Biosorption of Nickel (II) from Aqueous Solutions onto Pistachio Hull Waste as a Low-Cost Biosorbent

Majid Zamani Beidokhti, Seyed Taghi Omid Naeeni, Mohammad Sajjad AbdiGhahroudi

Abstract


There are many different industrial wastewater containing heavy metals that contribute to environmental pollution and raw agricultural waste is an effective adsorbent for the removal of heavy metals. The adsorption behavior of pistachio hull powder (PHP) as a low-cost adsorbent, with respect to nickel (II) ions, has been studied in order to consider its application to the purification of metal finishing wastewater. In this work, adsorption of nickel on pistachio hull has been studied by batch techniques. The adsorption depends on the process time, the pH of the solution, initial concentration of metals and the adsorbent concentration in the suspension. The kinetics of adsorption were relatively fast, reaching equilibrium for less than 60 minutes. Kinetic and isotherm modeling studies demonstrated that the experimental data best fit a pseudo-second order and Freundlich model, respectively. The maximum Langmuir adsorption capacity was 14 mg/g. The optimum pH required for maximum adsorption was found to be 4-6. The initial concentration of the adsorbate and the concentration of pistachio hull strongly affect the process. No influence of particle size was evidenced. A degree of adsorption higher than 75% can be achieved for nickel (II) ions.


Keywords


Biosorption; Pistachio Hull; Nickel; Kinetics; Isotherms; Heavy Metals; Low-Cost Biosorbent.

References


Argun ME, Dursun S. A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresour Technol. 2008;99(7):2516–27. doi: 10.1016/j.biortech.2007.04.037.

Saleem N, Bhatti HN. Adsorptive removal and recovery of U (VI) by citrus waste biomass. Bioresources. 2011;6(3):2522–38. doi: 10.15376/biores.6.3.2522-25383.

Dal Bosco SM, Jimenez RS, Vignado C, Fontana J, Geraldo B, Figueiredo FCA, et al. Removal of Mn (II) and Cd (II) from wastewaters by natural and modified clays. Adsorption. 2006;12(2):133–46. doi: 10.1007/s10450-006-0375-1.

Kurniawan TA, Chan GYS, Lo W, Babel S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ. 2006;366(2):409–26 doi: 10.1016/j.scitotenv.2005.10.001.

Anwar J, Shafique U, Salman M, Dar A, Anwar S. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour Technol. 2010;101(6):1752–5. doi: 10.1016/j.biortech.2009.10.021.

Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater. 2009;168(2):806–12. doi: 10.1016/j.jhazmat.2009.02.097.

Wahab MA, Jellali S, Jedidi N. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol. 2010;101(14):5070–5. doi: 10.1016/j.biortech.2010.01.121.

Volesky B, Naja G. Biosorption: application strategies. In: International Biohydrometallurgy Symposium. Citeseer; 2005.

Sumathi, K. “Use of Low-Cost Biological Wastes and Vermiculite for Removal of Chromium from Tannery Effluent.” Bioresource Technology 96, no. 3 (February 2005): 309–316. doi:10.1016/j.biortech.2004.04.015.

Vaishya RC, Prasad SC. Adsorption of copper (II) on sawdust. Indian J Environ Prot. 1991;11(4):284–9.

Chung T, Wu Y, Hsu H, Choudhary A. Apiaceae Family Plants as Low-Cost Adsorbents for the Removal of Lead Ion from Water Environment Apiaceae Family Plants as Low - Cost Adsorbents for the Removal of Lead Ion from Water Environment. 2017;(Ii).

Jain M, Garg VK, Kadirvelu K. Equilibrium and kinetic studies for sequestration of Cr (VI) from simulated wastewater using sunflower waste biomass. J Hazard Mater. 2009;171(1):328–34. doi: 10.1016/j.jhazmat.2009.06.007.

Lee S-H, Yang J-W. Removal of copper in aqueous solution by apple wastes. Sep Sci Technol. 1997;32(8):1371–87. doi:10.1080/01496399708000966 .

Low KS, Lee CK, Leo AC. Removal of metals from electroplating wastes using banana pith. Bioresour Technol. 1995;51(2):227–31. doi: 10.1016/0960-8524(94)00123-i.

Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17(1):71–7. doi: 10.1080/09593331708616362.

Memon, Jamil R., Saima Q. Memon, Muhammad I. Bhanger, Adel El-Turki, Keith R. Hallam, and Geoffrey C. Allen. “Banana Peel: A Green and Economical Sorbent for the Selective Removal of Cr(VI) from Industrial Wastewater.” Colloids and Surfaces B: Biointerfaces 70, no. 2 (May 2009): 232–237. doi:10.1016/j.colsurfb.2008.12.032.

Stuart BH. Infrared Spectroscopy: Fundamentals and Applications [Internet]. Vol. 8, Methods. 2004. 224 p. Available from: doi: 10.1002/0470011149.

Božić D, Stanković V, Gorgievski M, Bogdanović G, Kovačević R. Adsorption of heavy metal ions by sawdust of deciduous trees. J Hazard Mater. 2009;171(1):684–92. doi: 10.1016/j.jhazmat.2009.06.055.

Yu, Bin, Y. Zhang, Alka Shukla, Shyam S. Shukla, and Kenneth L. Dorris. "The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper." Journal of Hazardous Materials 80, no. 1-3 (2000): 33-42.

Larous, S., A.-H. Meniai, and M. Bencheikh Lehocine. “Experimental Study of the Removal of Copper from Aqueous Solutions by Adsorption Using Sawdust.” Desalination 185, no. 1–3 (November 2005): 483–490. doi:10.1016/j.desal.2005.03.090.

Acar, Filiz Nuran, and Zeynep Eren. “Removal of Cu(II) Ions by Activated Poplar Sawdust (Samsun Clone) from Aqueous Solutions.” Journal of Hazardous Materials 137, no. 2 (September 21, 2006): 909–914. doi:10.1016/j.jhazmat.2006.03.014.

Ho, Yuh-Shan, Wen-Ta Chiu, Chun-Sen Hsu, and Chien-Tsung Huang. “Sorption of Lead Ions from Aqueous Solution Using Tree Fern as a Sorbent.” Hydrometallurgy 73, no. 1–2 (April 2004): 55–61. doi:10.1016/j.hydromet.2003.07.008.

Fiol, Núria, Isabel Villaescusa, María Martínez, Núria Miralles, Jordi Poch, and Joan Serarols. “Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from Aqueous Solution by Olive Stone Waste.” Separation and Purification Technology 50, no. 1 (June 2006): 132–140. doi:10.1016/j.seppur.2005.11.016.

Ho, Y. “The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat.” Water Research 34, no. 3 (February 15, 2000): 735–742. doi:10.1016/s0043-1354(99)00232-8.

Ho, Y.S., and G. McKay. “Batch Lead(II) Removal From Aqueous Solution by Peat.” Process Safety and Environmental Protection 77, no. 3 (May 1999): 165–173. doi:10.1205/095758299529983.

CHO, H, D OH, and K KIM. “A Study on Removal Characteristics of Heavy Metals from Aqueous Solution by Fly Ash.” Journal of Hazardous Materials 127, no. 1–3 (December 9, 2005): 187–195. doi:10.1016/j.jhazmat.2005.07.019.

Kumar, Potsangbam Albino, Saswati Chakraborty, and Manabendra Ray. “Removal and Recovery of Chromium from Wastewater Using Short Chain Polyaniline Synthesized on Jute Fiber.” Chemical Engineering Journal 141, no. 1–3 (July 2008): 130–140. doi:10.1016/j.cej.2007.11.004.

Abdel-Ghani, N. T., M. Hefny, and G. A. F. El-Chaghaby. “Removal of Lead from Aqueous Solution Using Low Cost Abundantly Available Adsorbents.” International Journal of Environmental Science & Technology 4, no. 1 (January 1, 2007): 67–73. doi:10.1007/bf03325963.

El-Ashtoukhy, E.-S.Z., N.K. Amin, and O. Abdelwahab. “Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent.” Desalination 223, no. 1–3 (March 2008): 162–173. doi:10.1016/j.desal.2007.01.206..

Abdel Salam, Omar E., Neama A. Reiad, and Maha M. ElShafei. “A Study of the Removal Characteristics of Heavy Metals from Wastewater by Low-Cost Adsorbents.” Journal of Advanced Research 2, no. 4 (October 2011): 297–303. doi:10.1016/j.jare.2011.01.008.

Božić, D., V. Stanković, M. Gorgievski, G. Bogdanović, and R. Kovačević. “Adsorption of Heavy Metal Ions by Sawdust of Deciduous Trees.” Journal of Hazardous Materials 171, no. 1–3 (November 2009): 684–692. doi:10.1016/j.jhazmat.2009.06.055.

Villaescusa I, Fiol N, Mart??nez M, Miralles N, Poch J, Serarols J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004;38(4):992–1002. doi:10.1016/j.watres.2003.10.040.

Srinivasa Rao P, Suresh Reddy KVN, Kalyani S, Krishnaiah A. Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust. Wood Sci Technol [Internet]. 2007;41(5):427–42. Available from: doi:10.1007/s00226-006-0115-4.

Lu, Shuguang, and Stuart W. Gibb. “Copper Removal from Wastewater Using Spent-Grain as Biosorbent.” Bioresource Technology 99, no. 6 (April 2008): 1509–1517. doi:10.1016/j.biortech.2007.04.024.

SciIban M, Radetic B, Kevresan Za, Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour Technol. 2007;98(2):402–9. doi:10.1016/j.biortech.2005.12.014.

Shukla, Alka, Yu-Hui Zhang, P Dubey, J.L Margrave, and Shyam S Shukla. “The Role of Sawdust in the Removal of Unwanted Materials from Water.” Journal of Hazardous Materials 95, no. 1–2 (November 2002): 137–152. doi:10.1016/s0304-3894(02)00089-4.

Larous S, Meniai a. H, Bencheikh Lehocine M. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination. 2005;185(1–3):483–90. doi: 10.1016/j.desal.2005.03.090.

SCIBAN, M, M KLASNJA, and B SKRBIC. “Modified Softwood Sawdust as Adsorbent of Heavy Metal Ions from Water.” Journal of Hazardous Materials 136, no. 2 (August 21, 2006): 266–271. doi:10.1016/j.jhazmat.2005.12.009.


Full Text: PDF

DOI: 10.28991/cej-2019-03091259

Refbacks





Copyright (c) 2019 Majid Zamani Beidokhti, Seyed Taghi (omid) Naeeni, Mohammad Sajjad AbdiGhahroudi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message