate crack growth, and failure is therefore controlled by large size flaws. In contrast with static 

loading, under dynamic loading the weakest link theory is not applicable and the whole families of the flaws participate 

in the mechanical response of brittle solids [2]. 

To describe damage effects on rock behavior, different kinds of constitutive damage models for the rock materials 

have been developed for various applications and these models can be categorized into two types. The first type is called 

phenomenological damage model, and the other type is the micro-mechanical damage model. In the framework of 

phenomenological models, the material free energy is formulated as a function of a number of internal variables, such 

as plastic strain and damage variable.  

Actual physical mechanisms e.g. unilateral effects due to opening and closure of micro-cracks, coupling between 

frictional sliding on the micro-crack surfaces and damage evolution, as well as interactions between cracks that have 

fundamental role in materials overall behavior and damage due to wing-crack nucleation are not considered in this kind 

of model [3]. Therefore, phenomenological damage models might be efficient for computational purposes, but they are 

generally unable to reproduce the microscale mechanisms. Furthermore, large number of parameters has usually to be 

determined in phenomenological models, and many of them have no actual physical interpretation. On the other hand, 

micromechanical damage models have been developed based on homogenization and up-scaling process. This kind of 

models can describe the main mechanical features of brittle materials to a certain extent and they are generally based on 

phenomena and mechanisms in microscale rather than on a solid mathematical derivation from macroscale phenomena. 

Micro-mechanical damage models have ability to consider the physical mechanisms involved in damage process and 

deterioration of material properties calculated by damage variable representing micro-cracks statistics features [4]. 

The strength of brittle materials depends largely on the applied loading rate for both tensile and compressive loading. 

The mechanical behavior of brittle material under dynamic loading can be studied at the experimental scale by the 

Kolsky bar (or similarly split-Hopkinson bar) test. Under high loading rate, propagation of cracks with large sizes is rate 

limited, so the stress magnitude in brittle material continues to rise to a high level. When the stress intensity factor of 

loading reaches the critical value (toughness), wing-cracks also nucleate from smaller flaws. Due to the preferential 

direction of the wing-crack nucleation from initial flaw tips, anisotropy and volume dilatancy are induced in damaged 

material [2]. As a result, higher absorbed and dissipated energy through the multiple opening wing-crack surfaces leads 

to the dynamic strength of rock exceeded its static strength which proved by  experimental observation [5]. 

An increase in number and overall length of cracks and a decrease in resulted fragment sizes due to high applied 

loading rate are widely reported in the experimental studies, which supports this hypothesis [6]. Due to lack of plastic 

deformation related to slipping on closed micro-crack faces, the typical failure mode of brittle rocks is associated with 

micro-cracks growth and their coalescence. In order to solve an engineering problem under dynamic loading, a 

micromechanical constitutive model reflecting the actual micro-scale defects behavior and dynamic micro-fracture 

mechanisms should be proposed. Several researchers studied on materials response to dynamical loading. For instance, 

Nemat-Nasser and Deng (1994) calculated the mode I stress intensity factor (SIF) for a pre-existing sliding micro-crack 

under dynamical loading, and they used dilute scheme for micro-cracks homogenization and up-scaling [7]. Initial 

micromechanical damage models are usually limited to dilute distribution of micro-cracks and then are not able to take 

into account interaction between micro-cracks [8]. In order to overcome the shortcomings of dilute distribution, other 

Eshelby-based homogenization procedures such as Mori-Tanaka (1973), Ponte-Castaneda and Willis (1995) and self-

consistent were proposed later [9]. 

Paliwal and Ramesh (2008) considered micro-cracks interaction by using the self-consistent homogenization scheme 

to calculate the effective properties for the dynamic behavior of brittle materials under biaxial compression loads [9]. 

Katcoff and Graham-Brady (2014) implemented the Self-consistent micro-mechanical damage model to study the 

compressive dynamic failure of  brittle materials with circular flaws  [10]. Tonge et al. (2013) applied  a similar 

methodology as part of a three dimensional macro-scale constitutive model of brittle dynamic failure [1]. Tonge et al. 

(2016) focused on the model formulation that captures the strength variability and strain rate sensitivity of brittle 

materials and presents a statistical approach to assigning the local flaw distribution within a specimen. Their works 

developed a model for brittle material failure during impact events. They used SCS to homogenization of cracked media 

and complex method to determine local stress from remote stress acting on specimen [11]. 

Although Hu et al. (2015) proposed a plastic-damage model based on the self-consistent homogenization scheme, 

matrix plastic strain due to dislocation in crystalline network is only considered in this model and material degradation 

and inelastic deformation are more popularly characterized separately [12]. The effective homogenized properties of 

cracked materials are obtained by following an up-scaling method based on the Eshelby inhomogeneous inclusion 

solution [13]. Ayyagari et al.(2018) proposed a three-dimensional generalized anisotropic constitutive model for brittle 

solids contain of the spatial evolution of planar wing-cracks subjected to dynamic compressive loading [14]. 
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In this paper, according to Figure1 the micro-crack interactions were considered through a crack-matrix-effective-

medium approach based on the self-consistent homogenization scheme to model the brittle failure process of rock. In 

self-consistent scheme it is assumed the presence of an elliptical inclusion surrounding each individual flaw inside of 

which the material is undamaged. Material outside of the ellipse has the effective homogenized properties accounting 

for the damage associated with the entire flaw population. The interactions among different flaw families are accounted 

through the means of crack-matrix-effective-medium approach, which the self-consistent scheme plays a crucial role in 

determining the local (effective) stress field around the individual flaws. 

Under uniaxial compressive loading, the mode I SIF for a pre-existing sliding micro-crack was calculated, and then 

dynamic effect on mode I SIF was taken into account. The key factor to study the micro-cracks propagation under 

dynamic loading is dynamic stress intensity factor in modeling process. In this problem the dynamic stress intensity 

factor only depends on the current crack tip speed and static stress intensity factor. According to Freund (1972, 1990), 

the mode-I dynamic stress intensity factor can be determined for propagating flaws by multiplication of a universal 

function of the propagation rate of micro-cracks tips in static mode I SIF. [15]. 

Regarding the SCM approach, the constitutive model related to failure of brittle materials can be decomposed into 

two parts 

(a) Homogenized mechanical properties (compliance or stiffness tensor) with respect to damage, which is used to 

identify the local stress state on elliptical inclusion boundary. 

(b) Propagation of micro-cracks under subjected loads, including the crack growth after wing-crack nucleation, the 

interactions among the pre-existing micro-cracks and coalescence to create the macro-scale failure plane.  

The aim of this study is to develop the micro-mechanical damage model originally proposed by Paliwal and Ramesh 

(2008) to take into account the frictional sliding and damage evolution due to micro-cracking under dynamic 

compressive loading. The proposed model is formulated in the framework of a micromechanical model based on the 

self-consistent homogenization scheme which was programmed and implemented into a commercial code. For 

simplicity, the special case of a material whose all flaws have uniform distribution of size and orientation in two-

dimensional space is assumed throughout this paper. In this paper, the method introduced by Graham-Brady et al. (2015) 

was implemented to calculate the local stress field imposed on the elliptical inclusion containing an isolated micro-crack 

as a function of the global principal stress tensor. 

2. Theory and Background 

Up scaling analyses are usually performed over a representative elementary volume (REV) (area A for the 2-D case) 

of an elastic brittle material containing distributed pre-existing flaws. In micromechanical damage models, the REV 

behavior is obtained by homogenization, after calculating local stresses and displacements at crack faces [16, 17].  

Because of the surrounding cracks, each activated flaw experiences a stress field that is inherently different from the 

stress field of an isolated crack and also different from the external stress field. This effect can be modeled in a self-

consistent scheme, by replacing the material surrounding each flaw (which is enclosed in the ellipsoidal inclusion in 

Figure 1) with an effective material having the reduced elastic modulus: �̅� = 𝐸. [1 − 𝑓(�̅�). Ω], �̅� = 𝐺. [1 − 𝑔(�̅�). Ω] 
that is a function of the evolving damage parameter 𝛺 = ∫ 𝜂𝑔(𝑠)𝑙2 𝑑𝑠. This damage parameter accounts for the damage 

caused by wing cracks of length (𝑙) associated with each individual flaw length (2𝑠) as described by the PDF (𝑔(𝑠)) 

and the flaw density (𝜂).𝑓(𝑣) and 𝑔(�̅�) functions were described as follows [9]: 

𝑓(�̅�) =
𝜋2

30
(1 + 𝑣)(5 − 4𝑣) (1) 

𝑔(�̅�) =
𝜋2

60
(10 − 7𝑣) (2) 

 

Figure 1. The schematic illustrations of SCM scheme 
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As regarded, the properties of material inside elliptical inclusion differ from the effective properties of materials 

around inclusion calculated by SCM scheme, so the local stress field in each micro-crack elliptical inclusion boundary 

is different from the overall remote stress. This issue leads to sliding on pre-existing micro-crack associated with wing-

crack nucleation.  

As shown in Figure 2, a micro-crack is assumed with two wing- cracks that propagate from both tips of crack 

embedded in an elliptical inclusion of pristine isotropic material, which in turn is located in a medium with the effective 

properties of the micro-cracked solid matrix. The difference in the properties of the elliptical inclusion and the 

homogenized cracked matrix leads to the crack inside the inclusion responds to a stress field different from the applied 

macroscopic stress field. Therefore the resulting mismatch of material properties at the elliptical inclusion boundary 

leads to local stresses fields (𝑃𝑒) within the elliptical inclusion thatdiffers from the far-field global stress (𝑃). 

[𝑃𝑒] = [𝜎11
𝑒 𝜎22

𝑒 𝜎12
𝑒 ]𝑇 

[𝑃] = [𝜎11 0 0]𝑇 
(3) 

One of the most important challenges for employing the self-consistent scheme is determination of local stress field 

acting on the elliptical inclusion containing micro-cracks. In this paper, the method introduced by Graham-Brady et al. 

(2015) was implemented in this paper to calculate the local stress field [13]. It is noteworthy that another method 

proposed early by Paliwall and Ramesh (2008), complex method, can be implemented to determine the local stress fields 

around isolated micro-cracks [6]. To calculate the local stress field acting on the elliptical inclusion containing the 

individual micro-crack, the method proposed by Graham-Brady et al.(2015) is used as following [13]: 

[𝑃𝑒] = [𝐵][𝑃], [𝐵] = {[𝐼] + [𝐶∗][𝐶𝐼]−1}−1{[𝐼] + [𝐶∗][𝐶𝑀]−1} (4) 

Where [𝐼] is the 3 × 3  identity tensor, [𝐶𝐼]  and [𝐶𝑀]  are undamaged stiffnesstensor for material in the ellipsoidal 

inclusion and stiffnesstensor for the damaged matrix material respectively and they are determined as follows [13]: 

[𝐶𝐼] =
𝐸

(1 − 𝑣)(1 − 2𝑣)
[
1 − 𝑣 𝑣 𝑣

𝑣 1 − 𝑣 𝑣
𝑣 𝑣 1 − 𝑣

] 

[𝐶𝑀] =
𝐸

(1 − 𝑣)(1 − 2𝑣)
[
1 − 𝑣 𝑣 𝑣

𝑣 1 − 𝑣 𝑣
𝑣 𝑣 1 − 𝑣

] 

(5) 

Where, 𝐸 is the material Young’s modulus and[C∗] is determined as follows [13]: 

[𝐶∗] = [𝐶𝑀][𝑆]−1([𝐼] − [𝑆]) (6) 

Where [𝑆] is the Eshelby tensor for the problem of an ellipsoidal inclusion in a matrix, defined as [13]: 

[𝑆] = [

𝑠11 𝑠12 𝑠13

𝑠21 𝑠22 𝑠23

𝑠31 𝑠32 𝑠33

] (7) 

 

Figure 2. The local stress induced in the elliptical inclusion boundary due to global stress acting on homogenized medium [13] 
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As illustrated in Figure 2, the major axis of the ellipsoidal inclusion is directed parallel to the global applied loading. 

The other two axes are perpendicular to the major axis. The nine components of the Eshelby tensor can be calculated by 

the following equation [13]: 

𝑆11 =
2 − 𝑣

2(1 − 𝑣)
(

𝑎

𝑏
)

2

(𝐼2 − 𝐼3) +
1

2
(

𝑎

𝑏
)

4

(𝐼1 − 2𝐼2 + 𝐼3) 

𝑆12 = 𝑆13 =
1 − 2𝑣

4(1 − 𝑣)
(

𝑎

𝑏
)

2

(𝐼2 − 𝐼3) +
𝑣

2(1 − 𝑣)
(

𝑎

𝑏
)

4

(𝐼1 − 2𝐼2 + 𝐼3) 

𝑆31 = 𝑆21 =
𝑣

4(1 − 𝑣)
𝐼3 +

1

4
(

𝑎

𝑏
)

2

(𝐼2 − 𝐼3) 

𝑆22 = 𝑆33 =
5 − 4𝑣

16(1 − 𝑣)
𝐼3 +

2 − 𝑣

4(1 − 𝑣)
(

𝑎

𝑏
)

2

(𝐼2 − 𝐼3) 

𝑆23 = 𝑆32 =
4𝑣 − 1

16(1 − 𝑣)
𝐼3 +

𝑣

4(1 − 𝑣)
(

𝑎

𝑏
)

2

(𝐼2 − 𝐼3) 

(8) 

Where, 𝑎/𝑏 is the aspect ratio of the ellipsoid inclusion. The solving of numerical integration proposed by Graham-

Brady et al. (2015), by supposing; (𝑎/𝑏)2 = 𝐴, leads to the following results for 𝐼1, 𝐼2, and 𝐼3 [13]: 

𝐼1 =
2𝑡𝑎𝑛−1(√𝐴 − 1)

√𝐴 − 1
 

𝐼2 =
−2√𝐴 − 1 + 2𝐴𝑡𝑎𝑛−1(√𝐴 − 1)

(𝐴 − 1)√𝐴 − 1
 

𝐼3 =

𝐴2 [
𝜋
2

− 𝑡𝑎𝑛−1 (
2 − 𝐴

2√𝐴 − 1
)]

(𝐴 − 1)
5
2

+
4 − 10𝐴

3(𝐴 − 1)2
 

(9) 

As illustrated in Figure 3, the resolved shear stress on the pre-existing micro-flaw due to the slip-induced gap, b, 

(mostly called wedging effect at the pre-existing micro-crack) results in a significant increase in the stress intensity 

factor at the micro-crack tips which is utilized in the formulation of the crack growth dynamics. Equation 4, provides a 

straightforward relationship between the global principal stresses and the local stresses on each flaw embedded in the 

elliptical inclusion, which are used to calculate the stress intensity factor at the crack tip associated with each flaw. The 

general formulation for calculating the mode-I SIFis presented [9, 13]: 

𝐾𝐼 = [
−2𝑠𝜏𝑒𝑓𝑓 𝑐𝑜𝑠 𝜑

√𝜋(𝑙 + 𝑙∗)
] + 𝜎22

𝑒 √𝜋𝑙 (10) 

𝜏𝑒𝑓𝑓 = 𝜏𝑐 − 𝜇[𝜎11
𝑒 𝑐𝑜𝑠2 𝜑 + 𝜎22

𝑒 𝑠𝑖𝑛2 𝜑 + 𝜎12
𝑒 𝑠𝑖𝑛 2𝜑] + [

1

2
(𝜎11

𝑒 − 𝜎22
𝑒 ) 𝑠𝑖𝑛 2𝜑 − 𝜎12

𝑒 𝑐𝑜𝑠 2𝜑] (11) 

Where, 𝜏𝑐 is the micro-cracks planes cohesion, 𝜑 is initial orientation of the micro-cracks, 2𝑠 is initial size of the micro-

cracks and 𝑙 is the wing-crack length after micro-crack propagation.The parameter (𝑙∗ = 0.27𝑠) is assumed to avoid 

singularity of (𝐾𝐼) when the wing-cracks are too small (𝑙 = 0). 

When the rock materials are subjected to continuous compressive loading, local stress concentration (stress intensity 

factor) (SIF), at the crack tips increases. At the specific moment, the SIF at crack tips reaches the rock material fracture 

toughness level, so the tensile wing-cracks with length of 𝑙 propagate from the tips of a pre-existing micro-cracks [18]. 

This phenomenon is called wing-crack nucleation as shown in Figure 3. After  nucleation  of  tensile wing-cracks,  the 

interaction  among  the  tensile  cracks  increases  as these  cracks  grow  close  to  each  other.  This  interaction  makes 

local stress concentration at the  crack  tip   and increases the mode-I SIF (𝐾𝐼 ) that leads to  the  crack  opening  

displacements  and hence  affects  the  overall  response  of  the  solid. The crack growth processes leading to damage 

are profoundly related to such pre-existing flaws at the micro-scale and decrease the material stiffness [1]. 
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Figure 3. Local stress field acting on the isolated micro-crack and wing-cracks nucleation [5] 

Here it must be noted that the SIF introduced in Equation 10 is in the static form. However, the dynamic form of SIF 

is essential to study the micro-cracks propagation under dynamic loading. The Mode-I dynamic SIF for two-dimensional 

in-plane crack growth has been established by Freund (1972). Under dynamic loading, a micro-crack could propagate 

with non-uniform speed. According to Freund (1972), the  dynamic SIF can be estimated  by  multiplying  the  equivalent  

static SIF  (calculated  for  the  identical loads  but  assuming  zero  crack  tip  speed)  by  a function of the  crack  tip  

speed.  The function k(𝑙)̇ is a universal function of the crack speed, which represents the inertial effect on the crack 

growth. The function k(𝑙)̇ can be written as [15, 19]: 

𝑘(𝑙)̇ = (1 −
𝑙̇

𝑐𝑅

) (1 −
𝑙̇

2𝑐𝑅

)

−1

=
2(𝑐𝑅 − 𝑙)̇

2𝑐𝑅 − 𝑙̇
 (12) 

Where 𝑐𝑅  is the Rayleigh wave speed, and 𝑙 ̇  is the wing-crack tips propagation velocity. After calculating the 

function 𝑘(𝑙)̇, the dynamic SIF is defined in terms of the static SIF as follows [20]: 

𝐾𝐼𝐷 = 𝑘(𝑙)̇𝐾𝐼 (13) 

Wing cracks are initiated from the pre-existing flaws when the mode-I SIF at the crack tip reaches the mode-I fracture 

initiation toughness (FIT) of the material. In this work, the mode-I FIT was assumed to be rate independent and equal to 

the mode-I fracture toughness 𝐾𝐼𝐶 : 

𝐾𝐼𝐷 = 𝐾𝐼𝐶 (14) 

Combination of the Equations 12 to 14 results in wing-crack propagation velocity expressed as follows [15]: 

𝑙 ̇ = 𝑐𝑚𝑎𝑥 (
𝐾𝐼 − 𝐾𝐼𝐶

𝐾𝐼 −
𝐾𝐼𝐶

2

)

𝛾

, 𝑐𝑚𝑎𝑥 =
𝑐𝑅

𝛼
            𝛼 ≥ 1 (15) 

Where 𝑐𝑚𝑎𝑥  shows the maximum (terminal) speed of a dynamic propagating crack and (𝛼, 𝛾) are the fitting parameters 

characterizing the toughness-velocity relation. 

3. Computational Algorithm 

Figure 4 shows the computational processes carried out in one step to calculate the wing-crack length, damage 

parameter and updated stress tensor in developed micromechanical damage model. The strong interaction between crack 

growth (damage) and micro-flaw nucleation as well as the strong nonlinearity in mechanical response is considered in 

this proposed model. In this algorithm, a trial elastic stress prediction and then damage correction are performed. 

Assuming at the end of step 𝑛, the internal variables and the macroscopic stress and strain tensors have been determined 

with a prescribed precision after an iterative process. With assuming a new strain increment ∆𝜀𝑘𝑙
(𝑛+1)

, the calculation 

done in step (𝑛 + 1) is summarized as follows: 
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 Trial elastic prediction: At first it is assumed that the strain increment ∆𝜀𝑘𝑙
(𝑛+1)

is completely elastic and contributed 

by the deformation in the matrix phase. Thus, 𝜀𝑘𝑙
(𝑛+1)

= 𝜀𝑘𝑙
(𝑛)

+ ∆𝜀𝑘𝑙
(𝑛+1)

, 𝜎𝑖𝑗
(𝑛+1)

= σij
(𝑛) + E𝑖𝑗𝑘𝑙

(𝑛)
 ∆𝜀𝑘𝑙

(𝑛+1)
. 

 Damage correction: Applying continuous loading over time leads to the condition that SIF is greater than 𝐾𝐼𝑐 i.e. 

𝐾𝐼 ≥ 𝐾𝐼𝐶 . Therefore, the wing-cracks propagate over time and the damage evolution can be calculated. Then, the 

stress tensor is corrected based on the new damage parameter 𝜎𝑖𝑗
(𝑛+1)𝑡𝑟𝑖𝑎𝑙

= σij
(𝑛) + ∆E𝑖𝑗𝑘𝑙

(𝑛)
 𝜀𝑘𝑙

(𝑛+1)
 

 Residual behaviour prediction: when the damage parameter in rock material reaches a certain critical value, the 

stress-strain curve become a roughly horizontal path (residual strength). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The algorithm of a micromechanical damage model for a rock material under a constant dynamic strain rate 

4. Numerical Simulation 

To implement the developed micromechanical damage model in numerical simulation of engineering problems, it 

was programmed within the Fish environment provided in the commercial finite difference software FLAC as a separate 

and new constitutive model according to the algorithm illustrated in Figure 4. 

In order to investigate the proposed model performance, the dynamic uniaxial compressive strength test of a brittle 

rock was simulated numerically. Therefore, it was attempted to simulate numerically the uniaxial compressive strength 

test condition as closely as possible. The simulated sample geometry and boundary condition were selected similar to 

the standard test condition reported in ISRM suggestion as shown in Figure 5. The main objective was to reproduce 

numerically the strain rate sensitivity of the rock stress–strain curve and delve into the sample failure mechanism in the 

peak and post-peak regions. The dynamic loading was simulated by imposing a velocity field at the top boundary in the 

y-direction equivalent to the dynamic strain rates including (0.16, 0.24, 0.28 𝑎𝑛𝑑 0.32) × 105𝑠−1 while a roller 

 𝑖𝑓𝐾𝐼 ≥ 𝐾𝐼𝐶 𝜎𝑖𝑗
(𝑛) = 𝜎𝑖𝑗

(𝑛).𝑡𝑟𝑖𝑎𝑙
 

Yes 

No 

Initialize values (t=0): 

Stress, strain=0 

𝑙 = Ω = 0 

𝜀𝑖𝑗
(𝑛)

= 𝜀𝑖𝑗
(𝑛−1)

+ ∆𝜀𝑖𝑗
(𝑛)

 

Trial stress calculation (with an elastic stress assumption): 

𝜎𝑖𝑗
(𝑛).𝑡𝑟𝑖𝑎𝑙 = 𝜎𝑖𝑗

(𝑛−1)
+𝐸𝑖𝑗𝑘𝑙

(𝑛−1)∆𝜀𝑖𝑗
(𝑛)

 

Based on the far-field stress acting on REV homogenized by SCM, calculate the local 

stress field around inclusion. From the local stress field, the resolved shear stress and 

SIF could be calculated, from Eqs (10) and (11). 

Update trial stress: 

                     𝜎𝑖𝑗
(𝑛) = 𝜎𝑖𝑗

(𝑛).𝑡𝑟𝑖𝑎𝑙
+ �̇�𝑖𝑗𝑘𝑙

(𝑛)
𝜀𝑘𝑙

(𝑛−1)
 

 

𝑙(𝑛+1) = 𝑙(𝑛) + 𝑙(̇𝑑𝑡), Ω(𝑛+1) = Ω(𝑛) + Ω̇(𝑑𝑡) 
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boundary condition is placed at the bottom boundary.There are no constraints on the sides of the simulated sample and 

the specimen sides are allowed to move in the horizontal and vertical directions. 

 

Figure 5. Geometry and boundary condition of the simulated specimen 

The pre-existing flaws characteristic parameters and mechanical properties for a typical rock material used in the 

numerical simulation are listed in Table 1. For simplicity, the flaws in our study were presumed to have a uniform 

distribution for flaws size and orientation. Therefore, 𝜑 = 50.7° is selected for orientation because it is the most critical 

orientation under uniaxial compressive loading. It’s noteworthy that the fitting parameters (𝛼, 𝛾) are selected as one 

which is adopted from Paliwal and Ramesh (2008). 

Table 1. Material properties assumed for model [9] 

Input Value Input Value 

𝐸 36 𝐺𝑃𝑎 𝜂 104 𝑚−2 

𝑣 0.24 2𝑠0 50 𝜇𝑚 

𝜌 2600 𝑘𝑔/𝑚3 (𝛼, 𝛾) (1,1) 

𝐾𝐼𝐶 0.5 𝑀𝑃𝑎√𝑚 𝜇 0.2 

𝜏𝑐 0 𝜑 𝜑0 = 50.7° 

The main objective of the analysis presented in this section was to demonstrate the capability of the proposed model 

in simulating the rock strength dependency on loading rate. In order to evaluate the general behavior of numerical sample, 

stress and vertical displacement variables on the upper model boundary were recorded and averaged under compressive 

loading. 

The stress–strain curves are simulated under a range of the imposed strain rates from 𝜀̇ = 1.6 × 104 1
𝑠𝑒𝑐⁄  to             

𝜀̇ = 3.2 × 104 1
𝑠𝑒𝑐⁄  to investigate the variation of the compressive peak strength by the imposed strain rates. The 

simulated stress-strain curves under various applied strain rates shown in Figure 6 demonstrates that the applied strain 

rate affects significantly on the rock material strength and  the simulated peak strength is greatly dependent on the applied 

loading (strain) rate. 
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Figure 6. The stress-strain curves simulated under various imposed strain rates 

Even though the simulated stress-strain curves show linear elastic behavior at low strain values, the flaws begin to 

be activated by stable crack growth which leads to increase in damage of material resulting in stiffness degradation and 

decrease in  slope of the stress–strain curves. Once the stress state in rock material reaches the peak strength, the slope 

of the simulated stress–strain curve becomes negative in post-peak region as a result of unstable crack growth. 

Furthermore, the increment of imposed strain rate with the same pre-existing flaws parameters leads to increase in the 

simulated peak strength. Therefore, applied strain rate dependency can be clearly observed in the simulated stress-stain 

curves under dynamic loading condition. The fact that flaws have not enough time to grow and propagate under applied 

high strain rates explains why the peak strength of material increases under dynamic loading by increment of the imposed 

strain rate. At high applied strain rate, the crack propagation is overcome by very high rate of loading; therefore, the rock 

material is able to carry higher stresses before ultimate failure and the strength of the material increases under high 

dynamic strain rates. As the applied strain rate becomes lower, the damage growth process with strain increment becomes 

faster.  

The area below the post-peak part of the stress-strain diagram represents the energy dissipated by the rock specimen. 

According to Figure 6, for higher applied strain rates the energy dissipation by material in post-peak region during failure 

process increases. The residual parts of all the simulated stress–strain curves under various applied strain rates can be 

seen in Figure 6. While the accumulated damage parameter in rock material reaches the critical value predefined in 

algorithm, the developed micromechanical damage model reflects the residual behaviour of rock material. 

Here, It is worth noting that the dynamic Young’s modulus of a rock is often greater than the static one, but to a small 

extent. For the rocks tested, their dynamic Young’s modulus are greater than their static ones by less than 30%, indicating 

that the difference between static and dynamic Young’s moduli is very small, compared with the difference between 

static and dynamic rock strengths [5]. That's why the slopes of curves in Figure 6 are approximately same. 

The developed micromechanical model can adequately reproduce many features of the rock behavior such as the 

linear elastic, hardening prior to the peak strength and eventually softening in post-peak region. The simulated 

compressive strength is dramatically sensitive to the imposed strain rate especially in dynamic strain rate ranges. This is 

in agreement with a great number of experiments indicating that compressive rock strength is sensitive to the applied 

loading rates, particularly in dynamic loading range [18]. 

The simulated compressive peak strengths are plotted against the imposed strain rates in logarithmic scale to 

investigate the strain rate-sensitivity of the compressive peak strength predicted based on the micromechanical damage 

model proposed in this paper as shown in Figure 7. 
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Figure 7. Variation of the uniaxial compressive strength by the imposed strain rate by scale law 

According to Figure 7, variation of the applied strain rate affects the mechanical behavior of rock materials. The 

simulated compressive peak strength slightly increases with rise in loading rate under quasi-static loading condition, but 

it dramatically increases with increment of loading rate under dynamic loading condition.While the imposed strain rate 

exceeds the transitional strain rate representing the boundary between quasi-static and dynamic loading conditions, the 

compressive peak strength increases significantly. 

Since the time variable used in dynamic numerical calculations is real, the damage growth process within the 

simulated sample can be monitored and recorded over time domain. To do this purpose, under the applied strain rate of 

(ε̇ = 0.32 × 105s−1), the damage contours in the simulated rock sample were monitored and plotted at different times 

and steps. The damage evolution process within the simulated sample is shown in Figure 8 based on the proposed 

micromechanical damage model. 

 

Figure 8. The damage growth process in the simulated rock specimen at different times 

According to Figure 8, the damage spreads in the rock sample with increment of time under applied dynamic loading. 

Figure 9 shows damage growth in the rock specimen simulated based on the proposed micromechanical damage model 

under dynamic uniaxial compressive loading. The results in Figures 8 and 9 show that the developed model is capable 

of predicting damage induced by frictional sliding along micro-cracks and associated wing-cracks nucleation. 
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Figure 9. The simulated stress-strain curve and damage evolution in the rock specimen 

According to Figure 9 in the first phase OA, the rock behavior remains linear elastic, the stress and strain are linearly 

related to each other and no damage occurs before the activation of sliding along the pre-existing flaws. At this stage, 

the damage in material is purely from the pre-existing internal flaws and very small. The slope of the simulated axial 

stress-strain curve is the same as the Young’s modulus. In phase AB, the progressive accumulation of the frictional 

sliding leads to the stress concentration at the pre-existing flaws tips and increase in the stress intensity factor at these 

flaws. Once the dynamic stress intensity factor reaches the fracture toughness of the material, in the third phase BC the 

pre-existing micro-cracks nucleate and develop into wing-cracks and the damage evolution law is activated. 

5. Conclusion 

In this paper, a micromechanical damage model for brittle rock materials was developed under dynamic compressive 

loading condition based on frictional sliding along the pre-existing micro-cracks and associated wing cracks sprouting 

from the tips of the pre-existing flaws. These pre-existing micro-cracks are assumed to be uniformly directed in rock 

material and all of them have same sizes. Frictional sliding along pre-existing flaws leads to nucleation of wing cracks 

that causes damage growth in rock material. The proposed micromechanical damage model incorporates the interactions 

between micro-cracks by means of the self-consistent homogenization scheme that calculate an effective stress field 

around the micro-cracks which is different from that acts on isolated micro-cracks. The developed micromechanical 

damage model was programmed and used as a separate and new constitutive model in the commercial finite difference 

software (FLAC) under different applied strain rates. Variation of the applied strain rate significantly affects the 

mechanical behavior of brittle materials. The developed micromechanical damage model is able to simulate the complete 

stress–strain curve under dynamic loading and an associated transitional strain rate beyond which the compressive 

strength of the rock material becomes highly strain rate sensitive. The simulated compressive peak strength remains 

nearly constant and insensitive to the imposed strain rates below the transitional strain rate representing the boundary 

between quasi-static and dynamic loading conditions. While the imposed strain rate exceeds the transitional strain rate, 

the compressive peak strength increases dramatically by increment of the applied strain rate. Furthermore, the damage 

evolution in the simulated rock specimen was monitored and recorded under dynamic uniaxial compressive loading 

condition. The accumulated damage within the simulated rock specimen at low stress level is insignificant, but damage 

spreads in the simulated rock material over time in peak and post-peak region. 
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