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Abstract 

Masonry infilled walls are widely used in reinforced concrete (RC) frams worldwide. However, infilled RC frame building 

failure is a common mode in destructive earthquakes. Further researcher is needed to bring insightful understandings into 

the behaviors of these structures. Therefore, this study investigates seismic parameters, ultimate tensile damage, and force 

transfer mechanisms in a reinforced concrete structure under in-plan load.  For this purpose, the definitions and the relevant 

literature were reviewed. Then, an analytical software supporting an infill model was selected and described altogether 

with a particular modeling approach. Calibrating software results with those presented by Abdulhafez et al. (2014), the 

researchers designed a series of planer one-story one-bay reinforced concrete frames upon ACI 318M-14 Building Code. 

The seismic behavior of infilled frames were also studied using finite element method. Force transfer mechanisms in 

infilled frame with opening, which is one of the important items, was investigated in this study. Comparing the analysis 

outcomes with the bar frame, it was indicated that the ultimate load, stiffness, and toughness of the full in-filled frame were 

increased while the ductility was decreased. It was also revealed that the presence of opening in infilled frame decreased 

the ultimate load, stiffness and toughness corresponding full infilled frame. In addition, the increasing of opening size 

increased the reduction of the ultimate load, stiffness and toughness. 
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1. Introduction 

Recently, an established body of research has investigated the seismic behavior of RC frames under earthquake 

excitation. Studying this behavior is critically significant since this issue has received little attention in the current 

building codes. Infilled frame is a panel, which partly or fully covers a steel or RC frame, and it is surrounded by grid 

of beams and columns. Infilled frame is considered as a partition or an infilled wall, which is filled with a panel of 

another material, such as brick or hollow concrete-blocks [1]. Concrete frame structure with masonry is the common 

type of construction technology applied in some parts of the world, particularly in developing countries. It is easy to 

build and attractive for architecture. Masonry infilled frames could have positive or/and negative impacts on RC 

structures. Hence, they can influence the seismic behaviours including ductility, ultimate strength, stiffness, toughness 

in a way that it may be impossible to describe the compound characteristics of the frame by summing up its properties. 

Masonry infilled frame is usually ignored in designing a concrete structure despite its significance on concrete structures. 

Therefore, this study could provide us with insightful understandings of how the concrete structure might response to 

the earthquake excitations [2].   
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Since past decades, a body of research has evaluated the seismic behaviour of frames with masonry infill. In a more 

recent investigation, Hapsari et al., (2018) [3] studied an irregular four-story RC building with and without masonry 

infills using nonlinear static procedure. They observed that the lateral strength of RC building with masonry infills was 

higher than RC building without masonry infills. In contrast, the amount of damage to RC building with masonry infills 

was lower than RC building without masonry infills. Alwashali et al., (2018) [4] investigated the backbone curve and 

deformation of masonry infilled RC frames. For this purpose, they tested two infilled RC frames. Experimental results 

indicated that the increase in frame’s shear strength, which was relative to the shear strength of the infilled wall, 

increased the strength and betterment of the sudden brittle behavior of the infilled frame. In a series of experiments, 

Syed and Hemant (2016) [5] studied the behavior of eleven half-scale masonry infilled RC frames under cyclic in-plane 

loading. The results illustrated that an idealized load-displacement relationship was developed for masonry infilled RC 

frames in different performance levels. The study also showed that, in most of the specimens, column failed in shear 

although the used masonry wall was quite weak. Chen and Liu (2016) [6] investigated the effects of vertical loads on 

in-plane behaviours of infilled wall covered by reinforced concrete frames. Using Ansys software, the researchers 

modelled four specimens of infilled frames and applied lateral loads to these samples. They also modelled six further 

specimens. These frames were tested under both vertical and lateral loadings. The limit analysis of infill wall showed 

that the effect of vertical loading on stiffness and resistance was depended upon the aspect ratio of infill wall, the smaller 

the height of the infilled wall, the higher the amount of stiffness and resistance. 

 Kiani et al., (2016) [7] investigated the fragility curves of reinforced frames with semi-rigid saddle connections. In 

this semi-rigid connection, the main things were placed on each side of the column. Two splints were welded at the top 

and bottom of the beams. The secondary beams, which were stood vertically on the plates of these frames and connected 

to the primary beams, function as the bases for brick wall floors. Kiani et al. used three lateral load systems including, 

masonry infill walls, concentric braces, and a combination of concentric bracings and a combination of concentric braced 

frames with masonry infill walls in order to investigate the seismic behavior and vulnerability assessment of steel 

structures in three - and five-story steel structures. These researchers utilized OpenSees software for numerical modeling 

and structural analyses. Observing pushover and hysteretic curves, Kiani et al. concluded that “steel frames only without 

any bracing system or with infill walls only … [were] very damageable due to the premature failure of the infills which 

result in sudden strength and stiffness degradation in the system”.  It was also observed that soft story formation occurred 

in the lowest story. In another study, Yuen and Kuang (2015) [8]  investigated the seismic performance and failure 

mechanisms of two-story two-bay masonry infilled RC frames under dynamic loading. The results showed that the infill 

walls crucially affected the seismic behavior of RC frames. The analysis also showed that the design concept of “strong 

column-weak beam” may not be always enforceable to infilled RC frames.  

Tawfik Essa et al., (2013) [9] further investigated the effect of masonry infill wall on the performance of high strength 

RC frames. They conducted experiments on four half-scale, single-story single-bay under cyclic loading. They mainly 

concluded that the ultimate resistance for infilled RC frames was greater than the bar frame. Okuyucu (2010) [10] also 

studied the influence of aspect ratio of the RC frames on the precast concrete wall strengthening method. She conducted 

test on fifteen 1/3 scale infilled RC frames. Results showed that the precast concrete wall application remarkably 

increased the ultimate resistance of the reinforced concrete frames. In a further study, Akın (2011) [11] investigated the 

experimental behavior of eight 1/3 and four 1/2 scale infilled RC frames with several aspect ratios. It was shown that 

the initial stiffness and ultimate resistance of the infilled RC frames increased remarkably. Baran and Sevil (2010) [12] 

also tested three 1/3 scale one-story one-bay and five 1/3 scale two-story one-bay masonry infilled RC frames by 

changing axial load on columns, lap-splicing and mortar strength. They observed that the ultimate resistance and 

stiffness of the infilled RC frames increased in comparison to bare frames. 

2. Research Methodology 

In the continuation of the contextualized studies, this study examined the effect of window opening on seismic 

behavior of RC frames. First, the relevant studies were reviewed. Second, in order to attest the results, Abaqus software 

was used to model the laboratory experiment of Lyla Abol-Hafiz et al. (2014) [13], and the results were compared. 

Third, a RC frame was designed upon ACI code. The thickness of the wall, its characteristics, and opening dimensions 

were also determined. Forth, six specimens including, bar frame, one fully infilled frame, and five in-filled frames 

respectively with 10, 20, 30, 40 and 50 percent opening, were modelled and analyzed using ABAQUS software. Finally, 

the parameters of force transfer mechanism, impact of tensile force on patterns of cracks, ultimate strength, initial 

stiffness, ductility, and toughness were investigated.   

3. Infilled RC Frame Prototype Structure 

The prototype structure is a one-story one-bay RC building frame designed by ACI 318M-14. The uniaxial strengths 

of the longitudinal, transverse reinforcements and concrete are 300 MPa, 300 MPa and 32 MPa, respectively. The infilled 

frames are composed of 300-mm-thick infill panels with 7.5 MPa compressive strength and 10-mm-thick mortar joints 

with 1.7 MPa compressive strength. Seven typical types of masonry-infill classification are considered in this study: (1) 
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bar frame, (2) full infill, (3) infill with 10% window opening, (4) infill with 20% window opening, (5) infill with 30% 

window opening, (6) infill with 40% window opening, and (7) infill with 50% window opening. The windows opening 

is located in the center of the wall. The reinforcement details and specimens’ dimension are shown in Figure 1. 

  

Figure 1. Reinforcement details and specimens dimension 

4. Finite Element Modeling 

The finite element method (FEM) or finite element analysis (FEA) is a powerful tool that can be used to investigate 

the seismic performance of infilled RC frames under lateral loading [14]. From the computational point of view, the 

finite element modeling techniques used for the analysis of masonry wall can be divided into three main categories : (1) 

detailed micro-model, (2) simplified micro-model, and (3) macro-model (Figure 2)[15]. 

  

Figure 2. masonry modeling strategist [15] 

4.1. Material Characteristics of the Concrete 

The plastic-damage model in ABAQUS software is utilized to simulate the behavior of concrete material in columns 

and beams. Concrete Damage Plastic (CDP) model has been used to predict the conduct of concrete and other quasi-

brittle materials, such as mortar and rock under different loading conditions. Crushing in compression or cracks in 

tension are the principal damage modes to this model [16] . The model developed by Hsu and Hsu (1994) [17]  is selected 

for this study (Figure 3). This model is considered appropriate for the evaluation of compressive behavior of the concrete. 

This model can be used to develop the stress-strain relationship under uni-axial compression up to 0.3σ𝑐𝑢 of stress in 

the descending portion, only using the maximum compressive strength (σ𝑐𝑢). In the next section, this method is briefly 

presented for the concrete with maximum compressive strength up to 62 MPa. Figure 3 defines the ultimate compressive 

stress (σ𝑐𝑢), strain at 𝜎𝑐𝑢 (휀0) and the strain corresponding to the stress at 0.3σ𝑐𝑢  in the descending portion (휀𝑑)[18, 19]. 

A linear stress-strain relationship, which obeys Hooke’s law, is assumed up to 50% of the ultimate compressive strength 

(σ𝑐𝑢) in the ascending portion [20].  



Civil Engineering Journal         Vol. 5, No. 1, January, 2019 

64 

 

 

  

Figure 3. Model developed by Hsu and Hsu for compressive behavior of concrete[17]  

     The numerical model by Hsu and Hsu (1994) is merely utilized to compute the compressive stress values (𝜎𝑐) at 

0.5σ𝑐𝑢 (yield point) and 0.3σ𝑐𝑢  in the descending portion. Its formula is described as follow (1): 

𝜎𝑐 = (
𝜷(

𝜺𝒄
𝜺𝒐

)

𝜷−𝟏+(
𝜺𝒄
𝜺𝒐

)
𝜷)                                                                                                                                           (1) 

  

Where, the parameter β, which depends on the form of the stress-strain diagram, is derived from (2) and the strain at 

the σ𝑐𝑢 (peak stress) 휀0 is given by (3): 

𝛽 =
1

1−(
𝜎𝑐𝑢

𝜀𝑜×𝐸𝑜)
)
                                                                                                                                                 (2) 

휀𝑜 = (8.9 × 10−5𝜎𝑐𝑢) + (2.114 × 10−3)                                                                                                     (3) 

The elasticity modulus, E0 is given by (4):  

𝐸𝑜 = (1.2431 × 102𝜎𝑐𝑢) + (3.28312 × 103)                                                                                              (4) 

It should be noted that σc, σcu and E0 are in kip/in2 in the above equations. 

The 휀𝑑  is iteratively calculated using (5) when 𝜎𝑐=0.8𝜎𝑐𝑢.  

The model developed by Nayal and Rashid (2006) [21] is adopted  to demonstrate the tensile behaviour of concrete 

(Figure 4). 

  

Figure 4. Model developed by Nayal and Rashid for tensile behavior of concrete[21] 

The main parameters of concrete for elastic and inelastic behavior are illustrated in Table 1. 



Civil Engineering Journal         Vol. 5, No. 1, January, 2019 

65 

 

 

4.2. Material Characteristics of Masonry Wall 

Linear at elastic as well as nonlinear damaged plasticity model for inelastic moods of the masonry wall is considered. 

Hemant et al.(2007) [22] and Nayal and Rasheed (2006) [21] models are adopted to model the material behavior of 

masonry wall under compression and tensile. The formula of the stress-strain relations of masonry wall in Hemant et al. 

(Figure 5) model is expressed as follow:  

𝑓𝑚

𝑓𝑚
, = (2 × 𝑚

𝑚
, ) − ( 𝑚

𝑚
, )2                                                                                                                                                (5) 

Where, fm is the indicator of compressive stress and  휀𝑚   is the strain in masonry. 휀𝑚
,

is the peak strain corresponding to 

𝑓𝑚
,
 . The nonlinear diagram is more extended in the descending section than 𝑓𝑚

,
 falls to 90%, after which the curve is 

simplified as a direct line up to the remaining stress in the masonry wall is attained (0.2𝑓𝑚
,
), as shown in Figure 5. The 

following equation is proposed for the assessment of 휀𝑚
,

 and  𝑓𝑚
,

: 

Table 1: Material properties for concrete 

Parameter Value 

Elastic properties:   

       -      Modulus of Elasticity (Mpa) 28284.27 

- Density (kgr/m3) 2400 

       -      Poisson ratio   0.2 

Inelastic properties:  

- Dilation Angle (Degree) 35 

       -      Fbo/Fco 1.16 

       -      flow stress ratio (k) 0.67 

       -      viscosity parameter 0.001 

 

휀𝑚
, =

0.27×𝑓𝑚
,

𝑓𝑗
0.25×𝐸𝑚

0.7                                                                                                                                                                   (6) 

𝑓𝑚
, = 0.63 × 𝑓𝑏

0.49 × 𝑓𝑗
0.39                                                                                                                                                 (7) 

It should be noted that the 𝐸𝑚values assessment using the following equation: 

𝐸𝑚 = 550 × 𝑓𝑚
,
                                                                                                                                                               (8) 

 

Figure 5. Analytical model for stress–strain curves for compressive behavior of masonry[22] 

The model developed by Nayal and Rashid (2006) [21] is chosen and adopted to represent the behaviour of masonry 

wall under tension. 
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4.3. Material Characteristics of Steel 

For reinforced steel elastic-perfectly plastic behavior in both tension and compression defined. To define the 

interaction between concrete and reinforcing bar constrain called “embedded region” is used. This constrains prevents 

any movement of the reinforcing bar inside the concrete. In fact, non-slip reinforcement in concrete to be embedded. 

The mechanical properties of reinforcing bar adopted in this paper has been shown in Table 2. 

Table 2. Material Properties of Steel 

Parameter value 

Elastic properties:   

     -Modulus of Elasticity (Mpa) 210000 

     -Density (kg/m3) 7800 

     -Poisson ratio   0.3 

Plastic properties:  

    -Yield stress (Mpa) 300 

    -plastic strain 0 

4.4. Element Section and Mesh Generation 

ABAQUS software supplies an extensive range of elements enabling the user to model different geometries and 

analysis types. The concrete frame and masonry wall were modelled by the use of linear 8-node, reduced integration, 

hourglass control (C3D8R), and 3D solid elements. The reason for choosing C3D8R elements is that they are 

considerably appropriate for examining finite strain and rotation in the large-displacement analysis. These elements are 

also useful for nonlinear static and dynamic analyses[23]. The embedded steel bar is modelled by a 2-node linear beam 

in space. Mesh size is approximately 200mm for the RC frame and infills. It is approximately 100mm for steel bar. 

5. Verification of In-filled RC Frame 

Lila Abdolhafez et al. [13] performed a series of experimental tests on the RC frame with different types of infilled 

wall under monotonic load. The testing program was conducted in three phases. The first phase was conducted on 

individual reinforced concrete bare frame as a control frame [13]. In the second phase, tests were performed on two 

types of infilled RC frames. In the first type, the wall was constructed before casting the two columns and the upper 

beam, and in the second, the columns and beam were constructed and then infilled with masonry [13]. In the third phase, 

several techniques were used retrofit infilled RC frame in order to improve its seismic performance [13]. More in details, 

the static tests, which were characterized with monotonic increasing load at the top beam of the frame, were performed 

to investigate the ductility, toughness, ultimate failure load and pattern of cracks, as well as failure mode [13]. 

    Figure 6 (a) indicates dimensions of the RC frame and Figure 6 (c) shows the Reinforcement detailing of RC frame 

For masonry unites, the uniaxial strength of the concrete is 350 kg/cm2, and the compressive strength is and 75 

kg/cm2[13]. Table 3 illustrates the mechanical properties of the applied steel bars [13].  

Table 3. Mechanical Properties of Steel Bars [16] 

Bar diameter (mm) 8 mm 12 mm 

Yield strength (kg/cm2) 2720 5150 

Ultimate strength (kg/cm2) 4500 7475 

% Elongation at failure 26% 23% 

Modulus of elasticity (kg/cm2) 2.06×106 2.06×106 

The experimental results have been used as a base for comparison in the following numerical analysis. The results of 

finite element model analysis (FEA) and the results of the experimental test are compared (Fig. 6(b) and Fig. 6(d)., 

Load-displacement behavior and ultimate tensile damage, which were constructed from the FEM, were compared with 

the corresponding ones from experimental testing in order to assess the adequacy of the FEA in estimating the response 

of masonry infilled frames. As shown in Fig. 6(b) and Fig. 6(d), there is an aacceptable agreement between the 
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experimental and numerical results. Therefore, finite element model was able to adequately predict the behavior of 

masonry infilled RC frame. 

  
Figure 6. (a) Frame Reinforcement Detailing and Dimensions [13]. (b) Load-displacement Comparison between FE Model 

and Experimental Result. Ultimate tensile Damage between (c) Experimental and (d) FE Model 

6. Analysis Result and Discussion 

Finite element analysis can create very large amounts of output. In order to show the results, this study used two 

different methods, namely, load-displacement curve and the contour plot. A colorful contour plot products color roll 

bandages on the numerical model, according to the amounts found in the outcomes file. In order to have a better 

understanding of the performance of the masonry wall in RC frames, the numerical results of contour plot and load-

displacement curve methods are compared in terms of general behavior, pattern of cracks, force transfer mechanisms, 

lateral load-displacement relationship and resistance, ductility, initial stiffness, and toughness. 

6.1. Pattern of Cracks 

   The infilled walls change the behavior of the frames, particularly the way and the process of cracking in RC frames. 

The cracking is created due to the excessive tensile strength of ultimate tensile strength. Figure 7b shows the tensile 

cracks in numerical samples under the lateral loading in the Abaqus software. In these figures, the amount of cracking 

under the tensile force is described by an option located in the left part of the viewport toolbar.  
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In the first stages of loading, border cracks were created in the line of connection between the frame and infill wall 

of the infilled frame without opening. Then, hairline cracks were formed in the column and extended along it. In the 

mid-height of masonry infill wall, the horizontal cracks were formed under the increase of lateral load and continued to 

compressive corners. As the loading continues, the columns suffer from shear failure along diagonal cracks. As a matter 

of course, these cracks were located exactly at the distance between the stirrups. As the loading started on infill walls 

with opening, the border cracks were first formed, and then hairline cracks extended in the column. With the increment 

of lateral loading, some cracks were observed in the opening corner and directed to compressive corners. Similar to 

infilled RC frame without opening, in models with windows of high tensile cracks were observed in the column.  

Formation of shear cracks in columns was a significant point in infilled RC frame. Unlike bar frames, in infilled RC 

frames, these sorts of cracks (i.e., shear cracks) were created parallel and near to the infill walls and in one direction. 

Hence, it could be concluded that the interaction among masonry infilled wall and RC frame created such a pattern. In 

other words, shear stress has been increased by separating masonry infilled wall from the RC frame in the stressed 

diagonal.  

6.2. Force Transfer Mechanisms 

When a frame with infilled wall is impacted by a lateral force in its panel, the infill wall prevents flexural action in 

the frame making an interaction among the RC frame and masonry infilled wall. Due to the interaction among masonry 

infilled wall and RC frame, infilled wall transfers some of the load exerted by the building. Therefore, this infilled wall 

is considered as a part of building’s force resisting system. The significant question would be arisen is that “what would 

be the transfer direction of the load if there was a masonry infilled wall in the RC frame?” In order to answer this 

question, we used the counters of principal stress (S, min, Principal). Figure 7(a) indicates force transfer mechanism 

under one direction load in Abaqus software. 

 

Figure 7. Force transfer mechanism and tensile damage patterns of infilled frames: (a) plots of the principal compressive 

stress distributions of infilled frames (b) ultimate tensile damage in infilled frames 
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As shown in Figure 7(a), in the frames with infilled wall without opening, compressive stresses are in maximum 

levels on diagonal tensile, corner, and along the four sides of the infill-to-frame connection. Tensile stresses are 

maximum in both ends but minimum in the middle (center). Figure 7(a) also shows that opening increases tensile stresses 

on compressive diagonal in opening corners and extends them toward loaded corners. It should be mentioned that, in all 

numerical models, the average of tensile stress is much less than compressive stress in the infilled wall. Comparing the 

stress distributed in bar frame and infilled frames, it could be concluded that a large compressive force has been 

transferred from infilled walls to columns. The exerted force on columns, which is due to the interaction between frame 

and infilled wall, could develop plastic regions in the columns. In other words, the presence of infilled wall could 

jeopardize the mechanism of Strong Column - Weak Beam. Therefore, it is essential to control beam and surrounding 

columns against forces caused by infilled wall and frame interaction. 

6.2. Lateral Load-displacement Relationship and Ultimate Load 

     Figure 8 illustrates the lateral load-displacement curves of models.  Table 4 shows the ultimate load of all models 

as well as the ratio of ultimate loads to the control frame (bare frame). 

  
Figure 8. The Lateral load-displacement Curves 

Table 4. the Numerical Values of Ultimate Loads 

Models 𝑷𝒖 (ton) 𝑷𝒖 / 𝑷𝒖 𝒃𝒂𝒓𝒆 

Bar frame 30.541 1 

Full infill 62.755 2.05 

Infill with 10% opening 55.636 1.821 

Infill with 20% opening 47.760 1.563 

Infill with 30% opening 42.313 1.385 

Infill with 40% opening 38.430 1.258 

Infill with 50% opening 33.943 1.111 

-The effect of infilled wall 

     Because of the inevitable interaction among the RC frame and the masonry infilled wall, ultimate loads for infilled 

frame are higher than the corresponding bar frame. 

-The effect of opening 

     For windows opening with a surface area of 10% of the infill wall area, the increase in ultimate loads was more than 
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for the cease of windows opening with a surface area of 20%. Also presence of opening within infilled RC frame led to 

the decrease of ultimate loads corresponding full infill, as well as increasing of opening size led to increasing the 

reduction of the ultimate loads.  

6.3. Ductility 

Figure 8 shows the lateral load-displacement Lateral load-displacement provide us with significant data on the ultimate 

displacement of the masonry infilled RC frames, which are helpful for specifying seismic parameter, such as ductility 

[24]. The ductility µ is defined as the ratio among yield and ultimate displacement[24]. The following equation expresses 

ductility as:  

𝜇 =
𝛿𝑢

𝛿𝑦
                                                                                                                                               (9) 

Table 5 shows values of pseudo ductility.  

Table 5. The Ductility and Its Ratio to the Control Frame (Bar Frame) 

Models 𝑫𝒖 𝑫𝒖/𝑫𝒖𝒃𝒂𝒓𝒆 

Bar frame 8.28 1 

Full infill 6.44 0.77 

Infill with 10% opening 5.8 0.70 

Infill with 20% opening 7.25 0.87 

Infill with 30% opening 6.44 0.77 

Infill with 40% opening 6.53 0.78 

Infill with 50% opening 7.37 0.89 

From this table, it can be seen that:  

- The effect of infilled wall 

     Ductility of full infilled frame has the least value in comparison bar frame. This is ascribed to the existence of the 

masonry infilled wall. 

- The effect of opening 

     The presence of opening within in-filled RC frame led to the decrease of ductility corresponding full infill, as well 

as increasing of opening size led to increasing the reduction of the ductility. As shown in Table 3, there is no significant 

difference between the initial ductility of full infill and the windows opening infill. 

6.4. Initial Stiffness 

Overlooking the effect of infill walls does not always increase the confidence in structural design. The distance 

between center of rigidity and center of mass could be increased due to the increase of stiffness caused by infill walls, 

and it would contribute into destructive torsions in building for which torsion has been neglected during the symmetric 

design. Thus, it is required to examine the impacts of infilled walls on stiffness despite the ignorance of their resistance. 

Stiffness is the rigidity of a structural element the extent to which it resists plastic deformation against applied load [9]. 

The initial stiffness of every numerical model was calculated by displacement-based design (DBD) method [18] 

described as follow: 

𝐾 =
𝐹𝑦

𝛿𝑦
                                                                                                                                                                          (10) 

Where Fy the yielding is load and 𝛿𝑦 is yielding drift. Table 6 shows the value of initial stiffness for all numerical 

models. According to Table 6, it can be seen that: 

- The effect of infilled wall 

    The existence of the masonry infilled wall considerably increases the initial stiffness of the infilled RC frames. 

-The effect of opening 

    Presence of opening within infilled RC frame decreased the stiffness corresponding to full infill frame. This is 

attributed to the increasing damage in the infill. It should be noted here that the increase of opening size reduced the 

stiffness.  
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Table 6. the initial stiffness and Its Ratio to the Control Frame (Bar Frame) 

Models K (ton/mm) 𝑲/𝑲𝒃𝒂𝒓𝒆 

Bar frame 2.92 1 

Full infill 6.44 2.20 

Infill with 10% opening 5.186 1.77 

Infill with 20% opening 4.152 1.42 

Infill with 30% opening 3.425 1.17 

Infill with 40% opening 2.96 1.013 

Infill with 50% opening 2.95 1.01 

6.5. Toughness 

The toughness is considered as one of the utmost significant aspects in examining the performance of infilled RC 

frames under various loading conditions [24]. Toughness is the capability of a structural element in absorption of energy 

and large deformation without failure [24]. The toughness is viewed as the area under the load-displacement diagram 

for each numerical model [24]. Table 7 shows the results of the values of toughness (ton.mm). 

Table 7. the Toughness and its Ratio to the Control Frame (Bar Frame) 

Models 𝑻𝒐𝒖 (𝒕𝒐𝒏. 𝒎𝒎) 𝑻𝒐𝒖/𝑻𝒐𝒖𝒃𝒂𝒓𝒆 

Bar frame 1370.922 1 

Full infill 2872.013 2.09 

Infill with 10% opening 2453.68 1.78 

Infill with 20% opening 2157.842 1.57 

Infill with 30% opening 1931.962 1.4 

Infill with 40% opening 1735.153 1.26 

Infill with 50% opening 1538.73 1.12 

 The study of table indicates that: 

-The effect of infilled wall 

      It is clear that the existence of infilled wall increases the toughness. This is due to the presence of the masonry wall 

in RC frames. 

-The effect of opening 

     As shown in table 5, the presence of opening with the infilled wall reduced the toughness of the infilled system in 

comparison to the full infilled frame. It should be noted here that the increasing of opening size led to increasing the 

reduction of toughness.  

7. Conclusions 

      In this paper, seven full-scale, one-story and one-bay RC frame, namely, a bar frame, a fully in-filled frame, in-filled 

frame with 10%, 20%, 30%, 40% and 50% window opening respectively under monotonic horizontal load were 

investigated. According to the analysed results, the following conclusions could be drawn:  

 The ultimate loads for full in-filled frame are higher than the corresponding bar frame by about 105%. 

Furthermore, the ultimate loads for infills with 10%, 20%, 30%, 40%, 50% openings are greater than bar frame 

about 82%, 56%, 38%, 25% and 11%, respectively. It means that the presence of windows opening within in-

filled RC frame raised the ultimate loads, which are corresponded to bar frame. Hence, the increase of opening 

size increased the reduction of the ultimate loads.  

 Ductility of full in-filled frame has the less value than the bar frame, which is about 33%. 

 The initial stiffness for full in-filled frame are higher than the corresponding bar frame by about 120%. 

Furthermore, the initial stiffness for infill with 10%, 20%, 30%, 40%, 50% opening are greater than bar frame 
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about 77%, 42%, 17%, 1.3% and 1%, respectively. It means that the masonry infilled wall increases the stiffness 

of the RC frames; however, the existence of windows opening within the infilled wall reduces the stiffness. 

 The toughness for full in-filled frame are higher than the corresponding bar frame by about 109%. Furthermore, 

the lateral stiffness for infill with 10%, 20%, 30%, 40%, 50% opening are greater than bar frame about 78%, 

57%, 40%, 26% and 12%, respectively. It means that the toughness for full infilled frame are higher than the 

corresponding bar frame. In addition, the presence of opening within in-filled RC frame decreased the toughness, 

which is corresponded to full infill. The increasing of opening size increased the reduction of the toughness. 

 The infilled walls in concrete frame exert much compression on the base beam leading to split in the beam-

column joint. The more increase in opening dimension size, the less compression on the base beam. Furthermore, 

additional closed stirrups are also used to prevent splitting column in the location of column – beam connection.   
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