Evaluation of Harmony Search Optimization to Predict Local Scour Depth around Complex Bridge Piers

Habibeh Ghodsi, Mohammad Javad khanjani, Ali Asghar Beheshti


One of the main causes of bridge collapse may be flood flow scour near piers. Several experimental and local field investigations were carried out to study scour depth. However, existing empirical equations do not commonly provide accurate scour prediction due to the complexity of the scour process. Physical and economic considerations often lead to bridge foundation constructs which included a pier column based on a pile cap supported by an array of piles. Piers with this configuration are referred to as complex piers. A few studies have been done on complex bridge pier scour depth estimation. Such efforts may be classified into theoretical and empirical equations. This paper investigates local scour around complex bridge piers by using harmony search algorithm under clear water conditions. Statistical indices such as the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were used to evaluate the performance of these methods. By designing laboratory tests, 82 experimental data points were measured by authors. Also 615 experimental data sets with the same measured experimental conditions were collected from published literature and used for optimization. The results show that the developed HS model can predict scour depth better than other equations according to statistical indices.


Complex Bridge Piers; Local Scour; Empirical Formula; Laboratory Data; Scour Depth Estimation; Harmony Search (HS).


Kothyari, U.C., Garde, R.J.m Ranja Raju, K.G. “Temporal variation of scour around circular bridge piers.” J. Hyd. Eng. 118 (1992): 1091-1106. Doi: 10.1061/(ASCE)0733-9429(1992)118:8(1091).

Raudkivi, A.J. “Functional trends of scour at bridge piers.” J. Hydraul. Eng. 112 (1986): 1-13. Doi: 10.1061/(ASCE)0733-9429(1986)112:1(1).

Melville, B.W. “Pier and abutment scour: integrated approach.” J. Hydraul. Eng. 123 (1997): 125-136. Doi: 10.1061/(ASCE)0733-9429(1997)123:2(125).

Ettema, R., Mostafa, E.A., Melville, B.W., Yassin, A.A. “Local scour at skewed piers.” J. Hydraul. Eng. 124 (1998): 756-759. Doi: 10.1061/(ASCE)0733-9429(1998)124:7(756).

Salim, M., Jones, J.S.”Scour around exposed pile foundations.” Richardson, P., Lagasse, B., ASCE (eds) ASCE compendium, stream stability, scour at highway bridges, Resston, VA (1998): 349-364.

Zhao, G., Sheppard, D.M. “The effect of flow angle on sediment scour near pile group.” Compilation of Conf. scour Papers, (1998): 1991-1998, ASCE, Reston, Va.

Sumer, B.M., Bundgaard, K., Fredsoe, J. “Global, Local scour at pile group.” 15th international offshore polar engineering conference. International Society of offshore, Polar Engineers, Seoul, Korea,( 2005): 577-583.

Amini, A., Melville, B.W., Thamer, M.A., Ghazali, A.H. “Clear-water local scour around pile groups in shallow-water flow.” J. Hydraul. Eng. 138 (2012): 177-185. doi:10.1061/(ASCE)HY.1943-7900.0000488.

Melville, B.W., Raudkivi, A.J. “Effects of foundation geometry on bridge pier scour.” J. Hydraul. Eng. 122 (1996): 203-209. doi:10.1061/(ASCE)0733-9429(1996)122:4(203).

Coleman, S.E. ”Clearwater local scour at complex piers.” J. Hydraul. Eng. 131 (2005):.330-334. doi:10.1061/(ASCE)0733-9429(1996)122:4(203).

Melville, B.W., Coleman, S.E. “Bridge scour.” Water Resources Publications, Littleton, Colo, 2000.

Ferraro, D., Tafarojnoruz, A., Gaudio, R., Cardoso, A.H. “Effects of pile cap thickness on maximum scour depth at a complex pier.” J. Hydraul. Eng. 139 (2013): 482-491. doi: 10.1061/(ASCE)HY.1943-7900.0000704.

Bateni, S. M., Jeng, D.S.”Estimation of pile group using adaptive neuro-fuzzy approach.” J. Ocean. Eng. 34 (2007): 1344-1354. doi:10.1016/j.oceaneng.2006.07.003.

Zounemat-Kermani, M., Beheshti, A.A., Ataie-Ashtiani, B., Sabbagh-Yazdia, S.R. “Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system.” Appl. Soft Comput, 9 (2009):.746-755. doi:10.1016/j.asoc.2008.09.006

Kambekar, A.R., Deo, M.C., “Estimation of pile group using neural networks.” Appl. Ocean. Res., 25 (2003): 1522-1527. doi:10.1016/j.apor.2003.06.001.

Etemad-Shahidi, A., Ghaemi, N. “Model tree approach for prediction of pile group scour due to waves.” Ocean. Eng. 38 (2011):.177-185. doi:10.1016/j.oceaneng.2011.07.012.

Ghazanfari-Hashemi, S., Etemad-Shahidi, A., Kazeminezhad, M.H., Mansoori, A.R. “Prediction of pile groups scour in waves using support vector machines and ANN.” J. Hydroinform. 13 (2011):.609-620. doi:110.2166/hydro.2010.107.

Ghaemi, N., Etemad-Shahidi, A., Ataie-Ashtiani, B. “Estimation of current-induced pile groups using a rule based method.” J. Hydroinform. 15 (2013): 516-528. doi:10.2166/hydro.2012.175

Najafzadeh, M. “Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions.” J. Ocean. Eng. 99 (2015):.85-94. doi:10.1016/j.oceaneng.2015.01.014.

Arafa, M., Khalifa, A., Alqedra, M. “Design optimization os semi-rigidly connected steel frames using harmony search algorithm.” J. Eng. Res. Tech. 2 (2015): 95-104.

Dai, X., Yuan, X., Wu, L. “A novel harmony search algorithm with Gaussian mutation for multi-objective optimization.” Soft. Comput. 21 (2015): 1549-1567. doi: 10.1007/s00500-015-1868-1.

Bashiri-Atrabi, H., Qaderi, K., Rheinheimer, D.E., Sharifi, E. “Application of harmony search algorithm to reservoir operation optimization.” water. Resour. Manage. 29 (2015): 5729-5748. doi:10.1007/s11269-015-1143-3.

Askarzadeh, A., Rashedi, E. Recent developments in intelligent nature-inspired computing. Chapter 1. (2017): 1-36. doi:10.4018/978-1-5225-2322-2.ch001.

Raudkivi, A.J., Ettema, R. “Clear water scour at cylindrical piers.” J. Hydraul. Eng. 109 (1977):.338-350. doi:10.1061/(ASCE)0733-9429(1983)109:3(338).

Melville, B.W., Sutherland, A.J. “Design methods for local scour at bridge piers.” J. Hydraul. Eng. 114 (1988):.1210-1226. doi:10.1061/(ASCE)0733-9429(1988)114:10(1210).

Oliveto, G., Rossi, A., Hager, W.H. “Time-Dependent Local Scour at Piled Bridge Foundations, Hydraulics of Dams and River Structures.” Taylor & Francis Group, London, 2004. doi: 10.1201/b16994-43.

Kothyari, U.C., Kumar, A. “Temporal variation of scour around circular compound piers.” J. Hydraul. Eng. 138 (2012): 945-957. doi:10.1061/(ASCE)HY.1943-7900.0000593.

Chiew, Y.M., Melville, B.W. “Local scour around bridge piers.” J. Hydraul. Res. 25 (1987):.15-26. doi:10.1080/00221688709499285.

Geem, Z.W., Kim, J. H., Loganathan, G.V. “A new heuristic optimization algorithm: harmony search.” Simulation, 76 (2001):.60-68. doi:10.1177/003754970107600201.

Kumar, V., Chhabra, J.K., Kumar, D. “Parameters adaptive harmony search algorithm for unimodal and multimodal optimization problems.” J. Comput. Sci. 5 (2014): 144-155. doi:10.1016/j.jocs.2013.12.001.

Richardson, E.V., Davis, S.R. “Evaluating Scour at Bridges. “Hydraulic Engineering Circular No. 18 (HEC−18), 4rd Ed., Rep. No.FHWA NHI 01–001, Federal Highway Administration, Washington, D.C., 2001.

Sheppard, D.M., Glasser, T.L. “Sediment scour at piers with complex geometries.” Proc., 2004 2nd Int. Conf. on Scour and Erosion, World Scientific, Singapore, 2004.

Ataie-Ashtiani, B., Baratian-Ghorghi, Z., Beheshti, A.A. “Experimental investigation of clear-water local scour of compound piers.” J. Hydraul. Eng. 136 (2010):.343-351. doi:10.1061/(ASCE)0733-9429(2010)136:6(343).

Full Text: PDF

DOI: 10.28991/cej-0309100


  • There are currently no refbacks.

Copyright (c) 2018 Habibeh Ghodsi, Mohammad Javad khanjani, Ali Asghar Beheshti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.