An Experimental Study on the Simultaneous Phenol and Chromium Removal From Water Using Titanium Dioxide Photocatalyst

Elaheh Faghih Nasiri, Daryoush Yousefi Kebria, Farhad Qaderi


Organic pollutants along with heavy metals and organic metal compounds may cause abnormal changes in physical and chemical parameters (acidity, alkalinity, salinity, color, smell and taste) of aquatic ecosystems and are among the serious threats of environmental health, especially the water resources. In this study, the effect of titanium dioxide photocatalyst with different concentrations (50, 100, 200, 500 and 1000 mg/l) on the simultaneous removal of phenol and heavy metal (chromium) from aqueous solution of the closed system was investigated.  In order to determine the optimal concentrations of photocatalyst, all the tests were conducted in pH =7, using ultraviolet light with 100 watt power. The highest rate of phenol and chromium removal was observed at concentration of 100 mg/ml which was equal to 72.3% and 67.2%, respectively. Study of the reaction kinetics showed that the reactions of phenol and chromium removal were zero and first-order, respectively.


Photocatalyst; Ultraviolet Radiation; Phenol; Chromium; Titanium Dioxide.


Yu, Kuang-Chung, Li-Jyur Tsai, Shih-Hsiung Chen, and Shien-Tsong Ho. “Chemical Binding of Heavy Metals in Anoxic River Sediments.” Water Research 35, no. 17 (December 2001): 4086–4094. doi:10.1016/s0043-1354(01)00126-9.

Fasle Bahar, Sh and Emtiazjoo, M, Heavy Metals and Their Incurred Disturbances in Aquatic Organisms, Journal of Marine Science and Technology, 2009: p. 84-90.

McLean, J.E. and B.E. Bledsoe, Behavior of metals in soils. EPA Environmental Assessment Sourcebook, 1992: p. 19-56.

Rai, D., L.E. Eary, and J.M. Zachara. “Environmental Chemistry of Chromium.” Science of The Total Environment 86, no. 1–2 (October 1989): 15–23. doi:10.1016/0048-9697(89)90189-7.

United States Environmental Protection Agency- standard 1995a.

United States Environmental Protection Agency- standard 1995b.

WHO 1996. Guidelines for Drinking-Water Quality. 2nd ed. Vol 2: Health Criteria and Other Supporting Information. Geneva:World Health Organization.

Xie, Baoping, Hanxia Zhang, Peixiang Cai, Rongliang Qiu, and Ya Xiong. “Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Phenol over Monoclinic BiVO4 Under Visible Light Irradiation.” Chemosphere 63, no. 6 (May 2006): 956–963. doi:10.1016/j.chemosphere.2005.08.064.

Wang, Kuo-Hua, Yung-Hsu Hsieh, Ming-Yeuan Chou, and Chen-Yu Chang. “Photocatalytic Degradation of 2-Chloro and 2-Nitrophenol by Titanium Dioxide Suspensions in Aqueous Solution.” Applied Catalysis B: Environmental 21, no. 1 (May 1999): 1–8. doi:10.1016/s0926-3373(98)00116-7.

World Health Organization, Phenol; health and safety guide. 1994.

Rengaraj, S. “Removal of Phenol from Aqueous Solution and Resin Manufacturing Industry Wastewater Using an Agricultural Waste: Rubber Seed Coat.” Journal of Hazardous Materials 89, no. 2–3 (January 28, 2002): 185–196. doi:10.1016/s0304-3894(01)00308-9.

Barakat, M.A. “New Trends in Removing Heavy Metals from Industrial Wastewater.” Arabian Journal of Chemistry 4, no. 4 (October 2011): 361–377. doi:10.1016/j.arabjc.2010.07.019.

Agrawal, Archana, Chandana Pal, and K.K. Sahu. “Extractive Removal of Chromium (VI) from Industrial Waste Solution.” Journal of Hazardous Materials 159, no. 2–3 (November 2008): 458–464. doi:10.1016/j.jhazmat.2008.02.121.

Park, Donghee, Yeoung-Sang Yun, and Jong Moon Park. “Mechanisms of the Removal of Hexavalent Chromium by Biomaterials or Biomaterial-Based Activated Carbons.” Journal of Hazardous Materials 137, no. 2 (September 21, 2006): 1254–1257. doi:10.1016/j.jhazmat.2006.04.007.

Ehrampoosh, M., et al., Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Journal of Environmental Health Science & Engineering, 2011. 8(1): p. 34-40.

Low, Fiona Chai Foong, Ta Yeong Wu, Chee Yang Teh, Joon Ching Juan, and N Balasubramanian. “Investigation into Photocatalytic Decolorisation of CI Reactive Black 5 Using Titanium Dioxide Nanopowder.” Coloration Technology 128, no. 1 (October 3, 2011): 44–50. doi:10.1111/j.1478-4408.2011.00326.x.

De Lima, Carlos Antônio Pereira, Geralda Gilvânia Cavalcante de Lima, and Fernando Fernandes Vieira. “Effluent Treatment of Synthetic Tanning by Nanomaterials Photocatalytic.” Materials Science Forum 869 (August 2016): 784–788. doi:10.4028/

Satyro, Suéllen, Raffaele Marotta, Laura Clarizia, Ilaria Di Somma, Giuseppe Vitiello, Marcia Dezotti, Gabriele Pinto, Renato F. Dantas, and Roberto Andreozzi. “Removal of EDDS and Copper from Waters by TiO2 Photocatalysis under Simulated UV–solar Conditions.” Chemical Engineering Journal 251 (September 2014): 257–268. doi:10.1016/j.cej.2014.04.066.

Gondal, M. A., M. A. Dastageer, S. G. Rashid, S. M. Zubair, M. A. Ali, D. H. Anjum, J. H. Lienhard, G. H. Mckinley, and K. Varanasi. “Plasmon Resonance Enhanced Photocatalysis under Visible Light with Au/Cu–TiO2 Nanoparticles: Removal Cr (VI) from Water as a Case of Study.” Science of Advanced Materials 5, no. 12 (December 1, 2013): 2007–2014. doi:10.1166/sam.2013.1669.

Naimi-Joubani, Mohammad, Mehdi Shirzad-Siboni, Jae-Kyu Yang, Mitra Gholami, and Mahdi Farzadkia. “Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 Composite.” Journal of Industrial and Engineering Chemistry 22 (February 2015): 317–323. doi:10.1016/j.jiec.2014.07.025.

Djellabi, Ridha, Fouzi M. Ghorab, Sana Nouacer, Abdelaziz Smara, and Ouahida Khireddine. “Cr (VI) Photocatalytic Reduction Under Sunlight Followed by Cr(III) Extraction from TiO 2 Surface.” Materials Letters 176 (August 2016): 106–109. doi:10.1016/j.matlet.2016.04.090.

Nguyen, Vi Nu Hoai, Rose Amal, and Donia Beydoun. “Effect of Formate and Methanol on Photoreduction/removal of Toxic Cadmium Ions Using TiO2 Semiconductor as Photocatalyst.” Chemical Engineering Science 58, no. 19 (October 2003): 4429–4439. doi:10.1016/s0009-2509(03)00336-1.

Lei, L., Y. J. Jin, T. Wang, X. Zhao, Y. Yan, and W. Liu. "Simultaneous Removal of Cd (II) and Phenol by Titanium Dioxide-Titanate Nanotubes Composite Nanomaterial Synthesized Through Alkaline-Acid Hydrothermal Method." Huan jing ke xue= Huanjing kexue 36, no. 7 (2015): 2573-2580.

Zhang, D., A. Wei, J. Zhang, and R. Qiu. “The Photocatalytic Interaction of Cr (VI) Ions and Phenol on Polymer-Modified TiO2 Under Visible Light Irradiation.” Kinetics and Catalysis 56, no. 5 (September 2015): 569–573. Doi: 10.1134/s0023158415050195.

Samarghandi, M. R., J. Nouri, A. R. Mesdaghinia, A. H. Mahvi, S. Nasseri, and F. Vaezi. “Efficiency Removal of Phenol, Lead and Cadmium by Means of UV/TiO2/H2O2 Processes.” International Journal of Environmental Science & Technology 4, no. 1 (January 1, 2007): 19–25. doi:10.1007/bf03325957.

Papadam, Theodora, Nikolaos P. Xekoukoulotakis, Ioannis Poulios, and Dionissios Mantzavinos. "Photocatalytic transformation of acid orange 20 and Cr (VI) in aqueous TiO2 suspensions." Journal of Photochemistry and Photobiology A: Chemistry 186, no. 2-3 (2007): 308-315.


CHROMIUM, HEXAVALENT (COLORIMETRIC)-METHOD 7196A, Environmental Protection Agency.

Benjamin, M.M., Water chemistry. 2014: Waveland Press.

Shahrezaei, F., A. Akhbari, and A. Rostami, Photodegradation and removal of phenol and phenolic derivatives from petroleum refinery wastewater using nanoparticles of TiO2. IJEE, 2012. 3(2): p. 267-274.

Hadj Salah, N., M. Bouhelassaa, S. Bekkouche, and A. Boultii. “Study of Photocatalytic Degradation of Phenol.” Desalination 166 (August 2004): 347–354. doi:10.1016/j.desal.2004.06.089.

Full Text: PDF

DOI: 10.28991/cej-0309117


  • There are currently no refbacks.

Copyright (c) 2018 Elaheh Faghih Nasiri, Daryoush Yousefi Kebria, Farhad Qaderi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.